R-manifolds and multivalued solutions of PDE's Nina Khor'kova

A program of the course at the 4-th Italian Diffiety School, (Forino, July 17-29, 2000)

- Jet manifolds and PDE.
- Introduction: jet spaces $J^{k}(n, m)$.
- Jets of vector bundles $J^{k}(\pi)$.
- Jets of submanifolds $J^{k}(E, n)$.
- Jets of fibring. Jets of mappings $M \rightarrow N$. Jets of functions.
- Definitions of differential equation and its solution.
- Geometric interpretation of solutions. R-manifolds.
- The Cartan distribution on $J^{k}(E, n)$.
- Coordinate description of the Cartan distribution.
- Geometric structure of the Cartan planes.
- Description of integral submanifolds of the Cartan distribution.
- Ray submanifolds, prolongations of integral submanifolds.
- The structure of locally maximal integral submanifolds of the Cartan distribution.
- R-manifolds.
- Definitions of differential equation and its solution.
- Lie transformations (high order contact transformations).
- Lie transformations. Point transformations.
- Prolongations of point transformations. Prolongations of Lie transformations.
- Prolongations of morphisms of contact structures.
- Lie-Bäcklund theorem.
- Lie fields, liftings (prolongations) of Lie fields.
- Infinitesimal Lie-Bäcklund theorem.
- Extrinsic and intrinsic geometries of PDE.
- External and internal points of view on PDE.
- Problem of the reconstruction of the embedding $\mathcal{E} \rightarrow J^{k}$ and the Cartan distribution on J^{k}.
- Extrinsic and intrinsic symmetries of PDE.
- Rigidity. Examples.

Problems

1. Let $\pi: E^{n+m} \rightarrow M^{n}$ be a smooth bundle. Prove that $J^{k}(\pi)$ is an open everywhere dense subset of $J^{k}(E, n)$.
2. Let $\mathcal{E} \subset J^{2}\left(\mathbb{R}^{3}, 2\right)$ be the minimal surface equation. Prove that $\pi_{2,1}$: $\mathcal{E} \rightarrow J^{1}\left(\mathbb{R}^{3}, 2\right)$ is a nontrivial 2 -dimensional vector bundle.
3. Let $k \geq l$. Prove that $J^{k}(E, n)$ is the manifold of $(\mathrm{k}-\mathrm{l})$-jets of submanifolds of the form $L^{(l)}$ in $J^{l}(E, n)$.
4. Prove that the Cartan distribution on $J^{k}(E, n)$ is locally determined by the set of the Cartan forms

$$
\omega_{\sigma}^{j}=d p_{\sigma}^{j}-\sum_{i=1}^{n} d p_{\sigma+1_{i}}^{j} d x_{i},|\sigma|<k, j=1, \ldots, m
$$

5. Let $\pi: E \rightarrow M$ be a fiber bundle and let $\pi_{1,0}: J^{1}(\pi) \rightarrow E$. Show that sections of the bundle $\pi_{1,0}$ are connections in the bundle π, while the condition of zero curvature determines a first order equation in the bundle $\pi_{1,0}$.
6. Consider the system of equations:

$$
\left\{\begin{array}{l}
u_{x}=f(x, y, u) \\
u_{y}=g(x, y, u)
\end{array}\right.
$$

Prove that if this system is compatible, then the Cartan distribution restricted to the corresponding surface is completely integrable.
7. Prove the following statements:
(a) $L^{(k)}$ is a locally maximal integral manifold of the Cartan distribution.
(b) Let $Q \subset J^{k}(E, n)$ be an n-dimensional integral manifold that is transversal to the fibers of the projection $\pi_{k, k-1}$. Then, locally, Q is of the form $L^{(k)}$.
8. (a) Let $\xi=X(x, y, z) \frac{\partial}{\partial x}+Y(x, y, z) \frac{\partial}{\partial y}+Z(x, y, z) \frac{\partial}{\partial z}$ be a nonzero vector at a point $\theta \in J^{0}(2,1)$, and P the straight line determined by this vector. Deduce equations describing the ray manifold $l(P)$.
(b) Let W be a curve $x=\alpha(t), y=\beta(t), z=\gamma(t)$. Describe $\mathcal{L}(W)$.
(c) Let W be a surface of the form $z=f(x, y)$. Describe $\mathcal{L}(W)$.
9. Prove that $\operatorname{dim} \mathcal{L}(W)=r+m\binom{k+n-r-1}{n-r-1}$, where $r=\operatorname{dim} W$.
10. Let $F: J^{0}(\pi) \rightarrow J^{0}(\pi)$ be a point transformation. Prove that if the lifting $F^{(1)}$ is defined in a neighborhood of a point $\theta \in J^{1}(\pi)$, then the lifting $F^{(k)}$ is defined in a neighborhood of any point θ^{\prime} such that $\pi_{k, 1}\left(\theta^{\prime}\right)=\theta$.
11. Prove that ordinary differential equations are non rigid.

