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On the Geometry of Singular Lagrangians

F. Pugliese, A. M. Vinogradov

Abstract. The geometry of Lagrangian systems, whose Legendre
map possesses generic singularities, is studied. On its basis the
Transition Principle, prescribing the behaviour of phase trajecto-
ries on the singular hypersurface, is proposed. As a by-product,
the notion of relative Hamiltonian field associated with an arbi-
trary Lagrangian is introduced.

1. Introduction

The Legendre map L of a generic Lagrangian is, according to a well-
known fact of Singularity Theory, just a local diffeomorphism except
for a singular hypersurface S along which it inevitably degenerates.
We call singular the Lagrangians of this kind to distinguish them from
those whose Legendre maps are everywhere degenerate. The latter
are the constrained Lagrangians and were widely studied (the Dirac-
Bergmann theory, [2], [9]) due to their fundamental importance for
gauge theories, etc. On the contrary, singular lagrangians were studied
just in a few works (see, for instance, [7]), in spite of the fact that they
appear not infrequently in the literature, for instance, in various post-
galilean models (see [3], [1], [12]). However, the principal question
of the singular lagrangian dynamics has not yet, to our knowledge,
been answered. Namely, what happens to a phase trajectory when it
reaches the singular hypersurface S. It seems that this question cannot
be resolved on the basis of the standard variational approach because
for this purpose one must prescribe ad hoc from the very beginning
the class of admissible curves-trajectories. As a rule Nature rejects
such a human dictate. In this paper we study the natural geometry of
singular Lagrangian systems, which suggests the Transition Principle
(see subsection 4.2), a prescription for what a phase trajectory must
do when reaching S.

More exactly, we formulate this principle only for generic singular
Lagrangians. In such a case, the Legendre map has at a generic point
of S a stable singularity of the fold type. The Transition Principle
forces a phase point reaching S at a generic point to make a jump to
another precisely prescribed point of S, in order to continue a ”nor-
mal” smooth motion up to a possible subsequent jump, etc. In such a
jump the system changes not only its momenta, as it occurs in various
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collisions, reflection and refraction processes, but also its space-time co-
ordinates. Such a behaviour, it seems, contradicts the common sense,
but the naturality of the underlying geometry strongly suggests testing
it experimentally. As we show below, the hamiltonian version of the
Transition Principle is perfectly confirmed in this sense. In paper [8]
we studied in detail the dynamics of a post-galilean harmonic oscilla-
tor based on the Transition Principle. The results obtained there show
the phase portrait of this system to be intrinsically self-consistent. We
also note that independently of the possible physical relevance the dy-
namical systems constructed on the basis of the Transition Principle
generalize naturally billiard systems and as such renew the park of
mathematical toys to enjoy.

By studying the geometry of singular lagrangians we observe a simple
but, it seems, very important fact: any Lagrangian, however degenerate
it is, admits the corresponding Hamiltonian field, which is a relative
one along the Legendre map. At least to our knowledge, this fact was
overlooked previously. We demonstrate its utility by describing by its
help the constraint algorithm for constrained lagrangians in few lines.

Finally, it is worth stressing that the analogue of the presented for-
malism can be developed in field theory as well, which we hope to do
in a separate paper.

2. Relative Hamiltonian vector field

2.1. Relative vector fields. The notion of relative vector field is a
key one for our purposes. Let us recall it briefly. Let M and N be
two differentiable manifolds and let F : M → N be a smooth map. A
relative vector field on N along F is by definition a derivation of the
algebra C∞ (N) with values in the algebra C∞ (M) , considered as a
C∞ (N)-module with respect to the multiplication

φf
def
= F ∗ (φ) f f ∈ C∞ (M) , φ ∈ C∞ (N)

In other words, an R-linear operator

X : C∞ (N)→ C∞ (M)

is a relative vector field along F if it satisfies the Leibniz rule:

X (fg) = F ∗ (f) X (g) + F ∗ (g) X (f) f, g ∈ C∞ (N)

If f ∈ C∞ (M) and X is a relative vector field along F , then fX is
also a relative vector field. Therefore, relative vector fields along F
form a C∞ (M)-module denoted by D (N, M ; F ). Since C∞ (M) is a
C∞ (N)-module, D (N, M ; F ) can be considered as a C∞ (N)-module:
(X, g) 7→ F ∗ (g) X, g ∈ C∞ (N).

Example 1. D (M, M ; idM ) coincides with the C∞ (M)-module
D (M) of vector fields on M .
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Example 2. Let M ⊂ N be a submanifold, then D (M, N ; σ), σ
being the inclusion map, is the C∞ (M)-module of smooth fields of
vectors tangent to N at points of M .

Example 3. If X ∈ D (M) and F : M → N is a smooth map, then
X ◦ F ∗ ∈ D (N, M ; F ).

Example 4. If Y ∈ D (N), then F ∗ ◦ Y ∈ D (N, M ; F ).

As in the case of usual vector fields, one can associate with each
relative vector field X ∈ D (N, M ; F ) the section

x ∈M 7−→ Xx ∈ TF (x) (N)

of the pullback F ∗ (π) of the tangent bundle π : T (N)→ N given by

Xx (g)
def
= [X (g)] (x) , ∀g ∈ C∞ (N)

The same formula, read from the right to the left, associates with
each section of F ∗ (π) an element of D (N, M ; F ). Thus D (N, M ; F )
may be identified with the C∞ (M)-module Γ (F ∗ (π)) of smooth sec-
tions of F ∗ (π). This identification shows that a relative vector field
X can be expressed in terms of local coordinates as follows. Let
(x1, ..., xm) and (y1, ..., yn) be local coordinates on M and N , respec-
tively. Then

X =
n∑
i=1

Xi (x)
∂

∂yi

∣∣∣∣
F (x)

or, equivalently

X =

n∑
i=1

Xi (x)

(
F ∗ ◦ ∂

∂yi

)
with Xi’s being smooth functions on M .

