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INTRODUCTION

Mentioning (co)homology theory in the context of differential equations
would sound a bit ridiculous some 30-40 years ago: what could be in com-
mon between the essentially analytical, dealing with functional spaces the-
ory of partial differential equations (PDE) and rather abstract and algebraic
cohomologies?

Nevertheless, the first meeting of the theories took place in the papers
by D. Spencer and his school ([, [4]), where cohomologies were applied
to analysis of overdetermined systems of linear PDE generalizing classi-
cal works by Cartan 2. Homology operators and groups introduced by
Spencer (and called the Spencer operators and Spencer homology nowadays)
play a basic role in all computations related to modern homological appli-
cations to PDE (see below).

Further achievements became possible in the framework of the geometri-
cal approach to PDE. Originating in classical works by Lie, Backlund, Dar-
boux, this approach was developed by A. Vinogradov and his co-workers
(see [BA, E1]). Treating a differential equation as a submanifold in a suit-
able jet bundle and using a nontrivial geometrical structure of the latter
allows one to apply powerful tools of modern differential geometry to anal-
ysis of nonlinear PDE of a general nature. And not only this: speaking
the geometrical language makes it possible to clarify underlying algebraic
structures, the latter giving better and deeper understanding of the whole
picture, [BZ, Ch. 1] and [B3, 4.

It was also A. Vinogradov to whom the next homological application to
PDE belongs. In fact, it was even more than an application: in a series of
papers B9 B, B3|, he has demonstrated that the adequate language for La-
grangian formalism is a special spectral sequence (the so-called Vinogradov
C-spectral sequence) and obtained first spectacular results using this lan-
guage. As it happened, the area of the C-spectral sequence applications is
much wider and extends to scalar differential invariants of geometric struc-
tures [54], modern field theory [B 8, B B K=, etc. A lot of work was also done
to specify and generalize Vinogradov’s initial results, and here one could
mention those by I. M. Anderson [ B, R. L. Bryant and P. A. Griffiths
[3], D. M. Gessler [, 5], M. Marvan [89, B, T. Tsujishita [&a, B8, 9],
W. M. Tulczyjew B, B, 5.

Later, one of the authors found out that another cohomology theory (C-
cohomologies) is naturally related to any PDE [Z4]. The construction uses
the fact that the infinite prolongation of any equation is naturally endowed
with a flat connection (the Cartan connection). To such a connection, one
puts into correspondence a differential complex based on the Frolicher—
Nigenhuis bracket [EA KJ]. The group HY for this complex coincides with
the symmetry algebra of the equation at hand, the group H' consists of
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equivalence classes of deformations of the equation structure. Deformations
of a special type are identified with recursion operators i) for symmetries.
On the other hand, this theory seems to be dual to the term F; of the
Vinogradov C-spectral sequence, while special cochain maps relating the
former to the latter are Poisson structures on the equation [ZH].

Not long ago, the second author noticed ([BH]) that both theories may be
understood as horizontal cohomologies with suitable coefficients. Using this
observation combined with the fact that the horizontal de Rham cohomology
is equal to the cohomology of the compatibility complex for the universal
linearization operator, he found a simple proof of the vanishing theorem
for the term F; (the “k-line theorem”) and gave a complete description of
C-cohomology in the “2-line situation”.

Our short review will not be complete, if we do not mention applications
of cohomologies to the singularity theory of solutions of nonlinear PDE
([E5]), though this topics is far beyond the scope of these lecture notes.

* Kk ok

The idea to expose the above mentioned material in a lecture course at
the Summer School in Levoca belongs to Prof. D. Krupka to whom we are
extremely grateful.

We tried to give here a complete and self-contained picture which was
not easy under natural time and volume limitations. To make reading eas-
ier, we included the Appendix containing basic facts and definitions from
homological algebra. In fact, the material needs not 5 days, but 3-4 semes-
ter course at the university level, and we really do hope that these lecture
notes will help to those who became interested during the lectures. For fur-
ther details (in the geometry of PDE especially) we refer the reader to the
books [E2] and [E4] (an English translation of the latter is to be published
by the American Mathematical Society in 1999). For advanced reading we
also strongly recommend the collection [E9], where one will find a lot of
cohomological applications to modern physics.

J. Krasil’shchik
A. Verbovetsky
Moscow, 1998



1. DIFFERENTIAL CALCULUS OVER COMMUTATIVE ALGEBRAS

Throughout this section we shall deal with a commutative algebra A over
a field k of zero characteristic. For further details we refer the reader to [E2,
Ch. I] and [EH].

1.1. Linear differential operators. Consider two A-modules P and @
and the group Homp(P, Q). Two A-module structures can be introduced
into this group:

(aA)(p) = aA(p), (a"A)(p) = Alap), (1.1)

where a € A, p € P, A € Homg(P, Q). We also set
0a(A) = atA —al, by,
ap, . ..,ar € A. Obviously, dqp = e and 04, = ady + b, for any a,b € A.

Definition 1.1. A k-homomorphism A: P — (@ is called a linear differ-
ential operator of order < k over the algebra A, if 04, . 4, (A) = 0 for all
ag, . ..,ar € A.

ak:6aoo"'o6aka

.....

.....

Proposition 1.1. If M is a smooth manifold, &, ( are smooth locally trivial
vector bundles over M, A = C>®°(M) and P = T'(§),Q = I'(¢) are the
modules of smooth sections, then any linear differential operator acting from
€ to C is an operator in the sense of Definition =l and vice versa.

Exercise 1.1. Prove this fact.

Obviously, the set of all differential operators of order < k acting from
P to @ is a subgroup in Homg (P, Q) closed with respect to both multi-
plications (). Thus we obtain two modules denoted by Diff,(P, Q) and
Diff} (P, Q) respectively. Since a(b™A) = b*(aA) for any a,b € A and A €
Homy (P, @), this group also carries the structure of an A-bimodule denoted
by Diff\" (P, Q). Evidently, Diffo(P, Q) = Diff{ (P, Q) = Hom(P, Q).

It follows from Definition I that any differential operator of order < k
is an operator of order < [ for all [ > k and consequently we obtain the

embeddings Diff\"” (P,Q) c Diff\"(P,Q), which allow us to define the
filtered bimodule Diff (P, Q) = |-, Diff\" (P, Q).

We can also consider the Z-graded module associated to the filtered mod-
ule Diff(P,Q): Smbl(P, Q) = @, Smbl,(P,Q), where Smbl,(P, Q) =

Diff Y (P, Q)/Diff") (P, Q), which is called the module of symbols. The el-
ements of Smbl(P, Q) are called symbols of operators acting from P to Q.
It easily seen that two module structures defined by (M) become identical
in Smbl(P, Q).

The following properties of linear differential operator are directly implied
by the definition:



Proposition 1.2. Let P,Q) and R be A-modules. Then:

(1) If Ay € Diff (P, Q) and Aq € Diff;(Q, R) are two differential opera-
tors, then their composition Ay o Ay lies in Diffy (P, R).
(2) The maps

i~+: Diff,(P, Q) — Ditf} (P,Q), i*: Diff{ (P,Q) — Diffx(P, Q)

generated by the identical map of Homy (P, Q) are differential opera-
tors of order < k.

Corollary 1.3. There exists an isomorphism
Diff* (P, Diff " (Q, R)) = Diff*(P, Diff(Q, R))
generated by the operators " and i,

Introduce the notation Diffl(j)(Q) = Diffl(:r) (A, Q) and define the map
Dy: Diff (Q) — Q by setting Dx(A) = A(1). Obviously, Dy, is an operator
of order < k. Let also

Y: Diff (P, Q) — Hom(P, Diff} (Q)), A+ ta, (1.2)
be the map defined by (¥a(p))(a) = A(ap), p € P, a € A.
Proposition 1.4. The map (BA) is an isomorphism of A-modules.

Proof. Compatibility of ¢ with A-module structures is obvious. To complete
the proof it suffices to note that the correspondence

Homy (P, Diff} (Q)) 2 ¢ — Dy o p € Diff} (P, Q)
is inverse to 1. O
The homomorphism v is called Diff-associated to A.

Remark 1.1. Consider the correspondence P = Diff} (P, Q) and for any
A-homomorphism f: P — R define the homomorphism

Diff; (f,Q): Diff{ (R, Q) — Diff{ (P, Q)

by setting Diff; (f,Q)(A) = Ao f. Thus, Diff{(-,Q) is a contravariant
functor from the category of all A-modules to itself. Proposition [0 means
that this functor is representable and the module Diff; (Q) is its represen-
tative object. Obviously, the same is valid for the functor Diff* (-, Q) and
the module Diff*(Q).

From Proposition I we also obtain the following

Corollary 1.5. There exists a unique homomorphism
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such that the diagram
Diff; (Diff; (P)) —%— Diff; (P)

Ck,ll lDl

D
Diff; ,(P) s P
18 commutative.

Proof. 1t suffices to use the fact that the composition
Dl s} Dk . lefk(lefl(P)) — P
is an operator of order < k +{ and to set c;; = ¥p,op, - O

The map ¢y is called the gluing homomorphism and from the definition
it follows that (cx;(A))(a) = (A(a))(1), A € Diff} (Diff;f (P)), a € A.

Remark 1.2. The correspondence P = Diff} (P) also becomes a (covari-
ant) functor, if for a homomorphism f: P — @ we define the homomor-
phism Diff; (f): Diff (P) — Diff}(Q) by Diff} (f)(A) = f o A. Then
the correspondence P = ¢ ,;(P) is a natural transformation of functors
Diff} (Diff;"(-)) and Diff},,(-) which means that for any A-homomorphism
f: P — (@ the diagram

i + i —+
Diff (DiffF (P)) —- P pieet DigeH(Q))
Ck,l(P)J/ J/Ck,l(Q)
Diff;"
Diff;,,(P) 2l Diff;,(Q)

is commutative.

Note also that the maps c; are compatible with the natural embed-
dings Diff} (P) — Difff(P), k < s, and thus we can define the gluing
Cux: DIff H(Diff(+)) — Diff*(-).

1.2. Multiderivations and the Diff-Spencer complex. Let A®F =
A®yg - Rk A, k times.

Definition 1.2. A k-linear map V: A®% — P is called a skew-symmetric
multiderivation of A with values in an A-module P, if the following condi-
tions hold:

(1) V(a1,...,ai,ai+1,...,ak)+V(a1,...,aiH,ai,,,,,ak) = 0’

(2) v(ala .- 'aaiflaaba Ait1y - - 'aak)

aV(ay,...,a;-1,b,aiy1,...,ax) +bV(a,...,a;i-1,a,ai1,...,ax)
<

for all a,b,ay,...,ar € A and any i, 1 <i < k.
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The set of all skew-symmetric k-derivations forms an A-module denoted
by Di(P). By definition, Dg(P) = P. In particular, elements of D, (P) are
called P-valued derivations and form a submodule in Diff; (P) (but not in
the module Diff] (P)!).

There is another, functorial definition of the modules Dy(P): for any
V € Di(P) and a € A we set (aV)(ay,...,ar) =aV(as,...,ax). Note first

that the composition 7;: Di(P) — Diff;(P) -, Diff] (P) is a monomor-
phic differential operator of order < 1. Assume now that the first-order
monomorphic operators v; = v;(P): D;(P) — D;_(Diff] (P)) were defined
for all i+ < k. Assume also that all the maps 7; are naturall operators.
Consider the composition

Dy (Diff (P)) 25 Dy (Diff (DiffF (P))) 212, | (Ditfs (P)).
(1.3)

Proposition 1.6. The following facts are valid:

(1) Dgy1(P) coincides with the kernel of the composition (EJ).

(2) The embedding Vey1: D1 (P) — Dy(Diff! (P)) is a first-order dif-
ferential operator.

(3) The operator v4+1 s natural.

The proof reduces to checking the definitions.

Remark 1.3. We saw above that the A-module Dy (P) is the kernel of the
map Dy_1(c11) o7, the latter being not an A-module homomorphism but a
differential operator. Such an effect arises in the following general situation.

Let F be a functor acting on a subcategory of the category of A-modules.
We say that F is k-linear, if the corresponding map Fpg: Homy (P, Q) —
Homy (P, Q) is linear over k for all P and @) from our subcategory. Then
we can introduce a new A-module structure in the the k-module F(P) by
setting a'q = (F(a))(q), where ¢ € F(P) and F(a): F(P) — F(P) is the
homomorphism corresponding to the multiplication by a: p — ap, p € P.
Denote the module arising in such a way by F(P).

Consider two k-linear functors F and G and a natural transformation A:
P = A(P) € Homy(F(P), G(P)).
FExercise 1.2. Prove that the natural transformation A induces a natural

homomorphism of A-modules A: F(P) — G'(P) and thus its kernel is
always an A-module.

From Definition IE on the preceding page it also follows that elements
of the modules Dy (P), k > 2, may be understood as derivations A: A —
Di_1(P) satisfying (A(a))(b) = —(A(b))(a). We call A(a) the evaluation

4This means that for any A-homomorphism f: P — @ one has v;(Q) o D;(f) =
D;—1(Diffy (f)) 0 7i(P).
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of the multiderivation A at the element a € A. Using this interpretation,
define by induction on k + [ the operation A: Dy(A) ®4 Di(P) — Dy (P)
by setting

aNp=ap, a € Dg(A)=A,pe€ Dy(P) =P,
and

(AAV)(a)=AAV(a)+ (=1)'Aa) A V. (1.4)
Using elementary induction on k + [, one can easily prove the following
Proposition 1.7. The operation A is well defined and satisfies the follow-
ing properties:

(1) ANA'AV)=(ANA)AV,

(2) (aA+d A YAV =aAAV +dA'AV,

(B) AAN(aV+dV')=aAANV +dANV,

(4) AANA = (=1)"*FA'AA
for any elements a,a’ € A and multiderivations A € Di(A), A" € Dp(A),
V e Di(P), V' € Dp(P).

Thus, D.(A) = ,-,Dr(A) becomes a Z-graded commutative algebra
and D.(P) = @,-, Dr(P) is a graded D,(A)-module. The correspondence
P = D,(P) is a functor from the category of A-modules to the category of
graded D, (A)-modules.

Let now V € Dy(Diff;" (P)) be a multiderivation. Define

(S(V)(ay,...,ax-1))(a) = (V(ay,...,ax1,a)(1)), (1.5)
a,ay,...,ax—1 € A. Thus we obtain the map
S Dy(Diff;(P)) — Dy_1(Diff}\, , (P))
which can be represented as the composition

Dy_1(c1,)
—_—

Dy (Diff, (P)) 2% Dy, (Diff] (Diff, (P))) D1 (Diff/ (P)).

(1.6)

Proposition 1.8. The maps S: Dy(Diff;"(P)) — Dj_1(Diff,",
the following properties:

(1) S s a differential operator of order < 1.

(2) SoS=0.

Proof. The first statement follows from (&), the second one is implied

by (). O

(P)) possess
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Definition 1.3. The operator S is called the Diff-Spencer operator. The
sequence of operators

0 — P & Difft(P) <& Difft(P) < Dy(Diff* (P)) — - --
is called the Diff-Spencer complex.

