Basic functors of differential calculus over commutative algebras

Alexandre Vinogradov, Michael Vinogradov

A program of the course at the 4st Italian Diffiety School, Forino, July 17 — 29, 2000

1. The Diff-prolongations of differntial operators. The functor transformations

 $c_{s,l} \colon \operatorname{Diff}_s^+ \operatorname{Diff}_l^+ \to \operatorname{Diff}_{s+l}^+.$

2. The functor equivalence ${\rm Diff}_1\simeq D\oplus {\rm id}.$ The functor transformations

$$\kappa_1 \colon \operatorname{Diff}_1^{(+)} \to D.$$

3. The kernel of the universal differential operator

$$D_2^+ \colon \operatorname{Diff}_2^+ P \to P$$

and functors D_2 and $P_2^{(+)}$. The Spencer Diff-sequence of the second order.

- 4. The construction and properties of K-modules $D(P \subset Q)$ and $\text{Diff}_{1}^{(+)}(P \subset Q)$.
- 5. Functors D_i and $P_i^{(+)}$. The functor equivalence $P_i \simeq D_i \oplus D_{i-1}$. The functor transformations

$$\kappa_i \colon P_i^{(+)} \to D_i.$$

- 6. The Spencer Diff-complexes.
- 7. The construction and properties of A-modules $P \otimes_{in} Q$ and $\operatorname{Hom}_{A}^{\bullet}(P,Q)$.
- 8. A-modules Λ^{i} 's as representative objects of functors D_{i} .
- 9. Algebraic de Rham complexes. The exterior product, the Lie derivative and their properties.
- 10. The Spencer \mathcal{J} -complexes of an algebra A as as representative objects of the Spencer Diff-complexes.
- 11. The Spencer \mathcal{J} -complexes of A-modules and their properties.

Examination problems

To pass the exam by email one should solve 5 problems.

1. Let Φ_1 , Φ_2 be functors on the category of all A-modules, φ_1 , φ_2 be corresponding representative objects, that is

$$\Phi_1(P) = \operatorname{Hom}_A(\varphi_1, P), \quad \Phi_2(P) = \operatorname{Hom}_A(\varphi_2, P)$$

for any A-module P, and $F \colon \Phi_1 \to \Phi_2$ be a natural transformation. Set $P = \varphi_2$, and define the homomorphism $F^* \colon \varphi_2 \to \varphi_1$ by the formula

$$F^* = F(\mathrm{id}),$$

 $\operatorname{id} \in \operatorname{Hom}_A(\varphi_1, \varphi_1) = \Phi_1(\varphi_1), \quad F(\operatorname{id}) \in \operatorname{Hom}_A(\varphi_2, \varphi_1) = \Phi_2(\varphi_1).$ Prove that for any A-module Q and any element $h \in \Phi_1(Q) =$ $\operatorname{Hom}_A(\varphi_1, Q)$

$$F(h) = h \circ F^*$$

2. Prove that $\operatorname{Hom}_A(P^+ \otimes_{in} S, Q) = \operatorname{Hom}_A^{\bullet}(S, \operatorname{Hom}_A^+(P, Q)).$ 3. Prove that $\operatorname{Diff}_s^+ P = \operatorname{Hom}_A^+(\mathcal{J}^s, P).$

4. Prove that

$$\mathcal{J}^s_+(P) = \mathcal{J}^s_+ \otimes P, \quad J^s(P) = \mathcal{J}^s \otimes_{in} P.$$

5. Using the algebraic definition of Lie derivation deduce all usual formulas for it.