Let Ft : M → N , F0 = F , be a deformation of F . Then the operator

dF ∗t
dt

∣∣∣∣
t=0

: C∞ (N)→ C∞ (M)

is, as it is easy to see, a relative (along F ) vector field on N . Conversely,
any relative vector field can be represented in this form. By this reason,
relative vector fields along F are interpreted naturally as infinitesimal
deformations of F .

A number of natural operations with differential forms, general co-
variant tensor fields, etc., involving usual vector fields can be extended
to relative vector fields. For instance, if X ∈ D (N, M ; F ) the C∞ (N)-
homomorphism

iX : Λk (N)→ Λk−1 (M)

between the module of k-forms on N and that of (k − 1)-forms on M
is defined by

(iX (ω)) (X1, ..., Xp−1) (x)
def
= ωF (x) (Xx, dxF (X1|x) , ..., dxF (Xp−1|x))
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with Xi ∈ D (M) , x ∈ M . As in the usual case, we will sometimes
write Xyω instead of iX (ω).

If X = Y ◦ F ∗, with Y ∈ D (M), then, obviously,

Xyω = Y yF ∗ (ω)

Similarly, if X = F ∗ ◦ Z, with Z ∈ D (N), then

Xyω = F ∗ (Zyω)

Evidently, it holds

iX (ω ∧ ρ) = iX (ω) ∧ ρ + (−1)degω ω ∧ iX (ρ)(1)

Now the Lie derivative of ω ∈ Λk (N) along X is defined as

LX (ω) = X (ω)
def
= Xy dω + d (Xyω) ∈ Λk (M)

The Leibniz rule for LX

LX (ω ∧ ρ) = LX (ω) ∧ ρ + ω ∧ LX (ρ)

results easily from (1).
In fact, the Lie derivative along a relative field X can be defined

for any natural covariant field, for instance for covariant tensors. In
the last case the Leibniz rule LX (ϑ⊗ τ ) = LX (ϑ) ⊗ τ + ϑ ⊗ LX (τ )
gives the inductive definition of the Lie derivative for general covariant
tensor fields.

2.2. Relative Hamiltonian vector field. In this section is intro-
duced a relative vector field along the Legendre map , which general-
izes the notion of Hamiltonian vector field and is a very useful tool for
studying degenerate Lagrangians..

Let M be the configuration space of a dynamical system, described
by the Lagrangian L ∈ C∞ (T (M)). Consider the Legendre map asso-
ciated with L

L : T (M)→ T ∗ (M) ,

defined by

[L (ξ)] (η)
def
= (dξL) (αξ (η)) , ξ, η ∈ Tq (M) , q ∈ M ,

where αξ : Tq (M)→ Tξ (Tq (M)) is the canonical isomorphism between
the vector space Tq (M) and the space tangent to it at point ξ. L is
locally described by equations

qi = qi

pi = Lvi (q, v)

where (q1, ..., qn) is a local chart of M and (q, v), (q, p) are the corre-
sponding charts on T (M) and T ∗ (M), respectively. The differential of
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L is expressed with respect to such coordinates by the matrix

(dL)(q,v) =

∥∥∥∥ 1 0
Lvq Lvv

∥∥∥∥ ,(2)

where 1,0 are the n × n identity and null matrices, respectively, and
Lvq =

(
Lviqj

)
i,j=1,...n

, Lvv =
(
Lvivj

)
i,j=1,...n

.

Associate with L the following relative vector field along L :

XL
def
=
∑
i

vi
∂

∂qi

∣∣∣∣
L(q,v)

+
∑
i

Lqi (q, v)
∂

∂pi

∣∣∣∣
L(q,v)

(3)

This field is called the relative Hamiltonian field associated with L by
the reasons below.

Proposition 2.1. . XL does not depend on the choice of local coordi-
nates on M and N . Hence, the correspondence L 7→ XL is a natural
differential operator.

J Namely, one must check that the components (v, Lq) of XL in the

basis
(
∂
∂q

, ∂
∂p

)
of TL(q,v) (T ∗ (M)) change according to the transforma-

tion rules induced by a change of coordinates q 7→ q′ = q′ (q). It is easy
to see that if

ξ =
∑
i

ai
∂

∂qi
+
∑
i

bi
∂

∂pi
=
∑
i

a
′
i

∂

∂q
′
i

+
∑
i

b
′
i

∂

∂p
′
i

is a vector tangent to T ∗ (M), then

a
′
j =

∑
i

∂q
′
j

∂qi
ai

b
′
j =

∑
i

[∑
k

∂

∂qi

(
∂qk
∂q
′
j

)
pk

]
ai +

∑
i

∂qi
∂q
′
j

bi ,(4)

and

v
′
j =

∑
i

∂q
′
j

∂qi
vi ,(5)

for j = 1, ..., n. So, one has to check that (4) holds for ai = vi, bi =
Lqi (q, v) , a

′
i = v

′
i, b

′
i = Lq′i

(
q
′
, v
′)

, (q, p) = L (q, v). Equations (4)1

coincide with (5). As for (4)2 one has:

Lq′j

(
q
′
, v
′
)

=
∂

∂q
′
j

(
L
(
q
(
q
′
)

, v
(
q
′
, v
′
)))

=

=
∑
i

Lqi
∂qi
∂q
′
j

+
∑
k

Lvk
∂vk
∂q
′
j

=

=
∑
i

Lqi
∂qi
∂q
′
j

+
∑
k

pk
∂vk
∂q
′
j

(6)
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But in view of (5)

∂vk
∂q
′
j

=
∑
i

∂2qk
∂q
′
i∂q

′
j

v
′
j =

∑
i

∂2qk
∂q
′
i∂q

′
j

∑
r

∂q
′
i

∂qr
vr =

=
∑
r

∂

∂qr

(
∂qk
∂q
′
j

)
vr ,(7)

which shows (6) to be identical to (4)2 in the considered situation. I
Let

E (q, v)
def
=

n∑
i=1

viLvi (q, v)− L (q, v)(8)

be the energy function associated with Lagrangian L.