1.3. Jets. Now we shall deal with the functors @) = Diff;(P, Q) and their
representability.

Consider an A-module P and the tensor product A ®j P. Introduce an
A-module structure in this tensor product by setting

a(b®p) = (ab)®p, a,be A, pe P,

and consider the k-linear map e¢: P — A ®; P defined by €(p) = 1 ® p.
Denote by p* the submodule in A ®; P generated by the elements of the
form (d4,....a,(€))(p) for all ag,...,ar € A and p € P.

Definition 1.4. The quotient module (A @y P)/u* is called the module of
k-jets for P and is denoted by J*(P).

We also define the map ji: P — J*(P) by setting ji.(p) = e(p) mod pF.
Directly from the definition of x* it follows that j, is a differential operator
of order < k.

Proposition 1.9. There exists a canonical isomorphism

¢: Diff(P,Q) — Homa(J*(P),Q), A >, (1.7)
defined by the equality A = ¢*™ o ji, and called Jet-associated to A.

Proof. Note first that since the module J*(P) is generated by the elements
of the form ji(p), p € P, the homomorphism v, if defined, is unique. To
establish existence of ¥*, consider the homomorphism

n: Homa(A ®: P.Q) — Homu(P.Q), n(¢) = poe.

Since ¢ is an A-homomorphism, one has

0a(n(p)) = da(p 0 €) = o da(e) =n(da(p)), a€ A

Consequently, the element 7(p) is an operator of order < k if and only if
o(uF) = 0, i.e., restricting n to Diff,(P,Q) C Homy(P, Q) we obtain the
desired isomorphism 1. O

The proposition proved means that the functor @) = Diff; (P, Q) is repre-
sentable and the module J*(P) is its representative object.

Note that the correspondence P = J*(P) is a functor itself: if p: P — Q
is an A-module homomorphism, we are able to define the homomorphism
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TE(p): TH(P) — J*(Q) by the commutativity condition
p - gkp)

<f’l lJ *(@)
Q —"— J*Q)
The universal property of the operator j; allows us to introduce the nat-

ural transformation ¢! of the functors J**(-) and J*(J!(-)) defined by
the commutative diagram

r L gup

jk+lJ/ J/jk
Kl
T (P) —— THT(P))
It is called the co-gluing homomorphism and is dual to the gluing one dis-
cussed in Remark = on page B
Another natural transformation related to functors J*(-) arises from the
embeddings p! < p*, 1 > k, which generate the projections v ;: J'(P) —
J*(P) dual to the embeddings Diffy(P, Q) — Diff;(P, Q). One can easily
see that if f: P — P’ is an A-module homomorphism, then J*(f) o v =
vk o JU(f). Thus we obtain the sequence of projections
= INP) S TN P) = = THP) S5 TP = P
and set J>°(P) = projlim J*(P). Since v o ji = ji, we can also set
Joo = projlimji: P — J*°(P).
Let A: P — @ be an operator of order < k. Then for any [ > 0 we have
the commutative diagram

P _a, Q

jk+lJ/ ljl
k+ v I
T (P) —— T(Q)
where @ZJlA = p1°A . Moreover, if I’ > [, then Yy O @/Jﬁ = @/}lA O Vptrr yr and
we obtain the homomorphism 5 : J*(P) — J>=(Q).

Note that the co-gluing homomorphism is a particular case of the above
construction: ™' = 7', Thus, passing to the inverse limits, we obtain the
co-gluing ¢>>°:

P =5  g%P)

- J5-

J=(P) <= J°(J=(P))
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1.4. Compatibility complex. The following construction will play an im-
portant role below.

Consider a differential operator A: Q — @ of order < k. Without
loss of generality we may assume that its Jet-associated homomorphism
VA J*(Q) — @ is epimorphic. Choose an integer k; > 0 and define Q-
as the cokernel of the homomorphism ¢p : T*™1(Q) — JT*(Q1),

0— 7@ T 7M@) — @ — 0,

Denote the composition of the operator jy, : Q1 — J*(Q1) with the natural
projection J*(Q;) — Q2 by A1: Q1 — Q2. By construction, we have

A10A2¢A1 Ojkl OA:¢A10¢IQA1 Ojk+k1'

FEzxercise 1.3. Prove that A, is a compatibility operator for the operator A,
i.e., for any operator V such that Vo A = 0 and ord V > k;, there exists
an operator [ such that V =0o A;.

We can now apply the procedure to the operator A; and some integer ks
obtaining As: Q2 — @3, etc. Eventually, we obtain the complex

A A A A
which is called the compatibility complex of the operator A.

1.5. Differential forms and the de Rham complex. Consider the em-
bedding #: A — J'(A) defined by 3(a) = aji(1) and define the module
A = JY(A)/im . Let d be the composition of j; and the natural projec-
tion J*(A) — Al. Then d: A — A' is a differential operator of order < 1
(and, moreover, lies in Dy (A)).

Let us now apply the construction of the previous subsection to the opera-
tor d setting all k; equal to 1 and preserving the notation d for the operators
d;. Then we get the compatibility complex

0— AL AL L A2 AR G

which is called the de Rham complex of the algebra A. The elements of A*
are called k-forms over A.

Proposition 1.10. For any k > 0, the module A is the representative
object for the functor Dg(-).

Proof. It suffices to compare the definition of A¥ with the description of
Dy (P) given by Proposition [E on page @ O

Remark 1.4. In the case k = 1, the isomorphism between Homa(A',-) and
Dy () can be described more exactly. Namely, from the definition of the
operator d: A — A! and from Proposition I on page it follows that any
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derivation V: A — P is uniquely represented as the composition V = Y od
for some homomorphism ¢V: Al — P.

As a consequence Proposition Z on the page before, we obtain the
following

Corollary 1.11. The module A* is the k-th exterior power of A'.

Ezercise 1.4. Since Dy (P) = Homa(A*, P), one can introduce the pairing
(-,-): Di(P) ® A¥ — P. Prove that the evaluation operation (see p. H) and
the wedge product are mutually dual with respect to this pairing, i.e.,

(X, da ANw) = (X(a),w)
for all X € Dyy1(P), w € A* and a € A.

The following proposition establishes the relation of the de Rham differ-
ential to the wedge product.

Proposition 1.12 (the Leibniz rule). For any w € A* and 6 € A' one has
dwA0) =dw A+ (—1) w A db.

Proof. We first consider the case [ = 0, i.e., 0§ = a € A. To do it, note
that the wedge product A: A¥ @4 A! — A¥*! due to Proposition = on
the preceding page, induces the natural embeddings of modules Dy (P) —
Di(Dy(P)). In particular, the embedding Dy,1(P) — Dg(D1(P)) can be
represented as the composition

Dy (P) % Dy (Dift] (P)) = Dy(Di(P)),

where (A(V))(a1,...,ax) = V(ay,...,ax) — (V(ai,...,ax))(1). In a dual
way, the wedge product is represented as

A A2 TYAR) ¢_d)Ak+1’
where X (w ® da) = (—1)(j1(wa) — j1(w)a). Then
(- Awda = (1) (N (w @ da))
= ¢*(ji(wa) — ji(w)a) = d(wa) — d(w)a.
The general case is implied by the identity
d(w Ada) = (=1)*d(d(wa) — dw - a) = (=1)*Td(dw - a).
]

Let us return back to Proposition IZ on the page before and consider
the A-bilinear pairing

() De(P)@a A* = P
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again. Take a form w € A* and a derivation X € D;(A). Using the definition
of the wedge product in D, (P) (see equality (E=H) on page ), we can set

(A, ixw) = (D)X A A, w) (1.8)
for an arbitrary A € Dy_1(P).

Definition 1.5. The operation ix: A¥ — A*~1 defined by () is called
the internal product, or contraction.

Proposition 1.13. For any X,Y € D1(A) and w € A*,0 € A! one has
(1) ix(wAf) =ix(w) A+ (=1)"w Aix(0),
(2) iX Oiy - —iy OiX

In other words, internal product is a derivation of the Z-graded algebra
A= ®k20 A* of degree —1 and ix,iy commute as graded maps.
Consider a derivation X € D;(A) and set

Ly (w) = [ix, d)(w) = ix(d(w)) + d(ix (w)), w € A*. (1.9)

Definition 1.6. The operation Lx: A* — A* defined by B is called the
Lie derivative.

Directly from the definition one obtains the following properties of Lie
derivatives:

Proposition 1.14. Let X|Y € Dy(A), w,0 € A*, a € A, o, € k. Then
the following identities are valid:
) Lax+sy = aLx + BLy,
) Lax = alix +da Nix,
3) LX(w/\é’) Lx( )/\9—{—&)/\14)((9),
)
) L

= [Lx, Ly], where [X, Y] =XoY —-YolX,
) [LXa 1Y] — [1Xa LY]

To conclude this subsection, we present another description of the Diff-
Spencer complex. Recall Remark IZ3 on page B and introduce the “dot-
ted” structure into the modules D(Diff;"(P)) and note that Diff;(P) =
Diff;(P). Define the isomorphism

¢: (Dy(Diff ")) (P) = Homy (A®, Diff ") = Diff " (A*, P) = Diff(A*, P).

Then we have
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Proposition 1.15. The above defined map ¢ generates the isomorphism of
complexes

o —— (Dp_1 (D)) (P) «=— (Dy(Diff"))(P) «—— ---

| 3
.« Diff(A¥', P) —— Diff(A¥,P) —rno ...
where S is the operator induced on “dotted” modules by the Diff-Spencer
operator, while v(V) =V od.

1.6. Left and right differential modules. From now on till the end of
this section we shall assume the modules under consideration to be projec-
tive.

Definition 1.7. An A-module P is called a left differential module, if there
exists an A-module homomorphism A\: P — J°°(P) satisfying v 00\ = idp
and such that the diagram

P 2 J®(P)

| Jo=o
T*(P) 5 J(T>(P))

1s commutative.

Lemma 1.16. Let P be a left differential module. Then for any differential
operator A: Q1 — Qo there exists an operator Ap: Q1 @4 P — Qo ®4 P

satisfying (1dq)p = idge,p for @ = Q1 = Q2 and
(Ag0Ay)p = (Az)po(Ar)p
for any operators A1: Q1 — Q2, Ag: Q2 — Qs.
Proof. Consider the map
A:Q1®4(AQP) = Q@4 P, q®a®p— Alag) @p.
Since

Alg®da(€)(p)) =0 A(g®1®@p), peEP, q€Q1, a€A,
the map

Ep(A): Q1 @4 TX(P) = Q2®4 P
is well defined. Set now the operator Ap to be the composition

i . A
Or @4 P92 0 0,4 7°(P) L2 0y 04 P

which is a k-th order differential operator in an obvious way. Evidently,
(idg)p = idQe . p-
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Now,
(Ag0Ay)p = Ep(Ago0Ay)o(id® A)
= &p(Az) 0 &g (p)(Ar) 0 (Id @ %) 0 (Id © A)
= £p(Az) 0 Ego(p) (A1) 0 (Id @ T*(A)) o (id 0 A)
= &p(A2) 0 (Id @A) 0 Ep(Ar) 0 (Id ® A) = (Az)p o (Ar)p,
which proves the second statement. O

Note that the lemma proved shows in particular that any left differen-
tial module is a left module over the algebra Diff(A) which justifies our
terminology.

Due to the above result, any complex of differential operators --- —
Qi — Qiy1 — --- and a left differential module P generate the complex

= Qi®AP — Qi1 ®4 P — -+ “with coefficients” in P. In particular,
since the co-gluing ¢®>° is in an obvious way co-associative, i.e., the diagram

gee) 20 gege(p)
CM,M(P)l ljw@wkuﬂ))
Je(ge(P)) S, geo(7o0(7(P)))

is commutative, J*°(P) is a left differential module with A = ¢>>*°. Conse-
quently, we can consider the de Rham complex with coefficients in J*°(P):

0— P22 7%°(P) = Al @a T¥(P) — ---
o N @aT(P) = AT @4 T®(P) — -

which is the inverse limit for the Jet-Spencer complexes of P

0P g5P) S AN e, T (P) S -
. iAz ®a jkfz(P) i)AiJrl ®a jkfifl(P) — e

where S(w ® jk—i(p)) = dw ® Jr—i—1(p).

Let A: P — @Q be a differential operator and % : J*(P) — J%(Q)
be the corresponding homomorphism. The kernel En = ker2 inherits
the left differential module structure of J°°(P) and we can consider the de
Rham complex with coefficients in Ea:

O—>EA—>A1®AEA—>---—>Ai®AEA—>Ai+1®AEA—>--- (1.10)

which is called the Jet-Spencer complex of the operator A.
Now we shall introduce the concept dual to that of left differential mod-
ules.
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Definition 1.8. An A-module P is called a right differential module, if
there exists an A-module homomorphism p: Diff*(P) — P that satisfies

the equality p |t (p) = idp and makes the diagram

Diff+(Diff*(P)) ===, Diff*(P)

Diff*(p)l lp
pifft(P) —L£— P

commutative.

Lemma 1.17. Let P be a right differential module. Then for any differen-
tial operator A: Q1 — Qs of order < k there exists an operator

AT Homs(Qs, P) — Homu(Q1, P)
of order < k satisfying idg = idHom ,(@,p) for Q@ = Q1 = Q2 and
(Ago AP = AT o AP
for any operators Aq: Q1 — @2, AVS Q2 — Q3.

Proof. Let us define the action of A" by setting A”(f) = po o, where
f € Homa(Q2, P). Obviously, this is a k-th order differential operator and
ldg = idHomA(Q,P)- NOW,

(820 A1) = 9.0 gongens = PO Coume 0 DIFF ($70n,) 0 U,
= p o Diff*(potson,) 0 ¥a, = po DIt (A7(f)) 0 ¥a,
= AT (A (f)).
Hence, (-)¥ preserves composition. O

From the lemma proved it follows that any right differential module is a

right module over the algebra Diff(A).

Let -+ — Q; N Qi+1 — --- be a complex of differential operators and

P be a right differential module. Then, by Lemma [EXd we can construct
P

the dual complex --- «— Homu(Q;, P) i Homu(Qjt1, P) «— -+ with
coefficients in P. Note that the Diff-Spencer complex is a particular case of
this construction. In fact, due to properties of the homomorphism c ~ the
module Diff*(P) is a right differential module with p = ¢y 0. Applying
Lemma [ to the de Rham complex, we obtain the Diff-Spencer complex.

Note also that if A: P — @ is a differential operator, then the cokernel
Ca of the homomorphism % : Diff"(P) — Diff"(Q) inherits the right
differential module structure of Diff *(Q). Thus we can consider the complex

0 « coker A <2 O «— Di(Ca) <= -+ «=D;i(Ca) < Di11(Ca) «— - --



19

dual to the de Rham complex with coefficients in Ca. It is called the Diff-
Spencer complex of the operator A.

1.7. The Spencer cohomology. Consider an important class of commu-
tative algebras.

Definition 1.9. An algebra A is called smooth, if the module Al is projec-
tive and of finite type.