Exercises

1. Prove that the family of neighborhoods $\pi_{k}^{-1}(U)$ together with the coordinate functions $\left(x, p_{\sigma}^{j}\right)$ determines a smooth manifold structure in $J^{k}(\pi)$. Prove that $\operatorname{dim} J^{k}(\pi)=n+m\binom{n}{n+k}$
2. Prove that $\pi_{k}: J^{k}(\pi) \rightarrow M$ is a smooth locally trivial vector bundle.
3. Prove that $\pi_{k+1, k}: J^{k+1}(\pi) \rightarrow J^{k}(\pi)$ is a smooth locally trivial bundle (not vector bundle).
4. Prove that
(a) $\pi_{l, s} \circ \pi_{k, l}=\pi_{k, s}, \quad k \geq l \geq s ;$
(b) $\pi_{l} \circ \pi_{k, l}=\pi_{k}, k \geq l$;
(c) $\pi_{k, l} \circ j_{k}(s)=j_{l}(s), k \geq l$.
5. Prove that
(a) $J^{k}(E, n)$ is a smooth manifold of dimension $n+m\binom{n}{n+k}$;
(b) $\pi_{k, l}: J^{k}(E, n) \rightarrow J^{l}(E, n), k \geq l$ is a smooth locally trivial bundle;
(c) $\pi_{l, s} \circ \pi_{k, l}=\pi_{k, s}, \pi_{k, l} \circ j_{k}(L)=j_{l}(L), k \geq l \geq s$.
6. Let $F: J^{k}(E, n) \rightarrow J^{k}(E, n)$ be a Lie transformation. Prove that
(a) $\pi_{k+l, k+s} \circ F^{(l)}=F^{(s)} \circ \pi_{k+s, k+l}, l \geq s ;$
(b) $\mathrm{id}^{(s)}=\mathrm{id}$;
(c) $(F \circ G)^{(s)}=F^{(s)} \circ G^{(s)}$.
7. Consider the Legendre transformation F in the space $J^{1}(2,1)$: $\bar{x}=$ $-p, \bar{y}=-q, \bar{u}=u-x p-y q, \bar{p}=x, \bar{q}=y$.
(a) Prove that F is a Lie transformation;
(b) Describe the lifting $F^{(1)}$;
(c) Prove that F can not be represented in the form $F=G^{(1)}$, where G is a point transformation.
8. Let $F: E \rightarrow E^{\prime}$ be a morphism over a diffeomorphism $\bar{F}: M \rightarrow M$ of two bundles π and π^{\prime} over M. Define the prolongation $F^{(k)}: J^{k}(\pi) \rightarrow$ $J^{k}\left(\pi^{\prime}\right)$ in such a way that $F^{(k)}$ will be a morphism of π_{k} in π_{k}^{\prime} over \bar{F}.
9. Let $F: J^{k}(E, n) \rightarrow J^{l}(E, n), k>l$ be a smooth surjection such that $F_{*} \mathcal{C}_{\theta}^{(k)}=\mathcal{C}_{F(\theta)}^{(l)}$. Define the prolongation $F^{(k)}: J^{k}(E, n) \rightarrow J^{k}(E, n)$.
10. For the vector field $X=x \frac{\partial}{\partial u}-u \frac{\partial}{\partial x}$ on $J^{0}(2,1)$ find $X^{(2)}$.