Proposition 2.2. Let L be non-singular, i.e. L is a diffeomorphism.
Then

XL = L∗ ◦XH

where XH is the Hamiltonian vector field on T ∗ (M) corresponding to
H = (L−1)

∗
(E) .

J A straightforward computation shows that

XLyΩ = −dE ,(9)

where Ω =
∑

i dpi∧dqi is the canonical 2-form on T ∗ (M). By applying
now (L−1)

∗
to (9) one obtains((

L−1
)∗ ◦XL

)
yΩ = −dH

Since XH is by definition the unique solution of

XHyΩ = −dH

one can conclude that

XH =
(
L−1

)∗ ◦XL I
It is worth stressing that equation (9) defines the vector field XL

uniquely up to a relative field Y such that Y yΩ = 0. Since Ω is non-
degenerate the C∞ (M)-module DL of relative vector fields along L
that annihilate Ω is generated by relative fields of the form L∗ ◦ Z,
with Z ∈ D (T ∗ (M)) such that L∗ (ZyΩ) = 0. The last condition
means that ZyΩ ∈ Λ1

L (T ∗ (M)), with

Λ1
L (T ∗ (M)) =

{
ω ∈ Λ1 (T ∗ (M))

∣∣ L∗ (ω) = 0
}

Note that for a generic Lagrangian function L the corresponding Le-
gendre map is a local diffeomorphism except for a nowhere dense sub-
set of T (M). Obviously, Λ1

L (T ∗ (M))|ImL = 0 for such a Lagrangian.
So, the relative Hamiltonian field XL is uniquely defined by (9) for a
generic Lagrangian L. On the contrary, solution of (9) is not unique iff
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Λ1
L (T ∗ (M))|ImL 6= 0, which is equivalent to the fact that L degener-

ates on an open subset of T (M). This discussion, together with propo-
sition 2.2, shows that (9) admits a unique natural solution, namely XL.

If

X =
∑
i

ai (q, v)
∂

∂qi
+
∑
i

bi (q, v)
∂

∂pi
,

then equation (9) looks in terms of local coordinates as∥∥∥∥ Lqv −1
Lvv 0

∥∥∥∥ · ∥∥∥∥ a
b

∥∥∥∥ =

∥∥∥∥ Eq

Ev

∥∥∥∥ ,

with a = (a1, ..., an) , b = (b1, ..., bn).

2.3. An application: the Constraint Algorithm. We conclude
this section by sketching how the relative Hamiltonian formalism can
be used to determine the consistency conditions for constrained La-
grangian systems. The constraint algorithm so obtained is, of course,
a well-known procedure, going back to the Dirac-Bergmann theory of
constrained Hamiltonians, and revisited later on by several authors (see
[6] and the references contained in it). However, the geometric inter-
pretation of the algorithm by means of the relative Hamiltonian vector
field looks more natural and transparent than the previous ones.

It is useful to notice that the Euler-Lagrange equations∥∥∥∥ 1 0
Lvq Lvv

∥∥∥∥ ·
∥∥∥∥∥
•
q
•
v

∥∥∥∥∥ =

∥∥∥∥ v
Lq

∥∥∥∥(10)

corresponding to the Lagrangian L can be represented in an invariant
form as

ZL ◦ L∗ = XL ,(11)

with ZL =
•
q ∂

∂q
+
•
v ∂

∂v
being the vector field on T (M) whose integral

curves are the phase trajectories. Notice that, if L is a constrained
Lagrangian, i.e. |Lvv| = 0 on the whole phase space, then there is,
in general, no vector field ZL ∈ D (T (M)) satisfying equation (11).
However, there may exist a maximal submanifold W ⊂ T (M) and

a vector field Z̃L ∈ D (W ) satisfying (11). The constraint algorithm
enables one to find such a submanifold by a finite number of steps.
First, notice that in view of equation (11) W can be characterized as the
maximal submanifold such that XL|W is tangent to L (W ). Consider
the sequence {Wr}of submanifolds of T (M), defined by induction as
follows:

1. W1 = T (M)
2. Wr+1 = {x ∈ Wr| XL|x is tangent to L (Wr)}
Obviously, this sequence stabilizes in a finite number of steps. If

the last Wr is not empty, it coincides with W. Notice that the above



8 F. Pugliese, A. M. Vinogradov

formulation of the constraint algorithm is more agreeable, from the
computational point of view, than the standard approach (see, for in-
stance, [6]). In fact, if L (Wr) is given by independent equations:

gi (q, p) = 0 , i = 1, ..., s ,

with s being the codimension of L (Wr), then the next term Wr+1of
the sequence is given simply by the equations

gi (L (q, v)) = 0, XL (gi) (q, v) = 0, i = 1, ...s

It can be shown that the procedure above is equivalent to the standard
reduction of a differential equation to the formally integrable form.

That given above is just an example of the usefulness of the relative
Hamiltonian formalism in the study of constrained systems and gauge
theories. A more detailed exposition of these topics will be given in a
separate paper.

3. Singular Lagrangians

In this section we consider a special but important class of non-
regular Lagrangians, whose Legendre maps degenerate only along sub-
manifolds of codimension ≥ 1. This class contains all generic La-
grangians. We use the term ”singular” for such Lagrangians, reserving
the term ”degenerate” only for the Lagrangians with everywhere de-
generated Legendre map.

3.1. Submersions with folds. First, recall briefly some basic facts
from the theory of stable mappings, which will be needed below (for
further details and proofs see, for instance, [5]).

Let M , N be two manifolds, with dim M = m ≥ dim N = n and let

F : M → N

be a smooth map. Denote by J1 (M, N) the space of 1-jets of maps
from M to N . If (x1, ..., xm), (y1, ..., yn) are two local charts on M
and N , respectively, then a system of local coordinates on J1 (M, N)
is given by (x, y, p), where p = (pij) , i = 1, ..., n , j = 1, ..., m. Let us
consider the 1-jet graph of F , i.e. the map

j1F : M → J1 (M, N)

given in local coordinates by

j1F (x)
def
=

(
x, F (x) ,

∂F

∂x
(x)

)
Let S1 ⊂ J1 (M, N) be the submanifold of 1-jets of corank 1, i.e.