In this section we shall work over a smooth algebra A.
Take two Diff-Spencer complexes, of orders k£ and k£ — 1, and consider
their embedding

0 P Diff{ (P)) «—— Dy(Diff{_,(P)) «—— ---
0 P Diff;_,(P)) «—— Dy(Diff;_,(P)) «—— ---

Then, if the algebra A is smooth, the direct sum of the corresponding quo-
tient complexes is of the form

0 — Smbl(4, P) <= Dy(Smbl(4, P)) <= Dy(Smbl(4, P)) «— ---
By standard reasoning, exactness of this complex implies that of Diff-
complexes.

FExercise 1.5. Prove that the operators § are A-homomorphisms.

Let us describe the structure of the modules Smbl(A, P). For the time
being, use the notation D = D;(A). Consider the homomorphism ay: P® 4
S*(D) — Smbli(A, P) defined by

ar(p@ Vi« Vi) =smblp(A), A(a)=(Vio---0Vyi)(a)p,

where a € A, p € P, and smbl: Diffy(A, P) — Smbli(A, P) is the natural
projection.

Lemma 1.18. If A is a smooth algebra, the homomorphism . is an iso-
morphism.

Proof. Consider a differential operator A: A — P of order < k. Then the
map sa: A®% — P defined by sa(ay,...,ar) = 0ay...a.(A) is a symmetric
multiderivation and thus the correspondence A +— sa generates a homo-
morphism

Smbl, (A, P) — Homa(S*(A'), P) = S¥(D) ®4 P, (1.11)

which, as it can be checked by direct computation, is inverse to ay. Note
that the second equality in ([ZH) is valid because A is a smooth algebra. [J

FEzercise 1.6. Prove that the module Smbl, (P, Q) is isomorphic to the mod-
ule S*(D) ®4 Homu4(P, Q).
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FEzercise 1.7. Dualize Lemma IEX3 on the preceding page. Namely, prove
that the kernel of the natural projection vy x_1: J*(P) — J*1(P) is iso-
morphic to S*(AY)® 4 P, with the isomorphism o : S¥(AY)@4P — ker vy 1,1
given by

ak(dal-...-dak ® p) = bay....ar, (k) (D), p € P
Thus we obtain:
D;(Smbli(P)) = Homs (A", P ®4 S¥(D)) = P ®4 S¥(D) ®4 AY(D).

But from the definition of the Spencer operator it easily follows that the
action of the operator

§: P4 S¥(D)®4 A(D) — P®4 S (D) @4 ATHD)
is expressed by

(pRo@ViA---AV,)
=D (-1)"pR0-Vi@ViA- AVIA-- AV,
=1

where p € P, 0 € S¥(D), V; € D and the “hat” means that the corre-
sponding term is omitted. Thus we see that the operator d coincides with
the Koszul differential (see the Appendix) which implies exactness of Diff-
Spencer complexes.

The Jet-Spencer complexes are dual to them and consequently, in the
situation under consideration, are exact as well. This can also be proved
independently by considering two Jet-Spencer complexes of orders k£ and
k — 1 and their projection

0 P JHP)) —— AN @ T"(P) — -
| | l
0 P T P)) —— A @y T 2(P) — ---

Then the corresponding kernel complexes are of the form

0— SFAY @4 P 2 A @45 A ®a P
i)AQ ®ASk72(A1) QP — -

and are called the d-Spencer complexes of P. These are complexes of A-
homomorphisms. The operator

5. AS ®a Skfs(Al) ®a P - As+1 R4 Skfsfl(Al) ®a P

is defined by d(w ® u ® p) = (=1)°w A i(u) ® p, where i: S¥3(A1) —
A ® Sk=571(Al) is the natural inclusion. Dropping the multiplier P we get
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the de Rham complexes with polynomial coefficients. This proves that the
0-Spencer complexes and, therefore, the Jet-Spencer complexes are exact.
Thus we have the following

Theorem 1.19. If A is a smooth algebra, then all Diff-Spencer complezxes
and Jet-Spencer complexes are exact.

Now, let us consider an operator A: P — P; of order < k. Our aim is
to compute the Jet-Spencer cohomology of A, i.e., the cohomology of the

complex ([(Z) on page &1

Ay

Definition 1.10. A complex of C-differential operators --- — P, —>
P, e Py1 — -+ is called formally exact, if the complex

kitkiy g+l i1+l
A

_ _ PA. _
L Jhitheatl(p ) Jht(p) N T (Pyr) — -+,

with ord A; < kj, is exact for any [.

Theorem 1.20. Jet-Spencer cohomology of A coincides with the cohomol-
oqy of any formally exact complex of the form

0P P =P — Py

Proof. Consider the following commutative diagram

0 — A2@IJ%(P) — NJ>P) — NoJ>(PR) — -
d d d
0 — AM@I®P) — AMeJ>P) — AN@J>(PR) — -
d d d

00— TP —— TR TR

0 0 0

where the i-th column is the de Rham complex with coefficients in the
left differential module J°°(F;). The horizontal maps are induced by the
operators 4;. All the sequences are exact except for the terms in the left
column and the bottom row. Now the standard spectral sequence arguments
(see the Appendix) completes the proof. O
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Our aim now is to prove that in a sense all compatibility complexes are
formally exact. To this end, let us discuss the notion of involutiveness of a

differential operator.
The map 2 : JEH(P) — JU(P,) gives rise to the map

smbly (A): SFHANY @ P — S{AY) ® P,

called the [-th prolongation of the symbol of A.

FEzercise 1.8. Check that 0-th prolongation map smblyo: Diff(P, P;) —
Hom(S*(A') ® P, P;) coincides with the natural projection of differential
operators to their symbols, smbly : Diffy (P, P;) — Smbly (P, P).

Consider the symbolic module gFt! = kersmbl;(A) C S*(AY) ®@ P of

the operator A. It is easily shown that the subcomplex of the §-Spencer
complex

0— " L AL gt L A2 ghH 2 (1.12)

is well defined. The cohomology of this complex in the term A’ ® ¢"+—7 is
denoted by H*¢{(A) and is said to be 6-Spencer cohomology of the operator

A.
Ezercise 1.9. Prove that H*O(A) = H*HL(A) = 0.

The operator A is called involutive (in the sense of Cartan), if H*1(A) =
0 for all ¢ > 0.

Definition 1.11. An operator A is called formally integrable, if for all [
modules B = keryl, € J*(P) and g** are projective and the natural

mappings B\ — EZl are surjections.

Till the end of this section we shall assume all the operators under con-
sideration to be formally integrable.

Theorem 1.21. If the operator A is involutive, then the compatibility com-
plex of A is formally exact for all positive integers ky, ko, ks, ... .

Proof. Suppose that the compatibility complex of A

A A A
P—>P1—1>P2—2>



23

is formally exact in terms Py, P, ..., P,_;. The commutative diagram
0 0 0
0 —— g8 —— SKk@P — SE*toP —— ...

0 — EE* — JKP) — JEHP) —— -

0 Ei(—k—l ijl(P) jK—kfl(Pl) S e

. — Sk P, — Py —— 0

C—— JM(P) —— Py —— 0

— jkﬁl(PZ) —— 0

0

where §7 = SY(A'), K =k +ky + ks + - -+ + k;, shows that the complex

is exact.
What we must to prove is that the sequences

Skifl‘i’ki‘f’l ® -Pifl — Ski+l X _PZ — Sl & -Pi+1

are exact for all [ > 1. The proof is by induction on [, with the induc-
tive step involving the standard spectral sequence arguments applied to the
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commutative diagram

0 — S'@Py — AMeS el — ANeS?2@Py — -

O SN Sk‘l+l®_PZ T A1®Sk‘i+l*1®_Pi . A2®Sk‘i+l72®_Pi s ..

0 —s g+ LN Al ® gicH-L LN A2 ® g+ 2 ELEN

O

Example 1.1. For the de Rham differential d: A — A! the symbolic mod-
ules ¢! are trivial. Hence, the de Rham differential is involutive and, there-
fore, the de Rham complex is formally exact.

Example 1.2. Consider the geometric situation and suppose that the man-
ifold M is a (pseudo-)Riemannian manifold. For an integer p consider the
operator A = dxd: AP — A" P where % is the Hodge star operator on the
modules of differential forms. Let us show that the complex
/_\p A) /_\nfp i) /_\nprrl i) AnprrQ i) . i) A" =0

is formally exact and, thus, is the compatibility complex for the oper-
ator A. In view of the previous example we must prove that the im-
age of the map smbl(A): S @ A? — S' ® A"P coincides with the
image of the map smbl(d): S™™ @ AP~ — Sl @ A" for all [ > 0.
Since Ax = dxd+x = d(xd*x + d), it is sufficient to show that the map
smbl(xd* + d): S @ (AP @ A" P~1) — S @ A"P is an epimorphism.
Consider smbl(L): S'®@ A"P — S'@ A" P, where L = (xd* +d)(xdx +d) is
the Laplace operator. From coordinate considerations it easily follows that
the symbol of the Laplace operator is epimorphic, and so the symbol of the
operator xdx + d is also epimorphic.

The condition of involutiveness is not necessary for the formal exactness
of the compatibility complex due to the following
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Theorem 1.22 (§-Poincaré lemma). If the algebra A is Noetherian, then
for any operator A there exists an integer ly = lo(m,n, k), where m =
rank P, such that H**Y{(A) =0 for 1 > 1y and i > 0.

Proof can be found, e.g., in [E4 i8]. Thus, from the proof of Theorem =21
on page B we see that for sufficiently large integer k; the compatibility
complex is formally exact for any operator A.

We shall always assume that compatibility complexes are formally exact.

1.8. Geometrical modules. There are several directions to generalize or
specialize the above described theory. Probably, the most important one,
giving rise to various interesting specializations, is associated with the fol-
lowing concept.

Definition 1.12. An abelian subcategory M(A) of the category of all A-
modules is said to be differentially closed, if

(1) it is closed under tensor product over A,
(2) it is closed under the action of the functors Diffl(:r)(-, -) and D;(+),

(3) the functors Diffl(:r)(P, ), Diffl(:r)(-, @) and D;(-) are representable in
M(A), whenever P, @) are objects of M(A).

As an example consider the following situation. Let M be a smooth
(i.e., C*°-class) finite-dimensional manifold and set A = C*°(M). Let 7 :
E— M, &: F — M be two smooth locally trivial finite-dimensional vector
bundles over M and P = I'(7),Q = T'(§) be the corresponding A-modules
of smooth sections.

One can prove that the module Diffl(:r)(P, () coincides with the module
of k-th order differential operators acting from the bundle 7 to £ (see Propo-
sition [ on page @). Further, the module D(A) coincides with the module
of vector fields on the manifold M.

However if one constructs representative objects for the functors such as
Diffy(P,-) and D;(-) in the category of all A-modules, the modules J*(P)
and A’ will not coincide with “geometrical” jets and differential forms.

FEzercise 1.10. Show that in the case M = R the form d(sinz) — cosz dx is
nonzero.

Definition 1.13. A module P over C*°(M) is called geometrical, if
ﬂ pa P =0,
xzeM

where p1, is the ideal in C°(M) consisting of functions vanishing at point
x e M.
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Denote by G(M) the full subcategory of the category of all modules whose
objects are geometrical C*°(M)-modules. Let P be an A-module and set

G(P) =P/ nP.
xeM
Evidently, G(P) is a geometrical module while the correspondence P =
G(P) is a functor from the category of all C'*°(M)-modules to the category
G(M) of geometrical modules.

Proposition 1.23. Let M be a smooth finite-dimensional manifold and
A=C>M). Then
(1) The category G(A) of geometrical A-modules is differentially closed.
(2) The representative objects for the functors Diffi(P,-) and D;(-) in
G(A) coincide with G(T*(P)) and G(A?) respectively.
(3) The module G(A") coincides with the module of differential i-forms on
M.
(4) If P =T(m) for a smooth locally trivial finite-dimensional vector bun-
dle m: E — M, then the module G(J*(P)) coincides with the module
[ (), where my, : J¥(w) — M is the bundle of k-jets for the bundle 7

(see Section BZD).

FEzercise 1.11. Prove (1), (2), and (3) above.

The situation described in this Proposition will be referred to as the
geometrical one.

Another example of a differentially closed category is the category of fil-
tered geometrical modules over a filtered algebra. This category is essential
to construct differential calculus over manifolds of infinite jets and infinitely
prolonged differential equations (see Sections BE&d and BE& respectively).

Remark 1.5. The logical structure of the above described theory is obvi-
ously generalized to the supercommutative case. For a noncommutative
generalization see [521, B5].
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2. ALGEBRAIC MODEL FOR LAGRANGIAN FORMALISM

Using the above introduced algebraic concepts, we shall construct now
an algebraic model for Lagrangian formalism; see also [Bd]. For geometric
motivations, we refer the reader to Section Band to Subsection Z especially.

2.1. Adjoint operators. Consider an A-module P and the complex of
A-homomorphisms

0 — Diff (P, A) = Diff (P, A') = Difft(P,A%) = --- | (2.1)
where, by definition, w(V) = d o V € Diff" (P, A"™) for the operator V &
Diff* (P, A?). Let P,, n > 0, be the cohomology module of this complex at

the term Diff*(P, A").
Any operator A: P — () determines the natural cochain map

. —— Diff"(Q,A"") —— Diff*(Q,A}) —— ---
s s
. —— Difft(P,A!) —— Difft(P,A") —— ---
where A(V) = V o A € Diff (P, A?) for V € Difft(Q, AY).

Definition 2.1. The cohomology map A’ : Qn — P, induced by A is called
the (n-th) adjoint operator for A.

Below we assume n to be fixed and omit the corresponding subscript.
The main properties of the adjoint operator are described by

Proposition 2.1. Let P,Q and R be A-modules. Then
(1) If A € Diffy(P,Q), then A* € Diff,(Q, P).
(2) If Ay € Diff(P, Q) and Ay € Diff(Q, R), then (Ago Ay)* = Aj o Aj.

Proof. Let [V] denote the cohomology class of V € Diff" (P, A"), where
w(V) =0.
(1) Let @ € A. Then

3a(A%)([V]) = AX([V]) = A%(a[V]) = [Voao Al - [Vo Aod]
= (ao A)([V]) = (A 0a) ([V]) = =da(A")([V]).

Consequently, dq,. o, (A*) = (=1)*1 (04, 0, (A))* for any aq, ..., a; € A.
(2) The second statement is implied by the following identities:

(Az0 A1) ([V]) = [V o Azo Ay] = A([V 0 As]) = AJ(A([V])),
which concludes the proof. O

.....

Example 2.1. Let a € A and a = ap: P — P be the operator of multipli-
cation by a: p — ap. Then obviously ap = ap.
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Example 2.2. Let p € P and p: A — P be the operator acting by a — ap.

Then, by Proposition EZI () on the precedlng page, p* € Hom A(P A) Thus

there exists a natural paring (-,-): P @4 P — A defined by (p,p) = p*(p),

p e P.

2.2. Berezinian and integration. Consider a complex of differential op-
Ay

erators -+- — P, — Py.1 — ---. Then, by Proposition EJl on the page
A A* A
before, -+ «— P, «— P,,1 « --- is a complex of differential operators as

well. This complex called adjoint to the initial one.

Definition 2.2. The complex adjoint to the de Rham complex of the alge-
bra A is called the complex of integral forms and is denoted by

0o &5 &t

where &; = A%, § = d*. The module £y = A is called the Berezinian (or the
module of the volume forms) and is denoted by B.

Assume that the modules under consideration are projective and of finite
type. Then we have P = Homy (P, B). In particular, ; = A* = D;(B).
Let us calculate the Berezinian in the geometrical situation (see Subsec-

tion EJ), when A = C*(M).

Theorem 2.2. I[f A= C*>(M), M being a smooth finite-dimensional man-
ifold, then
(1) Ay =0 for s #n = dim M.
(2) A, =B = A", i.e., the Berezinian coincides with the module of forms
of maximal degree. This isomorphism takes each form w € A™ to the
cohomology class of the zero-order operator w: A — A", f — fw.

The proof is similar to that of Theorem =X on page Bl and is left to the
reader.

In the geometrical situation there exists a natural isomorphism A® —
D, _i(A™) = 3; which takes w € A* to the homomorphism w: A" — A"
defined by w(n) =nAw, n € A"

Exercise 2.1. Show that (wy,ws) = wy A wa, wy € A, wy € A0

Erercise 2.2. Prove that df = (—1)""'d,,_;_1, where d;: A" — A" is the
de Rham differential.

Thus, in the geometrical situation the complex of integral forms coincides
(up to a sign) with the de Rham complex.

Exercise 2.3. Prove the coordinate formula for the adjoint operator:

I I
() ifA=)" aag— is a scalar operator, then A* =" _(—1)ll 0
T

e 'IO'

Clg;
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2) if A =||A;;|| is a matrix operator, then A* = ||A% .
J 71

The operator D: Diff " (A*¥) — AF defined on page B generates the map
[: B — H*(A®) from the Berezinian to the de Rham cohomology group of
A. Namely, for any operator V € Diff(A, A") satisfying d o V = 0 we set
J[V] = [V(1)], where [-] denotes the cohomology class.

Proposition 2.3. The map [: B — H*(A®) possesses the following prop-
erties:
(1) Ifw € ¥4, then [dw =0.
(2) For any differential operator A: P — @ and elements p € P, § € Q
the identity

[0 = [w.aa@)
holds.

Proof. (1) Let w = [V] € ¥;. Then dw = [V o d] and consequently [w =
[Vd(1)] = 0.
(2) Let ¢ = [V] for some operator V: () — A™. Then

[0 = [Ivaw)= [venop
~ [wvea)= [w.aG)

which completes the proof. O

Remark 2.1. Note that the Berezinian B is a differential right module (see
Subsection IEH) and the complex of integral forms may be understood as
the complex dual to the de Rham complex with coefficients in B.

Exercise 2.4. Show that in the geometrical situation the right action of
vector fields can also be defined via X (w) = —Lx(w), where Ly is the Lie
derivative.

Now we establish a relationship between the de Rham cohomology and
the homology of the complex of integral forms.

Proposition 2.4 (algebraic Poincaré duality). There exists a spectral se-
quence (E? . d ) with

P9’ 7'P,q

Ez,q = Hp((E-)fq)a

the homology of complexes of integral forms, and converging to the de Rham
cohomology H(A®).
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Proof. Consider the commutative diagram

0 0 0

0 — Diff"(A,A) — Diff*(4,A") —— Diff"(4,A?) — --.
d d d
0 — Diff*(A', A) — Diff"(A',A') — Diff*(A',A?) — --.
d d d
0 — Diff*(A% A) — Diff"(A%,A') —— Diff*(A%,A?) — --.

d d d

where the differential d: Diff*(A¥*1 P) — Diff*(A¥, P) is defined by
d(A) = Aod. The statement follows easily from the standard spectral
sequence arguments. O

2.3. Green’s formula. Let () be an A-module. Then a natural homomor-

phism &{5: @ — () defined by £0(q)(q) = (q, ) exists. Consequently, to any
operator A: P — () there corresponds the operator A°: () — P, where
A° = A* o &,. This operator will also be called adjoint to A.

Remark 2.2. In the geometrical situation the two notions of adjointness
coincide.

Example 2.3. Let g € Q and §: A — Q be the zero-order operator defined
by a — ag. The adjoint operator is ¢ itself understood as an element of

Hom4(Q, B).

Proposition 2.5. The correspondence A +— A° possesses the following
properties:

(1) Let A € Diff(P,Q) and A(p) = [V,)], where V,, € Diff(Q, A?). Then
A°(q) = [0,], where O, € Diff(P, A) and O,(p) = V,(q).

(2) For any A € Diff(P,Q), one has (A°)° = A.

(3) For any a € A, one has (aA)° = A°oa.

(4) If A € Diffy (P, B), then A° = ji o (aA).

(5) If X € Dy(B), then X + X° = 6X € Diffo(A, B) = B.

Proof. Statements (1), (3), and (4) are the direct consequences of the defi-
nition. Statement (2) is implied by (1). Let us prove (5).
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Evidently, d,(j1) = ji(a) — aji(1) € J'(A). Hence for an operator A €
Diff, (A, P) one has (0,(j1))*(A) = A(a)—aA(1) = (6,A)(1). Consequently,

0a(X + X°)(1) = (0aX)(1) + (0a(47))(X) = (62 X)(1) = 0a(j1)"(X) = O
and finally 60X = jj(X) = X°(1) = X 4+ X°. O
Note that Statements (1) and (4) of Proposition B2 on the facing page
can be taken for the definition of A°.
Note now that from Proposition =L on page [ it follows that the mod-
ules D;(P), i > 2, can be described as
D;(P) = {V € Diff; (A", P) | Vod=0}.

Taking B for P, one can easily show that §V = V°(1) and the last equality
holds for 7 = 1 as well. Proposition E on the facing page shows that the
correspondence A — A° establishes an isomorphism between the modules
Diff(P, Q) and Diff*(Q, P) which, taking into account Proposition X3 on
page [ means that the Diff-Spencer complex of the module Pis isomorphic
to the complex

0 — P & Diff(P, B) <= Diff(P,%;) <= Diff(P,%y) —---,  (2.2)

where w(V) =00V, u(V) = V°(1). From Theorem IEX on page Bl one
immediately obtains

Theorem 2.6. Complex (B2 is ezact.

Remark 2.3. Let A: P — @ be a differential operator. Then obviously the
following commutative diagram takes place:

0 Q «“— Diff(Q,B) «“— Diff(Q,%;) «*— -
x| | |
0 P " Diff(P,B) «—“— Diff(P,%;) «*— ...

As a corollary of Theorem B2 we obtain
Theorem 2.7 (Green’s formula). If A € Diff(P,Q),p € P,q € Q, then

<Qa A(p» - <AO(Q)ap> =0G
for some integral 1-form G € ¥.

Proof. Consider an operator V € Diff(A, B). Then V — V°(1) lies in ker u
and consequently there exists an operator [J € Diff(A,¥) satisfying V —
Ve(l) = w(@d) = 6 o . Hence, V(1) — V°(1) = 0G, where G = O(1).
Setting V(a) = (g, A(ap)) we obtain the result. O
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Remark 2.4. The integral 1-form G is dependent on p and ¢. Let us show
that we can choose G in such a way that the map p x g — G(p, q) is a bidif-
ferential operator. Note first that the map w: Diff*(A, %) — Diff (A, B)
is an A-homomorphism. Since the module Diff* (A, B) is projective, there
exists an A-homomorphism s: imw — Diff" (A, %) such that w o 3 = id.
We can put O = »#(V — V(1)). Thus G = »(V —V(1))(1). This proves the

required statement.

Remark 2.5. From algebraic point of view, we see that in the geometrical
situations there is the multitude of misleading isomorphisms, e.q., B = A",
A° = A* etc. In generalized settings, for example, in supercommutative
situation (see Subsection [ on page ), these isomorphisms disappear.

2.4. The Euler operator. Let P and ) be A-modules. Introduce the
notation
Diff ) (P, Q) = Diff(P, ..., Diff(P,Q)...)

~
k times

and set Diff (P, Q) = Doy Diff(1y(P, Q). A differential operator V €
Diff ) (P, Q) satisfying the condition

v(pla"'apiapiJrla"'apk) - Uv(pl,'~~,pi+1,pi,---,pk)

is called symmetric, if 0 = 1, and skew-symmetric, if o = —1 for all 4.
The modules of symmetric and skew-symmetric operators will be denoted
by Diff?z;n(P, Q) and Diff?}ct) (P, @), respectively. From Theorem B on the
preceding page and Corollary IE3 on page B it follows that for any k the
complex

0« Diff (P, B) <= Diff () (P, %1) <= Diffy (P, 5g) <= -+, (2.3)

where w(V) = § oV, is exact in all positive degrees, while its 0-homology is
of the form Hy(Diff (P, 3,)) = Diff ,_1)(P, P). This result can be refined
in the following way.

Theorem 2.8. The symmetric
0« Diffiz;n(P, B) & Diff?Z;H(P, i) < Diff?Z;H(P, ¥p) & .- (2.4)
and skew-symmetric
0 — Diffyy§ (P, B) <= Difff§ (P, X1) <= Diff{}j(P, Xp) <~ - -- (2.5)

are acyclic complexes in all positive degrees, while the 0-homologies denoted
by L™ (P) and L¥(P) respectively are of the form

Lzym - {v € lefizr—nl)(P’ p) | (V(pl, cee apk*Q))o - V(pl, cee apk*Q) }’
Lzlt - {v € Diff?llctfl)(P’ p) | (V(pl, s apk*Q))o - —V(p1, s apk*Q)}



33

for k> 1 and
LY™(P) = L{*(P) = P.

Proof. We shall consider the case of symmetric operators only, since the
case of skew-symmetric ones is proved in the same way exactly.

Obviously, the complex (E) is a direct summand in (B3) on the facing
page and due to this fact the only thing we need to prove is that the diagram

H(k—1)

Diffs_1)(P, P) <= Diff (P, B)

/| |°

H(k—1)

Diff 1) (P, P) «——- Diff (P, B)

is commutative. Here

t-1) (V) (1, - pe1) = (V(prs - pr1))° (1),
p(V) (D1, -, Pe—1,08) =V (D15 -, P Pr—1),
(V)1 pe2) =(V(p1, - pr2))’

Note that py—1) = Diff_1)(1t), where p is defined in (E=) on page Bl
To prove commutativity, it suffices to consider the case £k = 2. Let V €
Diff(o)(P, B) and V(p1,p2) = [Ap p,). Then pay(V)(p1) = [A), ], where
AL (p2) = Ap, p,(1). Further, p'(11)(V)) = [A},], where

AZl(pQ) - A;Q(pl) = APQ,pl(l)'

On the other hand, one has p(V)(p1,p2) = V(p2,p1) and p1y(p(V))(p1) =
[Dpl]v where L, (pQ) = APQ,pl(l)' [

Definition 2.3. The elements of the space Lag(P) = @,-, L™ (P) are
called Lagrangians of the module P. An operator L € Diff?i;n(P, B) is
called a density of a Lagrangian L, if £ = L mod imw. The natural corre-
spondence E: Diff [} (P, B) — Diff{}]"(P, P), L — L is called the Euler op-
erator, while operators of the form A = E(L) are said to be Euler—Lagrange
operators.

Theorem & on the facing page implies the following

Corollary 2.9. For any projective A-module P one has:
(1) An operator A € Diff?i;n(P, P) is an Euler-Lagrange operator if and
only if A is self-adjoint, i.e., if A € LY™(P).
(2) A density L € Diff [)"(P, B) corresponds to a trivial Lagrangian, i.e.,
E(L) =0, if and only if L is a total divergence, i.e., L € imw.
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2.5. Conservation laws. Denote by F the commutative algebra of non-
linear operatordl Diff?i;n(P, A). Then for any A-module @) one has

Dff¥"(P,Q) = F ®4 Q.

Let A € F®4 Q be a differential operator and let us set Fa = F/a, where
a denotes the ideal in F generated by the operators of the form [Jo A,
O € Diff (@, A).

Thus, fixing P, we obtain the functor () = F®4 () and fixing an operator
A € Diff ) (P, Q) we get the functor QQ = Fa®4Q acting from the category
My to Mg and to Mg, respectively, where M denotes the category of all
modules over the corresponding algebra. These functors in an obvious way
generate natural transformations of the functors Diffl(:r)(-), Dy (+), etc., and
of their representative objects J*(P), A¥, etc. For example, to any operator
V: Q1 — Q2 there correspond operators F @ V: F ®4 Q1 — F ®4 Q2 and
FARV:FAr®aQ1 — Fa®@aQo.

These natural transformations allow us to lift the theory of linear differ-
ential operators from A to F and to restrict the lifted theory to Fa. They
are in parallel to the theory of C-differential operators (see the next section).

The natural embeddings

Diff5{?" (P, R)  Diff¥™ (P, Diff (P, R))
generate the map ¢: F ®4 R — F ®4 Diff(P, R), ¢ — {,, which is called
the universal linearization. Using this map, we can rewrite Corollary B (1)

on page B in the form ¢n = (% while the Euler operator is written as
E(L) = ¢5(1). Note also that {,, = @ly + Pl for any ¢, € F ®4 R.

Definition 2.4. The group of conservation laws for the algebra F (or for
the operator A) is the first homology group of the complex of integral forms

00— FA@aB— FARa2) — FA®q 89— -+ (2.6)

with coefficients in Fa.

5In geometrical situation, this algebra is identified with the algebra of polynomial
functions on infinite jets (see the next section).



35

3. JETS AND NONLINEAR DIFFERENTIAL EQUATIONS. SYMMETRIES

We expose here main facts concerning geometrical approach to jets (finite
and infinite) and to nonlinear differential operators. We shall confine our-
selves with the case of vector bundles, though all constructions below can
be carried out—with natural modifications—for an arbitrary locally trivial
bundle 7 (and even in more general settings). For further reading, the books
[B2, B3| together with the paper [62] are recommended.

3.1. Finite jets. Let M be an n-dimensional smooth, i.e., of the class C*°,
manifold and 7: E — M be a smooth m-dimensional vector bundle over
M. Denote by I'(r) the C°°(M)-module of sections of the bundle 7. For
any point x € M we shall also consider the module I'i.(7; ) of all local
sections at x.

For a section ¢ € I'ioo(m; z) satisfying p(x) = 6 € E, consider its graph
I', C E and all sections ¢’ € I'ioo(; ) such that

(a) p(z) = ¢'(2);

(b) the graph ',y is tangent to I', with order k at 6.
Conditions (a) and (b) determine equivalence relation ~* on T',c(m; ) and
we denote the equivalence class of ¢ by [p]®. The quotient set jpe(m; )/ ~F
becomes an R-vector space, if we put

[ls + W15 = o + 415, alel; = lagls, @, ¢ € Toe(miz), a€R,
while the natural projection Tyee(m; ) — Dioc(m; )/ ~F becomes a linear
map. We denote this quotient space by J¥(7). Obviously, J%(m) coincides
with E, = 7 1(x).

The tangency class [p]* is completely determined by the point z and

partial derivatives at x of the section ¢ up to order k. From here it follows
that J¥(7) is finite-dimensional with

dime(W):mi (”::1> :m<”‘]:k>. (3.1)

1=0

Definition 3.1. The element [¢]* € J¥(7) is called the k-jet of the section
¢ € Doe(m; z) at the point z.