S1 =
{

(x, y, p) ∈ J1 (M, N)
∣∣ rank p = n− 1

}
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Let S1 (F ) = (j1F )
−1

(S1) .We assume that j1F is transversal to S1,
i.e.

Imdx j1F + TF (x) (S1) = TF (x)J
1 (M, N) ∀x ∈ S1 (F )(12)

In terms of local coordinates, condition (12) is equivalent to the fact
that the minors of order n of the Jacobian matrix ∂F/∂x, which vanish
on S1 (F ), have only simple zeroes on it. Then ([5]) S1 (F ) is a sub-
manifold of M having the same codimension, namely m− n + 1, as S1

in J1 (M, N).

Definition 3.1. A point x ∈ S1 (F ) is called a fold point if

Tx (S1 (F )) + Ker dxF = Tx (M)

Definition 3.2. . A smooth map F : M → N is a submersion with
folds if it satisfies condition (12) and its singularities are fold points
only. In such a case the submanifold S1 (F ) defined above is called the
fold locus of F .

Remark. An obvious consequence of the definition is that the re-
striction of a submersion with folds to its fold locus is an immersion.

Below we will use the following property of submersions with folds
([5]).

Theorem 3.3. Let F : M → N be a submersion with folds and let
a ∈ S1 (F ). Then there exist a system of local coordinates (x1, ..., xm)
in a neighbourhood of a and a system of local coordinates (y1, ..., yn) in
a neighbourhood of F (a) such that: 1) a ≡ (0, ..., 0) , F (a) ≡ (0, ..., 0);
2) the coordinate expression of F is

y1 = x1

..........
yn−1 = xn−1

yn = x2
n ± ...± x2

m

J I

3.2. Legendre maps with fold-type singularities. Referring to
section 2.2 for the notations, consider the case when dL is regular
everywhere except for a hypersurface S ⊂ T (M). From (2) it follows
that S is given by the equation

H (q, v) = 0 ,

where H (q, v) = det Lvv. Assume S to be regular, i.e. that

d xH 6= 0 ∀x ∈ S(13)

Assume additionally the following transversality condition:

Ker dxL ∩ Tx (S) = {0} ∀x ∈ S(14)
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It follows from (14), in particular, that the rank of the matrix Lvv is
n − 1, i.e. dim Ker dL = 1 at any point of S, and that L|S is a local
diffeomorphism between S and L (S). Hence, L is a submersion with
folds and according to theorem 3.3 it can be represented locally in the
normal form 

y1 = x1

..............
y2n−1 = x2n−1

y2n = x2
2n

(15)

with respect to suitable local charts (x1, ..., x2n), (y1, ..., y2n) on T (M),
T ∗ (M), respectively. In view of (15) one easily finds that for every
point x ∈ S there exists a neighbourhood U of x in T (M) and a neigh-
bourhood V of L (x) inL (T (M)) such that: 1) U\S splits into two con-
nected components U1, U2 such that L (U1) = L (U2) = V \L (U ∩ S)

and 2) L (U1) ∩ L (U2) = L (U ∩ S)

In other words, if L is a submersion with folds, then L (S) locally
separates the image of L from its ”local” complement in T ∗ (M). As
we shall see below, this almost obvious property of Legendre maps
with folds is essential to carry over the transition principle from the
Hamiltonian to the Lagrangian setting.

3.3. Kernel of the Legendre Map and Characteristics on the
Singular Hypersurface. As it was remarked above, if L has only
fold-type singularities then Ker dxL is one-dimensional and transversal
to S at any point x ∈ S. We will now point out some interesting
properties of the kernel and consider its relation with the characteristic
distribution on S, which, as we shall see, plays a fundamental role in
the Transition Principle.

The following assertion is valid for an arbitrary Lagrangian.

Proposition 3.4. Ker dL is tangent to the level surfaces of energy at
any point of S.

J According to (2) one has

Ker dxL =

{
b

∂

∂v
∈ Tx (T (M))

∣∣∣∣Lvvb = 0

}
(16)

with the standard matrix notation. On the other hand, it results from
(8) that

Ev = Lvvv(17)

which shows that bTEv = 0 I
Recall now the notion of characteristic distribution on S, introduced

in [8]. Let Ω =
∑

i dpi ∧ dqi be the canonical 2-form on T ∗ (M). Then
L∗ (Ω) is a closed 2-form on T (M) degenerate at points of S. More
exactly, we have
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Proposition 3.5. . Let x ∈ S and let NullL∗ (Ω)x be the null space
of L∗ (Ω)x, i.e.

NullL∗ (Ω)x = {ξ ∈ Tx (T (M))| ξyL∗ (Ω)x = 0}

Then NullL∗ (Ω)x is 2-dimensional and contains Ker dxL.

J In special coordinates (q, v) the pullback of Ω takes the form

L∗ (Ω) =
∑
i<j

(
Lvjqi − Lviqj

)
dqi ∧ dqj −

∑
i,j

Lvivjdqi ∧ dvj

Hence NullL∗ (Ω)x consists of the vectors a ∂
∂q

+b ∂
∂v
∈ Tx (T (M)) such

that ∥∥∥∥ Lvq − Lqv Lvv
Lvv 0

∥∥∥∥ · ∥∥∥∥ a
b

∥∥∥∥ =

∥∥∥∥ 0
0

∥∥∥∥(18)

Comparing (18) and (16) one sees that Ker dxL ⊆ NullL∗ (Ω)x. This
shows that L∗ (Ω)x is degenerate if x ∈ S and hence the rank of L∗ (Ω)x
is not greater than 2n − 2. But since L|S : S → L (S) is a diffeomor-
phism one has

2n− 2 = rank
(

Ω|L(S)

)
L(x)

= rank (L∗ (Ω)|S)x

This shows that rankL∗ (Ω)x ≥ 2n − 2.I
An immediate consequence of the previous proposition is that NullL∗x (Ω)

is transversal to Tx (S), so that their intersection is a line lx tangent to
S. This way we get a 1-dimensional distribution x 7→ lx on S, called
characteristic distribution, and its integral curves are called character-
istic curves or characteristics of S.

The characteristics are non-parametrized curves transversal to the
fibres of T (M) and hence projecting biunivocally into M . Let γ : I ⊂
R→ T (M) be a characteristic of S and let γ̃ = π ◦ γ be its projection
into M . The problem of determining under what conditions is γ a
lifting of γ̃, i.e.

γ = λ
.

γ̃(19)

for some λ ∈ C∞ (I), is related with the variational interpretation of
the Transition Principle.

Theorem 3.6. Let L ∈ C∞ (T (M)) be a singular Lagrangian with
folds. The following three conditions are equivalent:

a): Any characteristic of S is the lifting of its projection into M .
b): Any point x ≡ (q, v) ∈ S, considered as an element of Tx (Tq (M)),

belongs to Ker dxL.
c): The fibres Tx (M) ⊂ T (M) are tangent to the energy level sur-

faces at any point of S.
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J Equivalence of b) and c) obviously follows from (17). Let us prove
the equivalence of a) and b). Assume that b) holds, i.e. that

Lvvv = 0 on S(20)

Let γ (t) ≡ (q (t) , v (t)) be a characteristic curve of S. We have to show
that

v (t) = λ (t)
.
q (t) ,(21)

The curve γ = L ◦ γ is a characteristic of the hypersurface L (S) with
respect to Ω, projecting into the same curve γ̃ of M as γ. Let

Φ (q, p) = 0, Φ ∈ C∞ (T ∗ (M))

be a (local) equation of L (S). Then the Hamiltonian field XΦ = Φp
∂
∂q
−

Φq
∂
∂p

is tangent to γ. By reparametrizing γ, if necessary, we can assume

that t 7→ γ (t) coincides with the parametrization of γ as an integral
curve of XΦ. As it is immediately seen from the normal form (15) of
L, it holds (locally)

L∗ (Φ) = fH2(22)

for some f ∈ C∞ (T (M)). Hence, differentiating (22) with respect to
qi and vi, one finds that, on L (S),∥∥∥∥ Lqv −1

Lvv 0

∥∥∥∥ · ∥∥∥∥ Φp

−Φq

∥∥∥∥ =

∥∥∥∥ 0
0

∥∥∥∥ ,

with the derivatives of Φ taken at L (q, v) = (q, Lv (q, v)) , (q, v) ∈ S.
In particular, LvvΦ = 0, so that from condition (20) and the fact that
corank Lvv = 1 it follows that on S

Φp = µv(23)

with µ ∈ C∞ (S). But, according to Hamilton equations associated

with Φ, Φp =
·
q, so that one gets (21), with λ = 1/µ. I

Corollary (of the proof). Let γ (t) be a characteristic of S. Then

αγ(t)

(•
q (t)

)
∈ Ker dγ(t)L, with αγ(t) being the canonical identification

of Tq(t) (M), q (t) = π (γ (t)), and Tγ(t)

(
Tq(t) (M)

)
.

J It is sufficient to notice that αγ(t)

(•
q (t)

)
= Φp (L (γ (t))).I

This corollary suggests a natural way to parametrize characteristics
of S. Namely, let γ be such a characteristic and γ̃ be its projection.

Any point (q, v) ∈ γ corresponds to a vector v ∂
∂q

∣∣∣
q
, tangent to M (but

not to γ̃, in general) at the point q ∈ γ̃. But this vector is canonically
identified with v ∂

∂v

∣∣
(q,v)

∈ T(q,v) (Tq (M)), which can be univocally

represented as the sum of a vector wq ∈ Ker (dL)(q,v) and another

vector tangent to S. In this way one associates with any point q ∈ γ̃ a
vector wq ∈ T(q,v) (Tq (M)) ≡ Tq (M) which, according to the previous
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theorem, is tangent to γ̃. Hence we obtain a parametrization of γ̃, and
consequently of γ.

The above theorem is illustrated with a special class of Lagrangians
which appears frequently in post-galilean models of interacting particles
([3], [12]). One of them, a post-galilean oscillator, was considered in
[8] with the purpose to exhibit the ”jumping dynamics” resulting from
the Transition Principle.

Example. Consider Lagrangians of the form

L = L (q, Q (q, v)) ,(24)

where

Q (q, v) =
1

2
vTG (q) v

is a pseudo-Riemannian metric on M , whose matrix is 1/2G (q). So,
G (q) is symmetric and non degenerate, for any point q ∈ M . The
singular set S of the corresponding Legendre map coincides with the set
of points at which the operator represented by the matrix Lvv =

∥∥Lvivj∥∥
has a non-trivial kernel. Note that

Lvv = L
′
G + L′′A ,(25)

with the n × n matrix A = A (q, v) = (Gv) (Gv)T , and the prime
standing for ∂/∂Q. If v 6= 0, then A is an operator of rank 1 whose
image is generated by vector Gv while its kernel, Ker A, is com-
posed of vectors w such that vTGw = 0. There are two qualita-
tively different cases: 1) v /∈ Ker A (q, v) ⇐⇒ Q (q, v) 6= 0, and 2)
v ∈ Ker A (q, v)⇐⇒ Q (q, v) = 0. Let us consider them separately.

1) In this case by identifying Tq (M) and T(q,v) (Tq (M)) ⊂ T (T (M))
we see that the latter space is decomposed into the direct sum

T(q,v) (Tq (M)) = Ker A (q, v)⊕ {v}
with {v} = {w| w = λv, λ ∈ R}. So, if z = w + u, with w ∈
Ker A (q, v) , u ∈ {v}, then according to (25)

Lvv (w + u) = G
(
L′w +

(
L′ + vTGvL′′

)
u
)

Hence

w + u ∈ Ker Lvv ⇐⇒ L′w +
(
L′ + vTGvL′′

)
u = 0(26)

So, Ker d(q,v)L = Ker Lvv (q, v) 6= 0 in one of the following
cases:
i): L

′
+ 2L′′Q = 0, L′ 6= 0 ⇐⇒ Ker d(q,v)L = {v}

ii): L′ = 0, L′ + 2L′′Q 6= 0 ⇐⇒ Ker d(q,v)L = Ker A (q, v)
iii): L′ = L′ + 2L′′Q = 0 ⇐⇒ Ker d(q,v)L =T(q,v) (Tq (M))
As it is easy to see, in the case i) Ker dL is 1-dimensional

and is transversal to the hypersurface S1 = {L′ + 2L′′Q = 0} ex-
cept for its submanifold S0

1 = {3L′′ + 2L′′′Q = 0}. So, S1\S0 is
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composed of fold points. On the contrary, Ker dL is tangent to
S2 = {L′ = 0}.