The k-jet of ¢ at x can be identified with the k-th order Taylor expansion
of the section . From the definition it follows that it is independent of
coordinate choice.

Consider now the set

Ty = | T (3.2)

and introduce a smooth manifold structure on J*(7) in the following way.
Let {U,}, be an atlas in M such that the bundle © becomes trivial over
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each U,, i.e. w*l(u ) ~ U, x F, where F is the “typical fiber”. Choose a

basis ef,...,e2 of local sections of m over U,. Then any section of 7 |y,
is representable in the form ¢ = ule + -+ + u™e2 and the functions
Ti, ..., T, W, ..., u™, where zq,...,z, are local coordinates in U,, con-

stitute a local coordinate system in 7' (U,). Let us define the functions
ul: Uyep, JE(m) — R, where 0 =iy ... iy, 0| =7 < k, by

L ololyd

wp(el) = 5~ (3.3)

. -(9xir =

Then these functions, together with local coordinates x4, ..., x,, determine
the map fo: U, Jk( ) — U, x RY where N is the number defined
by (B3 on the page before. Due to computation rules for partial derivatives
under coordinate transformations, the map

(faofgl) ‘L[aﬁug : (ua ﬂZ/[g) x RN — (Z/[a QUg) x RN

is a diffeomorphism preserving the natural projection (U, NUz) x RY —
(Us, NU3). Thus we have proved the following result:

Proposition 3.1. The set J(n) defined by (B=3) is a smooth manifold
while the projection m: J¥(w) — M, 7. [¢]% — =z, is a smooth vector

bundle.

Definition 3.2. Let 7: E — M be a smooth vector bundle, dim M = n,
dim £ = n + m.
(1) The manifold J*(r) is called the manifold of k-jets for m;
(2) The bundle 7;: J¥(7) — M is called the bundle of k-jets for T;
(3) The above constructed local coordinates {x;,ul}, i = 1,...,n, j =
1,...,m, |o| <k, are called the special coordinate system on J*(r)
associated to the trivialization {U,}, of the bundle =.

Obviously, the bundle 7y coincides with 7.
Since tangency of two manifolds with order £ implies tangency with less
order, there exists a map

T JHm) = JH(m), ele e el k21

which is a smooth fiber bundle. If £ > [ > s, then obviously
T, O Tkl = Ths, T O M| = Tk (3.4)

On the other hand, for any section ¢ € I'(m) (or € T'ee(m;z)) we can
define the map ji(¢): M — J*(m) by setting jx(¢)(z) = [p]k. Obviously,

Jk(p) € T'(mg) (respectively, ji(¢) € Tioe(mi; ).

Definition 3.3. The section ji(y) is called the k-jet of the section p. The
correspondence ji: ['(m) — ['(my) is called the k-jet operator.
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From the definition it follows that

Tkl Ojk(()p) = jl(@)a jO(QP) =¥, k>1, (35)
for any ¢ € I'(n).
Let ¢, € I'(7) be two sections, € M and ¢(z) =(x) =60 € E. It is
a tautology to say that the manifolds I', and I'y, are tangent to each other
with order k+1 at 6 or that the manifolds T';, (), T'j, () C J*(7) are tangent
with order [ at the point 0y = ji(©)(z) = jr(¥)(x).

Definition 3.4. Let 0, € J*(m). An R-plane at 0 is an n-dimensional
plane tangent to a manifold of the form T'j, () such that [p]% = 6.

Immediately from definitions we obtain the following result.

Proposition 3.2. Consider a point 0, € J*(w). Then the fiber of the bun-
dle Tpi1 g JFTH(m) — J*(7) over Ok coincides with the set of all R-planes
at 6’k

For 041 € J*(x), we shall denote the corresponding R-plane at 6, =
Tht1,k(Or+1) by Le, ., C Tek(Jk(W))-

3.2. Nonlinear differential operators. Let us consider now the algebra
of smooth functions on J*(7) and denote it by F;, = Fy(r). Take another
vector bundle 7': B/ — M and consider the pull-back 7} (7). Then the
set of sections of 7} (7’) is a module over F(7) and we denote this module
by Fi(m,7’). In particular, Fp(m) = Fi(m,1p), where 1), is the trivial
one-dimensional bundle over M.

The surjections m;; and 7, for all & > [ > 0 generate the natural em-
beddings vy = 7} ;2 Fi(m,7') — Fi(m,7') and vy = 7} (7)) — Fp(m, 7).
Due to (B on the facing page, we have the equalities

Vgl OVs = Vks, Vpiovy =1y, k>12>s. (3.6)

Identifying F;(7, 7') with its image in F(m, ) under v, we can consider
Fi(m, ') as a filtered module,

I(7') — Fo(m,7') — -+ — Fpq(m,7') — Fp(m,7), (3.7)

over the filtered algebra C*°(M) — Fy — -+ — Fyp_1 — Fp with the
embeddings F, - Fi(m, 7)) C Fmax(e,ny(m, 7). Let F' € Fi(m,7'). Then we
have the correspondence

A=Ap: I(m) = T(@"), Alp) =je(e)"(F), ¢€l(m) (3-8)

Definition 3.5. A correspondence A of the form (B3) is called a (non-
linear) differential operator of order < k acting from the bundle 7 to the
bundle 7. In particular, when A(ap + b)) = aA(p) + bA(v), a,b € R, the
operator A is said to be linear.
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Example 3.1. Let us show that the k-jet operator ji: I'(m) — ['(mg) (Def-
inition B on page BHA) is differential. To do this, recall that the total space
of the pull-back 7;(m;) consists of points (0y,0;) € J*(7) x J*(7) such
that 7 (0x) = m(6)). Consequently, we may define the diagonal section
pi € Fr(m,m) of the bundle 7} (m;) by setting pr(6x) = 6x. Obviously,
jk = Apka i.e.,
Jk(@) (k) = Ji(p), ¥ € D(m).

The operator ji is linear.

Example 3.2. Let 7*: T*M — M be the cotangent bundle of M and
T N\’ T*M — M be its p-th exterior power. Then the de Rham differential
d is a first order linear differential operator acting from 7, to 7,4, p > 0.

Let us prove now that composition of nonlinear differential operators is a
differential operator again. Let A: I'(m) — I'(x’) be a differential operator
of order < k. For any 0y = [p] € J*(7), set

Pa () = [A(0)]2 = (A(9)) (). (3.9)

Evidently, the map ® is a morphism of fiber bundles (but not of vector
bundles!), i.e., 7' 0 D = .

Definition 3.6. The map ®, is called the representative morphism of the
operator A.

For example, for A = j, we have ®; = idk.). Note that there ex-
ists a one-to-one correspondence between nonlinear differential operators
and their representative morphisms: one can easily see it just by inverting
equality (BH). In fact, if ®: J*(7) — E’ is a morphism of 7 to 7/, a section
o € F(m,n') can be defined by setting p(0y) = (Or, P(0))) € J*(r) x E'.
Then, obviously, ® is the representative morphism for A = A,.

Definition 3.7. Let A: T'(r) — I'(n’) be a k-th order differential operator.
Its I-th prolongation is the composition AW = j; 0 A: (1) — I'(m).

Lemma 3.3. For any k-th order differential operator A, its [-th prolonga-
tion is a (k + 1)-th order operator.

Proof. In fact, for any O = [p]¥*! € J**(x) set ®V(Bryr) = [AlQ)]L €
Ji(m). Then the operator, for which the morphism (ID(Al) is representative,
coincides with A®, O

Corollary 3.4. The composition A" o A of two nonlinear differential op-
erators A: T'(r) — D(7') and A": T'(n') — [(x") of orders < k and < K
respectively is a (k + k')-th order differential operator.
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Proof. Let CID(Ak/): JHR (1) — J¥(x') be the representative morphism for

A®)_ Then the operator O, for which the composition ®as o CI)(Ak/) is the

representative morphism, coincides with A’ o A. O

The following obvious proposition describes main properties of prolonga-
tions and representative morphisms.

Proposition 3.5. Let A: T'(nr) — T'(7') and A": T'(x’) — T'(x") be two
differential operators of orders k and k' respectively. Then:

(1) ®aron = Par o L,

2) oY o jii(e) = AD(p) for any ¢ € T(r) and | >0,

(3) mup o (I)(Al) = CID(AV O Tl ktrr, i-€., the diagram

(1)
Jk+l (ﬂ_) ¢_A) Jl (71")

7Tk+l,k+l’l lﬂ;’l/ (3.10)
, o
Jk+l (ﬂ_) L) Jl (71")

is commutative for all | > 1" > 0.

3.3. Infinite jets. We now pass to infinite limit in all previous construc-
tions.

Definition 3.8. The space of infinite jets J>°(mw) of the fiber bundle
m: F— M is the inverse limit of the sequence

- — JM () JHr) = o= ) 2S5 E S M,

i.e., J®(m) = projlimg,, , J*(m).

Tk4+1,k
_—

Thus a point 6 of J®(r) is a sequence of points {0k }r>0, Or € J*(7),
such that 7;(0x) = 6, k > [. Points of J*°(7) can be understood as m-
dimensional formal series and can be represented in the form 6 = [p]°, p €
Floc('ﬂ—)-

A special coordinate system associated to a trivialization {U, }, is given
by the functions xy, ..., Tn,...,ul, . ...

A tangent vector to J°(m) at a point 6 is defined as a system of vectors
{w, vg }x>0 tangent to M and to J¥(m) respectively such that (my).vx = w,
(Wk,l)*vk = U for all k& Z l Z 0.

A smooth bundle & over J®°(mw) is a system of bundles n: Q — M,
& Py — J®(m) together with smooth maps Wy: P, — Q, Vy;: P — B,
k > 1> 0, such that

VoW, =Wy, VoW, =W, k>1>5>0

For example, if n: Q — M is a bundle, then the pull-backs 7}(n): 7 (Q) —
J¥(m) together with natural projections 7;(Q) — 77(Q) and 7;(Q) — Q
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form a bundle over J*(m). We say that & is a vector bundle over J*>(r),
it n and all &, are vector bundles while the maps ¥, and ¥y ; are fiberwise
linear.

A smooth map of J®(m) to J®(n'), where n: B — M, n': E' — M,
is defined as a system F of maps F_o.: M — M', F}.: J*(7) — JF=5(x'),
k > s, where s € Z is a fixed integer called the degree of F', such that

Th—rh—s—1 © Ffy = Fp_yompp—1, k>s+1,

and
TpsOoFp=F om, k>s.

For example, if A: T'(7) — T'(n’) is a differential operator of order s, then
the system of maps F_ = idy, Fr = (ID(Ak*S), k > s (see the previous
subsection), is a smooth map of J*°(7) to J>° (7).

A smooth function on J*°(m) is an element of the direct limit F = F(7) =
inj lim{ﬂzyl} Fir(m), where Fi(m) is the algebra of smooth functions on J*(7).

Thus, a smooth function on J*(r) is a function on J*(x) for some finite
but an arbitrary k. The set F = F () of such functions is identified with
Ureo Fr(m) and forms a commutative filtered algebra. Using duality be-
tween smooth manifolds and algebras of smooth functions on these mani-
folds, we deal in what follows with the algebra F(m) rather than with the
manifold J>°(7) itself.

From this point of view, a vector field on J*°(7) is a filtered derivation of
F(m), i.e., an R-linear map X : F(m) — F(m) such that

X(f9) = [X(g9) +9X(f), f.geF(n), X(Fi(r))C Frnlr)

for all k£ and some [ = [(X). The latter is called the filtration degree of the
field X. The set of all vector fields is a filtered Lie algebra over R with
respect to commutator [X, Y] and is denoted by D(7) = (J;5, DU (7).

Differential forms of degree i on J*(7) are defined as elements of the
filtered F(m)-module A = A'(7) = ;5 A'(mx), where Af(m) = AY(J*())
and the module A’(my) is considered to be embedded into A’(mj,1) by the
map 7y, . Defined in such a way, these forms possess all basic properties
of differential forms on finite-dimensional manifolds. Let us mention the
most important ones:

(1) The module A(w) is the i-th exterior power of Al(w), Ai(w) =
N’ A'(7). Respectively, the operation of wedge product A: AP(7) &
A¥(m) — AP9(m) is defined and A*(7) = @;5, A'(7) becomes a su-
percommutative Z-graded algebra. -

(2) The module D(7) is dual to A(7), i.e.,

D(7) = Hom{ ., (A (7), F (), (3.11)
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where Homf,i_(ﬂ)(-, -) denotes the module of filtered homomorphisms
over F(m). Moreover, equality (BEZQ) on the facing page is established
in the following way: there is a derivation d: F(r) — Al(7w) (the
de Rham differential on J*°(m)) such that for any vector field X
there exists a uniquely defined filtered homomorphism fx satisfying
fxod=X.

(3) The operator d is extended up to maps d: A’(7) — A" (7) in such a
way that the sequence

0— F(r) L AYn) — - — Ai(r) S A (1) — -+

becomes a complex, i.e., dod = 0. This complex is called the de Rham
complez on J*°(mw). The latter is a derivation of the superalgebra

A*(m).

Using algebraic techniques (see Section W), we can introduce the notions
of inner product and Lie derivative and to prove their basic properties (cf.
Proposition EXon page ). We can also define linear differential operators
over J®(m) as follows. Let P and @ be two filtered F(m)-modules and
Ae Homfﬁ_(ﬂ)(P, Q). Then A is called a linear differential operator of order
< k acting from P to @, if

(0o 00p 0+ 005)A=0

for all fo,..., fx € F(m), where, as in Section Bl (§;A)p = A(fp) — fA(p).
We write k = ord(A).

Due to existence of filtrations in the algebra F(7), as well as in modules
P and @, one can define differential operators of infinite order acting from
P to Q. Namely, let P = {F}, Q = {Qi}, P C Py1, Qi C Qiy1, P and
Q; being Fi(m)-modules. Let A € Homf,i_(ﬂ)(P, () and s be filtration of A,

ie., A(P) C Qrs. We can always assume that s > 0. Suppose now that
Ay = Alp : P, — Q is a linear differential operator of order o; over F(m)
for any [. Then we say that A is a linear differential operator of order
growth o;. In particular, if o = ol + 3, o, € R, we say that A is of
constant growth a.

Distributions. Let 8 € J°°(m). The tangent plane to J°°(7) at the point 0
is the set of all tangent vectors to J*(m) at this point (see above). Denote
such a plane by Ty = Tp(J*°()). Let = {x,0}, x € M, 0), € J*(m) and
v = {w,v}, v = {w, v} € Ty. Then the linear combination \v + pv’ =
{\w + pw', vy + pwy} is again an element of Ty and thus 7Tj is a vector
space. A correspondence 7 : 0 — Ty C Ty, where 7Ty is a linear subspace, is
called a distribution on J*°(). Denote by 7D(m) C D(7) the submodule of
vector fields lying in 7, i.e., a vector field X belongs to 7 D(7) if and only if
Xy € Tp for all 0 € J>°(7). We say that the distribution 7 is integrable, if it



42

satisfies the formal Frobenius condition: for any vector fields X,Y € 7TD(x)
their commutator lies in 7D(7) as well, or [7D(x), 7D(w)] C TD(n).
This condition can expressed in a dual way as follows. Let us set

T'A(r) ={w e Al(n) |ixw=0, X € TD(n)}

and consider the ideal 7A*(7) generated in A*(7) by 7'A(x). Then the
distribution 7 is integrable if and only if the ideal 7A*() is differentially
closed: d(TA*(m)) C TA*(r).