2) It is convenient in this case to consider the direct decomposition

T(q,v) (Tq (M)) = Ker A (q, v)⊕ {Gv} , v 6= 0

where ImA (q, v) = {Gv} = {z | z = λGv, λ ∈ R}. Note that
A (Gv) = λ (Gv), with λ ∈ R. So, if z = w+u, w ∈ Ker A (q, v) , u ∈
ImA (q, v), then in view of (25) one has

Lvv (z) = G (L′w + L′u) + λL′′u = G (L′w + L′u) + λµL′′Gv

with u = µGv. This shows that

Lvv (z) = 0⇐⇒ (L′w + λµL′′v) + L′u = 0

Since L′w + λµL′′v ∈ Ker A we see that L′Au = 0. This implies
either L′ (q, Q (v)) = 0 or A (q, v)u = 0, i.e. u = 0. In the last
case µ = 0 and L′w = 0 (w 6= 0), so we find again that L′ = 0.
Hence S ∩ {Q (q, v) = 0} ⊂ S2.

Thus we see that S = S1∪S2 and S1\S0
1 consists of fold points, while

S2 is not a generic singularity of L.

3.4. Characteristic curves and symmetries. In this subsection it
is shown that symmetries of a Lagrangian respect the characteristic
curves of its singular hypersurface S. Namely, the first integral of
Euler-Lagrange equations corresponding to an infinitesimal symmetry
of the Lagrangian is constant along characteristic curves.

First, recall some definitions. Let F : M → M be a smooth map.
Its natural liftings F̃ : T (M)→ T (M) and F̂ : T ∗ (M)→ T ∗ (M) are
defined by formulas

F̃
∣∣∣
Tq(M)

= dqF , q ∈M

and

F̂
∣∣∣
T ∗q (M)

= (dqF
∗)−1 , q ∈M

respectively. Obviously, if F is a diffeomorphism, then such are also F̃
and F̂ . F is a symmetry of a Lagrangian L if F̃ ∗ (L) = L. Further, it
is easy to see that if F is a symmetry of L, then

L ◦ F̃ = F̂ ◦ L(27)

Another relation we need is (see, for instance, [10])

F̂ ∗ (ρ) = ρ ,(28)

where ρ =
∑

pidqi is the Liouville form on T ∗ (M) .
Similarly, any vector field X ∈ D (M) can be lifted canonically to

both T (M) and T ∗ (M). Denote these liftings by X̃ ∈ D (T (M)) and

X̂ ∈ D (T ∗ (M)), respectively. If {Ft} is the flow generated by X, then
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X̃ (resp., X̂) is the vector field generating the flow
{
F̃t

}
(resp.,

{
F̂t

}
).

The infinitesimal analogue of (28) is

X̂ (ρ) = 0(29)

Recall that X ∈ D (M) is called an infinitesimal (non-hidden) symme-
try of L if

X̃ (L) = 0

If X ∈ D (M) is an infinitesimal symmetry of L, then

X̃ ◦ L∗ = L∗ ◦ X̂ ,(30)

which is the infinitesimal analogue of (27).
According to Noether’s theorem, the function

IX = L∗ (ρ)
(
X̃
)

(31)

is a first integral of the Euler-Lagrange equations.

Theorem 3.7. IX is constant along the characteristics of S.

J Since X̂ (ρ) = X y dρ+ d
(
X̂ y ρ

)
, from (30), (29) and (31) we get

dIX = −X̃yL∗ (Ω)

Hence, if x ∈ S and ξ ∈ Tx (S) is a characteristic vector, then

ξ (IX) = −L∗ (Ω)x

(
X̃x, ξ

)
= 0 I

4. Transition Principle.

The Transition Principle discussed in this section is a prescription
describing the behaviour of a dynamical system in some irregular situ-
ations when the standard ”smooth” principles are no longer applicable.
This principle was introduced by one of the authors (see [11]) in the
context of Hamiltonian mechanics when the Hamiltonian function is
discontinuous. The examples given below and in [11], [8] show it to be
”experimentally” confirmed. On the other hand, the concept of relative
Hamiltonian vector field associated with a Lagrangian allows one to ob-
serve that the geometrical background of the Hamiltonian Transition
Principle is essentially the same as that for fold-singular Lagrangians.
This motivates the ”Lagrangian” Transition Principle as it is presented
below.
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4.1. The Hamiltonian formulation. Let us recall the Transition
Principle for discontinuous Hamiltonians.

Let (Φ, Ω) be a symplectic manifold. Suppose that Φ is divided by
a hypersurface Γ into two closed domains Φ+, Φ− and that the hamil-
tonian function of the system is bi-valued on Γ. In other words, the
restrictions H± = H|Φ± are C∞-smooth in their respective domains,
but they do not necessarily coincide on the common boundary Γ.

Recall ([10]) that on Γ is defined the one-dimensional distribution of
characteristic directions. Such distribution associates with each point
x ∈ Γ the characteristic line

lx
def
=
{
ξ ∈ Tx (Φ) | (ξyΩx)|Tx(Γ) = 0

}
The integral curves of this distribution are called characteristics of Γ.

Definition 4.1. Let x ∈ Γ. We say that x is an in-point (resp. an
out-point) for H+ if XH+

∣∣
x

is directed toward Φ+ (resp. toward Φ−).
Similarly, in- and out-points for H− are defined.