Finally, we say that a submanifold N C J*°(x) is an integral manifold
of T, if TyN C 7y for any point § € N. An integral manifold N is called
locally mazimal at a point 8 € N, if there no neighborhood & C N of 6 is
embedded to other integral manifold N’ such that dim N < dim N’.

3.4. Nonlinear equations and their solutions. Let 7: £ — M be a
vector bundle.

Definition 3.9. A submanifold £ C J*(7) is called a (nonlinear) differen-
tial equation of order k in the bundle m. We say that £ is a linear equation,
if €N 7 () is a linear subspace in 7, (z) for all x € M. In other words,
£ is a linear subbundle in the bundle .

We shall always assume that £ is projected surjectively to £ under .

Definition 3.10. A (local) section f of the bundle 7 is called a (local)
solution of the equation &, if its graph lies in &: ji(f)(M) C £.

We say that the equation £ is determined, if codim £ = dimm, that it
is overdetermined, if codim & > dim 7, and that it is underdetermined, if
codim &€ < dim7.

Obviously, in a special coordinate system these definitions coincide with
“usual” ones.

One of the ways to represent differential equations is as follows. Let
7't R" x U — U be the trivial r-dimensional bundle. Then the set of
functions (F',..., F") can be understood as a section ¢ of the pull-back
(7k Ju)" ('), or as a nonlinear operator A = A, defined in U, while the
equation & is characterized by the condition

ENU={6,cU]|p6)=0). (3.12)

More generally, any equation & C J*(m) can be represented in the form
similar to (B2&). Namely, for any equation £ there exists a fiber bundle
7't B — M and a section ¢ € Fy(m, m) such that £ coincides with the set
of zeroes for p: & = {¢ = 0}. In this case we say that & is associated to the
operator A = A, : I'(m) — I'(n’) and use the notation £ = Ea.

Example 3.3. Let 7 = 72: NPT"M — M, 7' = 7%« N7 T*M — M

and d: ['(m) = A?(M) — T'(7’) = AP*Y(M) be the de Rham differential (see
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Example B2 on page BN). Thus we obtain a first-order equation &; in the
bundle 7;. Consider the case p = 1,n > 2 and choose local coordinates
T1,..., T, in M. Then any form w € A'(M) is represented as w = uldz; +
-+ udz, and we have & = {u! = uj | i < j}. This equation is
underdetermined when n = 2, determined for n = 3 and overdetermined for
n > 3.

Example 3.4. Consider an arbitrary vector bundle 7: £ — M and a dif-
ferential form w € AP(J*()), p < dim M. Then the condition ji(p)*(w) =
0, ¢ € I'(m), determines a (k + 1)-st order equation &, in the bundle .
Consider the case p = dim M = 2, k = 1 and choose a special coordinate
system @, y, u, ug, uy in J* (7). Let ¢ = ¢(z,y) be a local section and

w = Aduy A duy, + (Bidu, + Baduy) A du + dug A (Biidx + Biady)
+ duy N (Bairdx + Baody) + du A (Crdz + Caydy) + Ddx A dy,

where A, B;, B;;, C;, D are functions of z,y, u, uz, u,. Then we have

hlp)w = (A“"(cpmwyy = @) + (PyBY + B ou
- (‘Png + BfQ)‘Pyy + (‘PyBép - ‘P:rBf + BEPQ - Bfl)%:y
+ 0aCF — 0, CF + D“’))dm A dy,

where F¥ = ji(¢)*F for any F' € Fi(m). Hence, the equation &, is of the
form

a(UggUyy — uiy) + D11 gy + b12Ugy + bogttyy + ¢ =0, (3.13)

where a = A, b11 = UyBl + Blg, b12 = UyBQ — UxBl + B22 — BU, b22 =
uy By + Bia, ¢ = u,Cy — u,Cy + D are functions on J'(w). Equation (EZH)
is the so-called two-dimensional Monge—Ampere equation and obviously any
such an equation can be represented as &, for some w € A*(J1(7)) (see [Ed]|
for more details).

Example 3.5. Consider again a bundle 7: £ — M and a section V: F —
JY(m) of the bundle 7 o: J'(7) — E. Then the graph & = V(F) C J!(r)
is a first-order equation in the bundle 7. Let #; € &v. Then, due to
Proposition E=on page B the point 0, is identified with the pair (6, Ly, ),
where 0y = m(01) € E, while Ly, is the R-plane at 6, corresponding to
0,. Hence, the section V (or the equation £y) may be understood as a
distribution of horizontal (i.e., nondegenerately projected to T, M under
(7k)«, where x = m,(0;)) n-dimensional planes on E: Ty: E 3 6 — 0, =
Lyg). In other words, V is a connection in the bundle 7. A solution of
the equation &y, by definition, is a section ¢ € I'(7) such that j;(p)(M) C
V(E). It means that at any point § = ¢(z) € (M) the plane 7y () is
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tangent to the graph of the section . Thus, solutions of £y coincide with
integral manifolds of 7v.

In a local coordinate system (xy,...,xn,u', ..., u™, ... ul,...), i =
1,...,n, 5 =1,...,m, the equation &y is represented as
J _x7J 1 my R
w, =Vi(ry,.. ., xp,u, . u™), i=1,... 0,5 =1,...,m, (3.14)

V? being smooth functions.

Example 3.6. As we saw in the previous example, to solve the equation &
is the same as to find integral n-dimensional manifolds of the distribution
Tv. Hence, the former to be solvable, the latter is to satisfy the Frobenius
theorem. Thus, for solvable &y we obtain conditions on the section V &
[(m1,0). Let write down these conditions in local coordinates.

Using representation (BZ), note that 7y is given by 1-forms

n
W = du’ —ZVfdmi, j=1....m
i=1
Hence, the integrability conditions may be expressed as

dwj:Zpg/\wi, j=1,...,m,

i=1
for some 1-forms pi. After elementary computations, we obtain that the
functions V! must satisfy the following relations:

oV’ m 8VJ 8VJ m
a v
Ty + El V)—= S E Vﬂ am (3.15)

Y=

forall  =1,....m, 1 < a < g < m. Thus we got a naturally con-
structed first-order equation Z(m) C J'(1,), whose solutions are horizontal
n-dimensional distributions in E = J%(r).

3.5. Cartan distribution on J*(7). We shall now introduce a very impor-
tant structure on J*(7) responsible for “individuality” of these manifolds.

Definition 3.11. Let 7: E — M be a vector bundle. Consider a point
O € J¥(m) and the span Cj C Tp, (J*(m)) of all R-planes at the point .

(1) The correspondence C* = C*(7): 6 — Cj_is called the Cartan dis-
tribution on J*(rr).

(2) Let & C J*(m) be a differential equation. Then the correspondence
CH(E): €3 O Cf NTy,E C Tp,E is called the Cartan distribution
on £. We call elements of the Cartan distributions Cartan planes.

(3) A point 6 € & is called regular, if the Cartan plane Cj (€) is of
maximal dimension. We say that £ is a regqular equation, if all its
points are regular.
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In what follows, we deal with regular equations or with neighborhoods of
regular points. As it can be easily seen, for any regular point there exists a
neighborhood of this point all points of which are regular.

Let 0y € J*(r) be represented in the form

Then, by definition, the Cartan plain Cgk is spanned by the vectors

Jk()sz(v), veT,M, (3.17)
for all ¢ € [oc(m) satisfying (BE).
Let x1,...,%pn,...,ul ..., 5=1,...,m, |o| <k, be a special coordinate

system in a neighborhood of ;. The vectors of the form (B can be
expressed as linear combinations of the vectors

\J\Jrl o

3.18

oty Yo T Tt (3.18)
lo|<k j=1

where ¢ = 1,...,n. Using this representation, we prove the following result:

Proposition 3.6. For any point 6y € J*(m), k > 1, the Cartan plane Cj,
is of the form Cgk = (mkk-1)5 (Lo, ), where Ly, is the R-plane at the point
Tek—1(0k) € J¥1(7) determined by the point 0y,

Proof. Denote the vector (BIH) by v/?. It is obvious that for any two
sections ¢ and ¢’ satisfying (B) the difference 0% — vF% is a m_1-
vertical vector and any such a vector can be obtained in this way. On the
other hand, the vectors v} ¥ do not depend on section ¢ satisfying (E=I)

and form a basis in the space Ly, . O

Remark 3.1. From the result proved it follows that the Cartan distribution
on J¥(r) can be locally considered as generated by the vector fields

0
DZ( (‘3:EZ+ Z Z ul C,r, T:%, Tl =Fk,s=1,....,m

lo|<k—1 j=1 T
(3.19)

From here, by direct computations, it follows that [V?, D (k= 1)] = V7 ,, where
B { Vo, i =11,

Ve = i .
T 0, if 7 does not contain i.

But, as it follows from Proposition B, vector fields V7 for |o| < k do not
lie in C*. Thus, the Cartan distribution on J*(7) is not integrable.
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Introduce 1-forms in special coordinates on J*™(r):
Wl = dul — Zuiidxi, (3.20)
i=1

where j = 1,...,m, |o| < k. From the representation (BEZd) on the page
before we immediately obtain the following important property of the forms
introduced:

Proposition 3.7. The system of forms (BZ) annihilates the Cartan dis-
tribution on J*(r), i.e., a vector field X lies in C* if and only if ixw? = 0
forallj=1,... m,|o| <k.

Definition 3.12. The forms (BEZ) are called the Cartan forms on J*(m)
associated to the special coordinate system wx;, u/ .

Note that the F,(m)-submodule generated in A*(J*(7) by the forms (BE=Z)

is independent of the choice of coordinates.

Definition 3.13. The Fj(rw)-submodule generated in A'(J*(r)) by the
Cartan forms is called the Cartan submodule. We denote this submodule

by CAY(J*(7)).

We shall now describe maximal integral manifolds of the Cartan distri-
bution on J*(r). Let N C J*(m) be an integral manifold of the Cartan
distribution. Then from Proposition BZ it follows that the restriction of
any Cartan form w to N vanishes. Similarly, the differential dw vanishes on
N. Therefore, if vector fields X, Y are tangent to N, then dw |y (X,Y) = 0.

Definition 3.14. Let C§ be the Cartan plane at 6 € Jir).

(1) Two vectors v,w € Cj, are said to be in inwolution, if dws, (v, w) = 0
for any w € CA'(J*(m)).

(2) A subspace W C Cgk is said to be involutive, if any two vectors
v,w € W are in involution.

(3) An involutive subspace is called mazimal, if it cannot be embedded
into any other involutive subspace.

Consider a point 0y = [p]* € J*(xr). Then from Proposition B= it fol-
lows that the direct sum decomposition Cgk =T, ©T, takes place, where
Ty, denotes the tangent plane to the fiber of the projection my -1 passing
through the point 6, while Tg‘i is the tangent plane to the graph of ji(¢p).
Hence, the involutiveness is sufficient to be checked for the following pairs
of vectors v, w € Cj :

(1) v,we Ty ;

(2) v,w e Ty ;

B)veTy, weTy.
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Note now that the tangent space Ty is identified with the tensor product
SMTH®E,, v = m(0x) € M, where T is the fiber of the cotangent bundle
to M at z, E, is the fiber of the bundle 7 at the same point while S* denotes
the k-th symmetric power. Then any vector w € T, M determines the map
dw: SH(T?) @ E, — S*¥(T7) ® E, by

k
5w(p1-...-pk)®e:Zp1-...-<pi,w>-...-pk®e,
i=1
where the dot “-” denotes multiplication in S*(T¥), p; € T, e € E, while
(-,+) is the natural pairing between T.* and T.

Proposition 3.8. Let v,w € Cj . Then:

(1) All pairs v,w € Ty are in involution.
(2) All pairs v, w € Tgi are in 'mvolution too. IfveTy andw € Ty,
then they are in involution if and only if 6(x,),w)v = 0.

Proof. Note first that the involutiveness conditions are sufficient to check
for the Cartan forms (B2Z) on the preceding page only. The all three
results follow from the representation (BEZX) on page B by straightforward
computations. 0

Let 6y € J¥(mr) and Fp, be the fiber of the bundle ;1 passing through
the point 8, while H C T, M be a linear subspace. Using the linear struc-
ture, we identify the fiber Fj, of the bundle 7 ;_; with its tangent space
and define the space

Ann(H) ={v € Fy_| 0,0 =0, Yw € H }.

Then, as it follows from Proposition BE&, the following description of maxi-
mal involutive subspaces takes place:

Corollary 3.9. Let 0, = [¢]%, » € Toe(m). Then any mazimal involutive
subspace V. C Cj () is of the form V = ji(¢).(H) ® Ann(H) for some
H CT,M.

If V is a maximal involutive subspace, then the corresponding space H
is obviously 7 .(V). We call the dimension of H the type of the maximal
involutive subspace V" and denote it by tp(V).

Proposition 3.10. Let V' be a maximal involutive subspace. Then

n—r+k’—1)
+r,

di =
mV m< 1

where n = dim M, m = dimm, r = tp(V).
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Proof. Let us choose local coordinates in M in such a way that the vectors
0/0x1,...,0/0x, form a basis in H. Then, in the corresponding special
system in J¥(7), coordinates along Ann(H) will consist of those functions
u?, |o| = k, for which multi-index o does not contain indexes 1,...,r. O

Let N C J*(7) be a maximal integral manifold of the Cartan distribution
and 0, € N. Then the tangent plane to N at 6 is a maximal involutive
plane. Let its type be equal to r(6y).

Definition 3.15. The number tp(N) = max r(0k) is called the type of the
k€

maximal integral manifold N of the Cartan distribution.

Obviously, the set g(N) = {0, € N | r(0;) = tp(IN) } is everywhere dense
in N. We call the points 0, € g(N) generic. Let 0 be such a point and U
be its neighborhood in N consisting of generic points. Then:

(1) N' =7 ,-1(N) is an integral manifold of the Cartan distribution on
JEH(m);
(2) dim(N') = tp(N) and

(3) mg—1|nr : N' — M is an immersion.

Theorem 3.11. Let N C J* L(x) be an integral manifold of the Cartan
distribution on J*(7) and U C N be an open domain consisting of generic
points. Then

U=1{0,cJr)| Ly, DTy _ U},
where ek,1 == kakfl(ek), LI’ == kakfl(Z/[).

Proof. Let M" = m,_1(U') € M. Denote its dimension (which equals to
tp(N)) by r and choose local coordinates in M in such a way that the
submanifold V' is determined by the equations z,,; = --- = z, = 0 in
these coordinates. Then, since Y’ C J*7!(r) is an integral manifold and
Tk—1 [ : U — V' is a diffeomorphism, in corresponding special coordinates
the manifold U’ is given by the equations

ololpi
i _ , if 0 does not contain r +1,...,n,
Uy = (9m(,
0 otherwise,
forall j =1,...,m, |o| < k—1 and some smooth function ¢ = ¢(x1,...,z,).