Definition 4.2. Let x ∈ Γ and E = H+ (x). Denote by γx the char-
acteristic of Γ passing through x. A point y ∈ γx is called decisive for
(x, H+) if it is an in-point for H+ (resp. for H−) and H+ (y) = E
(resp. H− (y) = E). Analogously, one can define decisive points for
(x, H−).

Transition Principle (Hamiltonian formulation). When the
moving phase point reaches from Φ+ (resp., Φ−) the hypersurface Γ at
a point x, its trajectory is to be prolonged, starting from any decisive
point for (x, H+) (resp., (x, H−)), as the trajectory of the corresponding
Hamiltonian.

Remark. The transition principle is applied as well to the situation
when the Hamiltonian H is smooth but the phase space has a non-
empty boundary ∂Φ. In such a case one has just to put formally
Γ = ∂Φ, Φ+ = Φ, Φ−\Γ = ∅, H+ = H and H− = ∞. In other words,
only in- and out-points for H+ = H are to be taken into consideration.
Elastic collisions of rigid bodies (see the example below) are described
by the transition principle in this form.

It is worth stressing that, according to the transition principle, the
phase trajectory generally splits into several parts after having reached
the hypersurface Γ. Such behaviour is not, however, abnormal and
happens, for instance, in geometrical optics (see [8]) when a light ray
splits into reflected and refracted rays, in perfect accordance with the
transition principle.

We remark that from the above principle it follows that the energy
of the system does not change after an impact with Γ. In the example
below we will see that in some special but important cases also other
first integrals of the equations of motion are preserved.
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The transition principle can be modified naturally to take into ac-
count further peculiarities of the studied physical system. For instance,
the energy can be replaced by an alternative constant of motion in the
formulation of the principle, or some further rules describing the energy
balance in the process of impact may be added (non-elastic collisions,
etc.).

Example 1. (The transition principle for natural Hamiltonians).
Let us consider the case when Φ = Φ+ ∪ Φ− is the cotangent bundle
T ∗ (M) of the configuration space M = M+∪M− and Γ = π−1 (S), with
S = ∂M+ ∩∂M− being a regular hypersurface in M and π : T ∗ (M)→
M being the bundle projection. Further, let each of the Hamiltonians
H+, H− be of the form

H± (q, p) = pTG± (q)p + V± (q) ,(32)

with V± ∈ C∞ (M±) potential energy and G± Riemannian metric on
M± (kinetic energy). Let F (q) = 0 be the equation of S and hence
of Γ too (more exactly, π∗ (F ) = 0 is the equation of Γ). Then the
characteristics of Γ are described by the Hamilton equations:{ •

qi= Fpi = 0
•
pi= −Fqi (q)

together with F (q) = 0. Hence, the characteristic passing through the
point x ≡ (q, p) ∈ Γ is the line γx ⊂ T ∗q (M) given in parametric form
by {

qi (t) = qi
pi (t) = pi − Fqi (q) t

Suppose that the phase point, coming from Φ+, reaches Γ at the point
x. According to the transition principle the part of the trajectory
reflected from Γ starts from the in-points for H+ at which the char-
acteristic γx intersects the hyperquadric H+ (q, p) = H+ (q, p). This
intersection consists of the two points x = x (0) and x∗ = x (t∗), with
t∗ = 2

(
F T
q G+p

)
/
(
F T
q G+Fq

)
(all the functions are evaluated at x).

Note that XH+ (F ) = −XF (H+) = 2F T
q G+p. Therefore:

x = x∗ ⇔ XH+ tangent to Γ at x⇔ γxtangent to
{
H+ = H+

}
at x

If x 6= x∗, then

XH+ (F )
∣∣
x∗

= −2 XH+ (F )
∣∣
x

so that if x is an out-point for H+, x∗ is an in-point for it (and vicev-
ersa). Therefore, if the phase point reaches Γ at x transversally, then
according to the transition principle there is one and only one ”re-
flected” trajectory issuing from x∗. As for ”refracted” trajectories,
they can be two, one or none, depending on how the characteristic
straight line intersects the quadric {H− (q, p) = H+ (x)}.
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The following fact concerning the relation between symmetries of H±
and the characteristics on Γ is analogous to theorem 3.7. So, we omit
the proof. For the notation, see section 3.4.

Theorem 4.3. . Let X ∈ D (M) be a non-hidden symmetry of the

Hamiltonian H, i.e. X̂ (H) = 0. Then the corresponding first integral

of Hamilton equations, ρ
(
X̂
)

(see [10]), is constant along the charac-

teristics of Γ iff X is tangent to S = π−1 (Γ).

J I
Example 2. (Elastic collisions between rigid bodies). Let C1, C2 be

two rigid bodies with perfectly smooth outer surfaces, and assume that
in case of an impact between them the total mechanical energy does
not change (elastic collision). Then one can think of the 12-dimensional
configuration space M as the union of two domains: M+, corresponding
to the admissible configurations, in which the motion is described by
a Hamiltonian of the form (32); and a domain M−, formed by the
configurations such that (C1 ∩ C2)

◦ 6= ∅, with which one associates a
potential energy ”identically equal to +∞”. In other words, the rigidity
constraints do not allow for refracted trajectories.

The value of the momenta p after a collision can obviously be de-
termined in an elementary way by taking into account the integrals
of motion (total mechanical energy, projections of linear and angular
momenta). Apart from mechanical energy, all the other integrals are
associated with 1-parameter groups of space symmetries of the system
(invariance with respect to translations and rotations), and it is evident
that such isometry groups leave fixed the hypersurface S = ∂M+∩∂M−
of tangency configurations. Hence, according to the previous theorem,
the corresponding first integrals keep constant along the characteris-
tics of Γ = π−1 (S). Therefore, by applying the transition principle
we automatically get the conservation of all the above integrals of mo-
tion. This also shows that the transition principle leads to the same
result as the classical theory in describing elastic collisions. Moreover,
it continues to work as well when the lack of symmetries does not allow
symmetry considerations.