Hence, the tangent plane H to U’ at 01 is spanned by the vectors of the
form (BZ3) on page B with ¢ = 1,...,r. Consequently, a point 6, such
that Lg, D H, is determined by the coordinates

ololpi

J —
Uy = (9m(, ’
arbitrary real numbers otherwise,

if o does not contain r + 1, ..., n,
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where 7 = 1,...,m, |o| < k. Hence, if 0, 0, are two such points, then the
vector 6, — 0, lies in Ann(H), as it follows from the proof of Proposition EZH
on page . As it can be easily seen, any integral manifold of the Cartan
distribution projecting to U’ is contained in U, which concludes the proof.

O

Remark 3.2. Note that maximal integral manifolds N of type dim M are
exactly graphs of jets jr(¢), ¢ € Ioc(m). On the other hand, if tp(N) = 0,
then N coincides with a fiber of the projection my_1: J*(7) — J* (7).

3.6. Classical symmetries. Having the basic structure on J*(), we can
now introduce transformations preserving this structure.

Definition 3.16. Let U, U’ C J*(7) be open domains.

(1) A diffeomorphism F: U — U’ is called a Lie transformation, if it
preserves the Cartan distribution, i.e., F*(Cé“k) = Cf’(é?k) for any point
0. cU.

Let &, & C J*(r) be differential equations.

(2) A Lie transformation F': U — U is called a (local) equivalence, if
FUné =uné.

(3) A (local) equivalence is called a (local) symmetry, if € = &
u=u'

" and

Below we shall not distinguish between local and global versions of the
concepts introduced.

Example 3.7. Consider the case J°(7w) = E. Then, since any n-dimen-
sional horizontal plane in Ty F is tangent to some section of the bundle 7,
the Cartan plane CJ coincides with the whole space TyE. Thus the Cartan
distribution is trivial in this case and any diffeomorphism of F is a Lie
transformation.

Example 3.8. Since the Cartan distribution on J*(r) is locally determined
by the Cartan forms (see (BE=) on page ), the condition of F to be a Lie

transformation can be reformulated as
m

Frol =3 ) N, j=1,...,m, |o| <k, (3.21)

a=1|r|<k

where A% are smooth functions on J*(r). Equations (&) are the base
for computations in local coordinates.

In particular, if dim7 = 1 and k = 1, equations (EZ) reduce to the only
condition F*w = \w, where w = du — > , u; dz;. Hence, Lie transforma-
tions in this case are just contact transformations of the natural contact
structure in J'(7r).
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Let F: J¥(mr) — J*(7) be a Lie transformation. Then graphs of k-jets
are taken by F' to n-dimensional maximal manifolds. Let 0,1 be a point
of J*!(rr) and represent i1 as a pair (6, Ly, ,, ), or, which is the same,
as a class of graphs of k-jets tangent to each other at #;. Then the image
F.(Lg,,,) will almost always be an R-plane at F'(). Denote the corre-

sponding point in J**(7) by FM(yy1).

Definition 3.17. Let F': J*¥(r) — J*(7) be a Lie transformation. The
above defined map FV: J*1(7) — J*1(7) is called the 1-lifting of F.

The map F is a Lie transformation at the domain of its definition, since
almost everywhere it takes graphs of (k+1)-jets to graphs of the same kind.
Hence, for any [ > 1 we can define F() = (F(=1)(1) and call this map the
[-lifting of F.

Theorem 3.12. Letnw: E — M be an m-dimensional vector bundle over an
n-dimensional manifold M and F: J*(7) — J¥(m) be a Lie transformation.
Then:

(1) If m > 1 and k > 0, then the map F is of the form F = G® for
some diffeomorphism G: J°(7) — J(x);

(2) If m = 1 and k > 1, then the map F is of the form F = G*~Y for
some contact transformation G: J'(7) — J (7).

Proof. Recall that fibers of the projection 7y 51 : J*(m) — J*(7) for k > 1
are maximal integral manifolds of the Cartan distribution of type 0 (see
Remark B on the page before). Further, from Proposition B on page I
it follows in the cases m > 1, k > 0 and m = 1, k£ > 1 that they are integral
manifolds of maximal dimension, provided n > 1. Therefore, the map F is
Tk -fiberwise, where € = 0 for m > 1 and € =1 for m = 1.

Thus there exists amap G: J(w) — J¢(m) such that 7y 0o F = Gomy, . and
G is a Lie transformation in an obvious way. Let us show that F' = G*~¢),
To do this, note first that in fact, by the same reasons, the transformation
F generates a series of Lie transformations G;: J'(7) — JY(7), l =¢,...,k,
satistying m;—; o G; = Gj—1 o my—1 and Gy, = F,G. = G. Let us compare
the maps F' and Glglll.

From Proposition B on page B and the definition of Lie transformations
we obtain

Fu(mip—1):" (Loy) = Fu(Cg,) = Creo) = (mri—1)5 " (Ligoy))
for any 6, € J*(7). But
Fu((mep-1)2" (Loy)) = (Thp—1)5 " (Gro1.4(Lay)
and consequently Gy_1,«(Lg,) = Lp,).- Hence, by the definition of 1-lifting

we have F' = Gl(i)l. Using this fact as a base of elementary induction, we
obtain the result of the theorem for dim M > 1.
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Consider the case n = 1, m = 1 now. Since all maximal integral mani-
folds are one-dimensional in this case, it should be treated in a special way.
Denote by V the distribution consisting of vector fields tangent to the fibers
of the projection 7y ;—;. We must show that

FV=YV (3.22)

for any Lie transformation F', which is equivalent to F' being mj j—1-
fiberwise.

Let us prove (BEZ). To do it, consider an arbitrary distribution P on a
manifold N and introduce the notation

PD={XeD(N)| X liesin P} (3.23)
and
Dp={XeD(N)|[X,Y]€P, VY € PD}. (3.24)

Then one can show (using coordinate representation, for example) that
DY = DC* n Dipek,pery for k > 2. But Lie transformations preserve the
distributions at the right-hand side of the last equality and consequently
preserve DV. O

Definition 3.18. Let m: E — M be a vector bundle and £ C J*(r) be a
k-th order differential equation.

(1) A vector field X on J*(7) is called a Lie field, if the corresponding
one-parameter group consists of Lie transformations.

(2) A Lie field is called an infinitesimal symmetry of the equation &, if it
is tangent to &.

Since in the sequel we shall deal with infinitesimal symmetries only,
we shall call them just symmetries. By definition, one-parameter groups
of transformations corresponding to symmetries preserve generalized solu-
tion&..

Let X be a Lie field on J*(7) and F;: J*(w) — J*(7) be its one-parameter
group. Then we can construct the l-lifting F{”: J¥! () — J*+(7) and the
corresponding Lie field X on J*/(7). This field is called the [-lifting of
the field X. As we shall see a bit later, liftings of Lie fields are defined
globally and can be described explicitly. An immediate consequence of the
definition and of Theorem B on the preceding page is

Theorem 3.13. Let 7: E — M be an m-dimensional vector bundle over
an n-dimensional manifold M and X be a Lie field on J*(w). Then:

(1) If m > 1 and k > 0, the field X is of the form X = Y® for some
vector field Y on JO(7);

SA generalized solution of an equation £ is a maximal integral manifold N C & of the
Cartan distribution on &; see [E3].
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(2) If m =1 and k > 1, the field X is of the form X = Y®* =1 for some
contact vector field Y on J'(m).

To finish this subsection, we describe coordinate expressions for Lie fields.
Let (21,...,%n,...,ul,...) be a special coordinate system in J*(r). Then

I o)

from (B=ZH) on page B it follows that

X = ZX +ZZ

=1 |o|<k au"
is a Lie field if and only if
X2, = Dy(X2) — 3wl Di(X.), (3.25)
a=1
where
D; = aii + ; JZZO ul, a(z{, (3.26)

are the so-called total derivatives.

FEzercise 3.1. Tt is easily seen that the operators (BZH) do not preserve
the algebras Fj: they are derivations acting from Fj to Fiiq1. Prove that
nevertheless for any contact field on J!(7), dim7 = 1, or for an arbitrary
vector field on JO(7) (regardless of the dimension of ) the formulas above
determine a vector field on J*(7).

Recall now that a contact field X on J'(r) is completely determined by
its generating function f = ixw, where w = du — ), u; dz; is the Cartan
(contact) form on J!(7). The contact field corresponding to f € Fy(m) is
denoted by X and is given by the expression

L af o u
Xr= ;81“ 0x; (f Z 8uz>
f 0
+Z<8xz )8uz

Thus, starting with a field BZ0) in the case dim7 = 1 or with an arbi-
trary field on JY(7) for dim7 > 1 and using (B=2), we can obtain efficient
expressions for Lie fields.

(3.27)

Remark 3.3. Note that in the multi-dimensional case dim7 > 1 we can
introduce the functions f/ = ixw’, where w’ = du’ — >, u] dx; are the
Cartan forms on J!'(7). Such a function may be understood as an element
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of the module Fi(m, 7). The local conditions of a section f € Fi(m,7) to
generate a Lie field is as follows:

afe aft  afr

)

We call f the generating function (though, strictly speaking, the term gen-
erating section should be used) of the Lie field X, if X is a lifting of the
field X;.

Let us write down the conditions of a Lie field to be a symmetry. Assume
that an equation £ is given by the relations F!' = 0,..., F" = 0, where
FI € Fi(m). Then X is a symmetry of &€ if and only if

X(F) =) _NF* j=1,...r
a=1

where M, are smooth functions, or X(F7)|¢ = 0, j = 1,...,r. These
conditions can be rewritten in terms of generating sections and we shall do
it later in a more general situation.

3.7. Prolongations of differential equations. Prolongations are differ-
ential consequences of a given differential equation. Let us give a formal
definition.

Definition 3.19. Let £ C J*(7) be a differential equation of order k. De-
fine the set

51 = {9k+1 c JkJrl(ﬂ') | 7Tk+1,k(9k+l) c g, Lng - T7T

and call it the first prolongation of the equation &£.

£}

kt1,k (Okg1)

If the first prolongation &' is a submanifold in J**!(7), we define the
second prolongation of £ as (£1)! C J*™2(x), etc. Thus the I-th prolongation
is a subset £ C J*H (7).

Let us redefine the notion of [-th prolongation directly. Namely, take a
point 0y € £ and consider a section ¢ € ', (7) such that the graph of jx(p)
is tangent to & with order [. Let m(6x) = z € M. Then [p]*™ is a point of
JFH () and the set of all points obtained in such a way obviously coincides
with &', provided all intermediate prolongations £!, ..., £~! be well defined
in the sense of Definition B8

Assume now that locally £ is given by the equations F'* =0,..., F" = 0,
FJ € Fi(m) and 6, € & is the origin of the chosen special coordinate system.

Let u' = oM(z1,...,2,), ..., u™ = " (z1,...,7,) be a local section of the
bundle 7. Then the equations of the first prolongation are
OF7 OF7

o . .

u, =0, 1=1,...,n, g=1...)r

ax aua o1 Y Y Y Y Y PAR
¢ a,o g
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combined with the initial equations /" = 0. From here and by comparison
with the coordinate representation of prolongations for nonlinear differential
operators (see Subsection BEZ), we obtain the following result:

Proposition 3.14. Let £ C J*(r) be a differential equation. Then

(1) If the equation & is determined by a differential operator A: T'(mw) —
[(7"), then its l-th prolongation is given by the l-th prolongation
AW (1) — T(7]) of the operator A.

(2) If € is locally described by the system F' = 0,...,F" = 0, FJ €
Fi(m), then the system

D,FI =0, |o|<l,j=1,...,r (3.28)

where D, = D;; o---0 Di‘(,‘; O =11...9, corresponds to E'. Here
D; stands for the i-th total derivative (see (B=Zd) on page B).

From the definition it follows that for any { > I’ > 0 one has w1 41 (51) -
E" and consequently one has the maps mpy 5y : & — EV.

Definition 3.20. An equation & C J¥(r) is called formally integrable, if

(1) all prolongations &' are smooth manifolds and
(2) all the maps g 41 54: EF — &L are smooth fiber bundles.

Definition 3.21. The inverse limit projlim, . &' with respect to projec-
tions 41 is called the infinite prolongation of the equation £ and is denoted

by £% C J>®(r).

3.8. Basic structures on infinite prolongations. Let 7: £ — M be a
vector bundle and £ C J*(m) be a k-th order differential equation. Then
we have embeddings ¢;: & C J*"(x) for all [ > 0. Since, in general,
the sets £ may not be smooth manifolds, we define a function on £ as the
restriction f |g: of a smooth function f € Fjy(m). The set Fi(€) of all func-
tions on &' forms an R-algebra in a natural way and &} : Fpyy(7) — Fi(E)
is a homomorphism of algebras. In the case of formally integrable equa-
tions, the algebra F;(€) coincides with C*°(&!). Let I, = kere;. Evidently,
I(E) C I141(€). Then I(E) = ;5 Li(€) is an ideal in F () which is called
the ideal of the equation £. The function algebra on £ is the quotient al-
gebra F(&) = F(m)/I(€) and coincides with injlim,_,  F;(€) with respect
to the system of homomorphisms 7., ;- For all [ > 0, we have the
homomorphisms ¢;: F(£) — F(E). When £ is formally integrable, they
are monomorphic, but in any case the algebra F (&) is filtered by the images
of €.

To construct differential calculus on £°°, one needs the general algebraic
scheme exposed in Section lland applied to the filtered algebra F(&). How-
ever, in the case of formally integrable equations, due to the fact that all
&' are smooth manifolds, this scheme may be simplified and combined with
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a purely geometrical approach (cf. with similar constructions of Subsection

In special coordinates the infinite prolongation of the equation & is deter-
mined by the system similar to (B23) on the preceding page with the only
difference that |o| is unlimited now. Thus, the ideal I(&) is generated by
the functions D,F7, |o| > 0, 7 = 1,...,m. From these remarks we obtain
the following important fact.

Remark 3.4. Let &£ be a formally integrable equations. Then from the above
said it follows that the ideal /(&) is stable with respect to the action of the
total derivatives D;, i = 1,...,n. Consequently, the restrictions Df =
Dile : F(E) — F(E) are well defined and D? are filtered derivations. In
other words, we obtain that the vector fields D; are tangent to any infinite
prolongation and thus determine vector fields on £>°. We shall often skip
the superscript £ in the notation of the above defined restrictions.

Example 3.9. Consider a system of evolution equations of the form

= fi(x,t,. . u . ul ), ja=1,....m
Then the set of functions z1,...,x,,t,. "’“gl,...,ir,o with 1 < < n, j =
1,...,m, where t = x,.,1, may be taken for internal coordinates on £*°.

The total derivatives restricted to £> are expressed as

+ZZ m J 1=1,...,n,

j=1 |o|>0

EES I I

Jj=1|o|>0

(3.29)

in these coordinates, while the Cartan forms restricted to £ are written
down as

w! = dul — Zuj dz; — D, (f7) dt (3.30)

Let 7: E — M be a vector bundle and £ C J*(7) be a formally integrable
equation.

Definition 3.22. Let § € J*°(7). Then

(1) The Cartan plane Cy = Cp(w) C TpJ>(m) at 0 is the linear envelope of
tangent planes to all manifolds joo(¢)(M), ¢ € I'(m), passing through
6.