4.2. The Lagrangian formulation. The transition principle, origi-
nally considered only in the Hamiltonian case described above, can be
extended to the Lagrangian situation, as it has been shown for the first
time in [8]. Namely, suppose that a dynamical system is described by
a singular Lagrangian with folds as in section 3.2. Then the motion
of the system is uniquely determined outside the singular hypersur-
face S by Euler-Lagrange equations (10), or, equivalently, (11), where

ZL =
•
q ∂

∂q
+
•
v ∂

∂v
∈ D (T (M) \S) is the Lagrangian vector field asso-

ciated with L. On the other hand, equations (10) cannot be solved
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uniquely with respect to
•
v on S. So accelerations are undetermined

on S, in general, and there are discontinuities in the motion. The
Lagrangian formulation of the transition principle is a natural way to
determine these discontinuities.

First, let us extend to the Lagrangian case the notion of in- and
out-points.

Definition 4.4. Let x ∈ S and let the neighbourhood V of L (x) in
L (T (M)) be given as at the end of section 3.2. A point x ∈ S is
called an in-point for L if XL|x is directed towards V , and out-point
otherwise.

XL is, generally, transversal to L (S) everywhere on S, except for a
(possibly non regular) (2n − 2)-dimensional submanifold S1. This, in
turn, contains a submanifold S2 of dimension (2n − 2) on which XL is
tangent at S1, etc., just as in the case of the constraint algorithm (see
section 2.3).

Definition 4.5. Let x ∈ S. A point y ∈ S is called decisive for x if it
is an in-point such that E (y) = E (x).

Given the above definitions, the extension of the Transition Principle
to the Lagrangian case is obvious.

Transition Principle (Lagrangian formulation). When the phase
point reaches the hypersurface S at a point x, its trajectory can be pro-
longed, starting from any point decisive for x, as a trajectory of the
Lagrangian vector field ZL.

Recall that the characteristics of a singular Lagrangian L are natu-
rally parametrized curves, according to the construction of section 3.3.
The physical meaning of this parameter is at the moment not very
clear. It seems natural to interpret it as the time during which the
phase point remains captured by the singular surface S.

Obviously, physical applications of the Lagrangian Transition Prin-
ciple depend on whether there exist physically meaningful Lagrangians
with fold singularities. For instance, are the singularities appearing in
various post-galilean models (see [3], [12]) just the artificial by-products
of the adopted approximation procedure? In other words, the dilemma
is whether the presence of singularities indicates only that the La-
grangian model is inadequate or, on the contrary, a new phenomenon.
An experimental test of it would be very interesting. From the mathe-
matical point of view, singular lagrangian dynamical systems general-
ize naturally the billiard systems and as such are worth being studied.
In [8] such a dynamics (post-galilean oscillator) was studied in detail,
showing its intrinsic self-consistency.

4.3. The Transition Principle and the Weierstrass-Erdmann
conditions. A natural question whether the singular Lagrangian dy-
namics based on the transition principle corresponds to a variational
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problem is briefly discussed in this subsection. In fact, functionals cor-
responding to singular Lagrange densities appear in various mathemat-
ical problems and have been studied by various authors. The following
classical theorem is one of the main results in this direction.

Theorem 4.6. (Weierstrass-Erdmann conditions). Consider the ac-
tion functional

F (q)
def
=

∫ b

a

L
(
q (t) ,

•
q (t)

)
dt(33)

defined on the space of piecewise smooth functions q : [a, b]→ M with
fixed end-points q′, q′′ ∈ M . Let q (t) be an extremal for F , and sup-
pose its derivative to have a jump discontinuity at t∗ ∈]a, b[. Then the
following two conditions must be satisfied:

1. E (t∗−) = E (t∗+)
2. Lvi (t

∗−) = Lvi (t
∗+) , i = 1, ..., n

where by f (t∗+), f (t∗−) we denote the right and left limit of f at
t∗, respectively, and the energy E and momenta Lvi are evaluated on
q (t).

JSee, for instance, [4]I
According to Hamilton’s principle, the variational problem associ-

ated with the functional (33) is equivalent to Euler-Lagrange equations
outside the singular hypersurface S. On the other hand, it is easy to
see that the derivative of a broken extremal q (t) of F has a jump at

t∗ only if
(
q (t∗) ,

•
q (t∗)

)
∈ S. At a first glance, it would seem natu-

ral to interpret the extremals of (33) on the class of piecewise smooth
curves. However, such an assumption presents serious drawbacks from
the dynamical point of view. First, the behaviour of the system on S
is not taken into any account. The natural geometrical structure de-
scribed above is simply ignored and the singular hypersurface itself is
just considered as a ”black box”. Furthermore, the second Weierstrass-
Erdmann condition is a consequence of an ad hoc restriction on the class
of possible trajectories. Namely, it is assumed that the extremal curve
q (t) has discontinuities only in the derivative, i.e. jumps of position
are not allowed. That this need not necessarily be the case is shown
by the following example.

Example. Consider the Lagrangian function

L (q, v) = −mc2

√
1− v2

c2
− kq2

(
1 +

v2

2c2

)
(34)

describing the motion of a one-dimensional relativistic oscillator in the
post-galilean approximation ([7], [8]). The constants m, q, k, c are the
mass and the charge of the oscillating particle, the elastic constant and
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Figure 1.

the light velocity, respectively. The energy function corresponding to
(34) is

E (q, v) =
mc2√

1− v2/c2
+ kq2

(
1− v2

2c2

)
,

while the equation of S is

q2 =
mc2

k (1− v2/c2)3/2

As it is shown in figure 1, for a sufficiently high value of the energy the
phase point reaches S at the point x ≡ (q, v). Then, according to the
Transition Principle, the motion continues after the jump at the point
x∗ ≡ (q,−v). On the other hand, Weierstrass-Erdmann conditions tell
that after the system reaches x its trajectory can be prolonged no more,
because Lv (x∗) = −Lv (x) 6= 0. In other words, time ceases to exist for
this system. So, the Transition Principle seems to be more reasonable
in the dynamical context.
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