(2) If 6 € £, then the intersection Cp(E) = Co(m)NTHE™ is called Cartan
plane of £ at 6.

The correspondence 8 — Cy(m), 8 € J(m) (respectively, 8 — Cy(E>),
0 € £%) is called the Cartan distribution on J*(m) (respectively, on £%).



56

Proposition 3.15. For any vector bundle w: E — M and a formally in-
tegrable equation & C J*(m) one has:

(1) The Cartan plane Co(m) is n-dimensional at any point 8 € J>(m).

(2) Any point 6 € £ is generic, i.e., Co(m) C TpE™ and thus one has
Cg(goo) == Cg(ﬂ').

(3) Both distributions, C(m) and C(E>), are integrable.

Proof. Let 0 € J®(m) and mo(f) = x € M. Then the point 6 completely
determines all partial derivatives of any section ¢ € T'j,(m) such that its
graph passes through 6. Consequently, all such graphs have a common
tangent plane at this point, which coincides with Cy(m). This proves the
first statement.

To prove the second one, recall Remark BE& on the preceding page: locally,
any vector field D; is tangent to £%°. But as it follows from (EZH) on page E,
ip,w? = 0 for any D; and for any Cartan form w?. Hence, linear independent
vector fields Dy, ..., D, locally lie both in C(7) and in C(£°°) which gives
the result.

Finally, as it follows from the above said, the module

CD(r) ={X € D(r) | X liesin C(m) } (3.31)

is locally generated by the fields Dy,...,D,. But it is easily seen that
[Do, Dg] = 0 for all a, 8 = 1,...,n and consequently [CD(w),CD(m)] C
CD(m). The same reasoning is valid for

CD(E) ={X e D(E®) | X lies in C(E™) }. (3.32)
This completes the proof of the proposition. O

Proposition 3.16. Maximal integral manifolds of the Cartan distribution
C(m) are graph of infinite jets of sections joo(p), @ € Tioc(T).

Proof. Note first that graphs of infinite jets are integral manifolds of the
Cartan distribution of maximal dimension (equaling to n) and that any
integral manifold projects to J*(m) and M without singularities.

Let now N C J*(7) be an integral manifold and N* = 7o N C J*(7),
N’ = n,oN C M. Hence, there exists a diffeomorphism ¢’: N — N° such
that o ¢’ =idxs. Then by the Whitney theorem on extension for smooth
functions (see [BH]), there exists a local section p: M — E satisfying ¢ |y =
¢’ and ji.(¢)(M) D N* for all k > 0. Consequently, j(¢)(M) D N. O

Corollary 3.17. Maximal integral manifolds of the Cartan distribution on
E> coincide locally with graphs of infinite jets of solutions.

Consider a point 0 € J>®(w) and let * = 7m(f) € M be its projec-
tion to M. Let v be a tangent vector to M at the point x. Then, since
the Cartan plane Cy isomorphically projects to T, M, there exists a unique
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tangent vector Cv € TyJ*°(w) such that (7x)«(Cv) = v. Hence, for any
vector field X € D(M) we can define a vector field CX € D(w) by setting
(CX)g = C(Xx_(9)). Then, by construction, the field CX is projected by
(T)« to X while the correspondence C: D(M) — D(w) is a C*°(M)-linear
one. In other words, this correspondence is a linear connection in the bundle
Too: J®(m) — M.

Definition 3.23. The connection C: D(M) — D(x) defined above is called
the Cartan connection in J>°(7).

For any formally integrable equation, the Cartan connection is obviously
restricted to the bundle 7, : £ — M and we preserve the same notation
C for this restriction.

Let (z1,...,2n,...,ul,...) be a special coordinate system in J*(7) and
X = X10/0x1 + - - + X,,0/0x,, be a vector field on M represented in this
coordinate system. Then the field CX is to be of the form CX = X + X",
where XV = 3", X70/0ul is a moo-vertical field. The defining conditions

icxw? = 0, where w? are the Cartan forms on J*(7), imply

CX = ;X (8—$i + ch,ui@—u%> = ;XiDi. (3.33)

In particular, C(0/0z;) = D;, i.e., total derivatives are the liftings to J>°(7)
of the corresponding partial derivatives by the Cartan connection.

Let now V be a vector field on £ and 6 € £ be a point. Then the
vector Vjy can be projected parallel to the Cartan plane Cy to the fiber of the
projection 7. : £ — M passing through 6. Thus we get a vertical vector
field V. Hence, for any f € F(&) a differential one-form Uc(f) € A'(€) is
defined by

iv(Ue(f)) =V*(f), VeD() (3.34)

The correspondence f +— Ue(f) is a derivation of the algebra F (&) with
the values in the F(&)-module AY(E), i.e., Ue(fg) = fUc(g) + gUc(f) for
all f,g € F(E).

Definition 3.24. The derivation Uz : F(E) — A'(E) is called the structural
element of the equation &.

In the case £ = J*(m) the structural element Ue is locally represented
in the form

; 0
U= w @ —, 3.35
2,0
where w? are the Cartan forms on J*°(7). To obtain the expression in the
general case, one needs to rewrite ([B2) in local coordinates.
The following result is a consequence of definitions:
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Proposition 3.18. For any vector field X € D(M) the equality

Joo (@) (CX(f)) = X(Joo(0)" (), fE€F (), ¢ €Nc(rm),  (3.36)

takes place. Equality (B3 uniquely determines the Cartan connection in
Jo(m).

Corollary 3.19. The Cartan connection in £ is flat, i.e., C[X,Y] =
[CX,CY] for any X,Y € D(M).

Proof. Consider the case £ = J*°(m). Then from Proposition B we have

Joo ()" (CIX, Y(S)) = [X, Y] (oo ()" (f))
= X(Y(Joo ()" () = Y (X (oo ()" (f)))
for any ¢ € I'oe(m), f € F(m). On the other hand,

Joo ()" ([CX, CY](f)) = Joo () (CX(CY(f)) — CY(CX(])))
= X(Joo ()" (Y (1)) = Y (Joo(0)"(CX(f)))
= X(Y (Joo ()" () = V(X (oo ()" (f)))-

To prove the statement for an arbitrary formally integrable equation &, it
suffices to note that the Cartan connection in £ is obtained by restricting
the fields CX to infinite prolongation of £. O

The construction of Proposition B can be generalized. Let 7: F — M
be a vector bundle and & : By — M, &: E5 — M be another two vector
bundles.

Definition 3.25. Let A: T'(&) — T'(&) be a linear differential operator.
The lifting CA: F(mw, &) — F(m, &) of the operator A is defined by

Joo(#) (CA(S)) = Alluo ()" (f)), (3.37)

where ¢ € Ioe(m), f € F(m, &) are arbitrary sections.

Proposition 3.20. Let m: E — M, &: E; — M, + = 1,2,3, be vector
bundles. Then

(1) For any C°°(M)-linear differential operator A: T'(&) — T'(&), the
operator CA is an F(r)-linear differential operator of the same order.

(2) For any A,00:T(&) — T'(&) and f,g € F(n), one has
C(fA+¢0O) = fCA + gCO.
(3) For A1:T'(&) — I'(&) and Ay: T'(&2) — T'(&3), one has
C(Ag0Ay) =CAy0CA;.
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From this proposition and from Proposition BEEI on the facing page it
follows that if A is a scalar differential operator C*°(M) — C*°(M) locally
represented as A = ) a,0°/0x,, ay € C°(M), then CA = > o GeDy in
the corresponding special coordinates. If A = ||A;;|| is a matrix operator,
then CA = ||CA;;||. Obviously, CA may be understood as a constant dif-
ferential operator acting from sections of the bundle 7 to linear differential
operators from T'(§;) to I'(&;). This observation is generalized as follows.

Definition 3.26. An F(7)-linear differential operator A acting from the
module F(m, &) to F(m, &) is called a C-differential operator, if it admits
restriction to graphs of infinite jets, i.e., if for any section ¢ € I'(w) there
exists an operator A,: I'(§1) — I'(&2) such that

Joo ()" (A(S)) = Ay (Geo(0)"(f)) (3.38)
for all f € F(m, &).

Thus, C-differential operators are nonlinear differential operators taking
their values in C*°(M)-modules of linear differential operators.

FEzercise 3.2. Consider a C-differential operator A: F(m, &) — F(m, &).
Prove that if A(7*(f)) =0 for all f € I'(§;), then A = 0.

Proposition 3.21. Let w, &, and & be vector bundles over M. Then any
C-differential operator A: F(mw, &) — F(w, &) can be presented in the form
A =) a.CA,, aq € F(m), where A, are linear differential operators
acting from I'(&1) to ['(&s).

Proof. Recall that we consider the filtered theory; in particular, there exists
an integer | such that A(Fy(m,&1)) C Fru(m, &) for all k. Consequently,
since I'(&;) is embedded into Fo(m, &), we have A(I'(&1)) C Fi(m, &) and the
restriction A = A ‘F(gl) is a C*°(M)-differential operator taking its values
in Fi(m,&). B B
On the other hand, the operator A is represented in the form A =
Y0 @ala, aq € Fi(m), with Ay: T'(&) — I'(&) being C°°(M)-linear dif-
ferential operators. Define CA = Y0 @aCA,. Then the difference A — CA
is a C-differential operator such that its restriction to I'(&; ) vanishes. There-
fore, by Exercise B A = CA. O

Corollary 3.22. C-differential operators admit restrictions to infinite pro-
longations: if A: F(m,&) — F(m &) is a C-differential operator and
E C J¥(x) is a k-th order equation, then there exists a linear differen-
tial operator Ag: F(E,&1) — F(E,&) such that €* o A = Ag o e*, where
£: > — J®(m) is the natural embedding.

Proof. The result immediately follows from Remark EZ on page B and from
Proposition EEZ1. 0O
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Example 3.10. Let & = 7/, & = 774, where 770 APT*M — M (see
Example BE& on page EN), and A=d: N(M)— AZ“( ) be the de Rham
differential. Then we obtain the first-order operator d = Cd: A’(w) —
A" (r), where AP(m) denotes the module F (7, 7). Due Corollary E=2 on
the page before the operators d: A*(£) — AZ“(S) are also defined, where
AP(E) = F(E, 7).

Definition 3.27. Let £ C J*() be an equation.

(1) Elements of the module A*(€) are called horizontal i-forms on the
infinite prolongation £°°.

(2) The operator d: AY(€) — A () is called the horizontal de Rham
differential on £*°.

From Proposition BE=2 (@) on page BA it follows that dod = 0. The sequence
0— F(E) L AYE) — - — N(E) L ATL(E) — -

is called the horizontal de Rham complex of the equation . Its cohomology
is called the horizontal de Rham cohomology of £ and is denoted by H*(E) =

@izo o(&).

In local coordinates, horizontal forms of degree p on £ are represented
as w = Zi1<___<ip .., dTi, A -+ A dwg,, where a;,. ;, € F(E), while the
horizontal de Rham differential acts as

Z Z i(@iy..a,) dzg Ndxg, N- - ANdag,. (3.39)

=1 11 <--<ip

In particular, we see that both A*(€) and H'() vanish for i > dim M.

Consider the algebra A*(&) of all differential forms on £ and note that
one has the embedding A*(€) — A*(E). Let us extend the horizontal de
Rham differential to this algebra as follows:

d(dw) = —d(d(w)), dwAb) =dw) A0+ (-1YwAdl) weAP(E).

Obviously, these conditions define the differential d: A*(€) — A™!(€) and
its restriction to A*(£) coincides with the horizontal de Rham differential.
Let us also set de = d — d: A*(£) — A*(€) and call d¢ the Cartan (or

vertical) differential on £>°. Then from definitions we obtain
dZCZ—f—dc, CZOCZZdCOdC:O, dCOCZ—f—CZOdC:O,

i.e., the pair (d,dc) forms a bicomplex in A*(€) with the total differential d.
It is called the wvariational bicomplex and will be discussed in more details
in Section @.

Denote by CAY(€) the Cartan submodule in A'(€), i.e., the module of 1-
forms vanishing on the Cartan distribution on £ (cf. with Definition B2
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on page EH). Then the splitting d = d + d¢ implies the direct sum decom-
position

AYE) = A(E) & CAL(E),

which gives

NE) = @D ME) Ore) COAE), (3.40)
where CPA(E) = §A1(5) ARERWA CAl(SZ.

~
p times

To conclude this section, we shall write down the coordinate represen-
tation for the Cartan differential do and the extended differential d. First
note that by definition and due to representation (BE) on the facing page,
one has

0 )
() =Y ~Lui, 1eFm. (3.41)
J,0 7

In particular, d¢ takes coordinate functions u? to the corresponding Cartan
forms. This is reason why we called d¢ the Cartan differential on £*°. It is
casily seen that de | &) = Uc(€) (see Definition B=Z on page El). To finish

computations, it suffices to compute d(w?):
d(w}) = dde(uj) = —ded(u})
and thus

d(w)) = =) Wl Ada;, (3.42)
=1

Note that from the results obtained it follows that
cZ(/_\q(S) ®CPA(E)) C /_\q“(é’) ® CPA(E),
dc(/_\q(é’) ®CPA(E)) C /_\q(é’) ® CpHA(S).

Now let us define the module of horizontal jets. Let £ be a vector bundle
over M. Say that two elements of P = F(&,¢) are horizontally equivalent
up to order £ < oo at point 6 € £, if their total derivatives up to order k
coincide at §. The horizontal jet space JF(P) is P modulo this relation, and
the collection J*(P) = (Jyc e J§(P) constitutes the horizontal jet bundle
JE(P) — £%°. We denote the module of sections of horizontal jet bundle by
TH(P).

As with the usual jet bundles, there exist the natural C-differential oper-
ators

]_k:P_)jk(P)’
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and the natural projections v;: jk(P) — jl(P) such that vg; o % = 7.
The operators Jx and vy, are restrictions of the operators Cjj and Cry; to
Ex.

C-differential operators, horizontal forms and jets constitute a “subthe-
ory” in the differential calculus on an infinitely prolonged equation. It is,
roughly speaking, “the total derivatives calculus” and is called C-differen-
tial calculus. It is easily shown that all components of usual calculus and
the Lagrangian formalism discussed above have their counterparts in the
framework of C-differential calculus. All constructions of Sections ll and B
are carried over into C-differential calculus word for word as long as the
operators, jets, and forms in them are assumed respectively C-differential
and horizontal.

3.9. Higher symmetries. Let m: £ — M be a vector bundle and & C
J¥(m) be a differential equation. We shall still assume € to be formally
integrable, though it not restrictive in this context.

Consider a symmetry F : J*(7r) — J¥(m) of the equation £ and let
0,41 be a point of the first prolongation £ such that 1 k(Okt1) = Ok €
£. Then the R-plane Lg,,, is taken to the R-plane Fi(Lg,,,), since F
is a Lie transformation, and F.(Lg,,,) C Tr,), since F is a symmetry.
Consequently, the lifting F(: J¥1(7) — J*+1(7) is a symmetry of £'. By
the same reasons, F() is a symmetry of the [-th prolongation of £. From
here it also follows that for any infinitesimal symmetry X of the equation
£, its [-th lifting is is a symmetry of £ as well.

Proposition 3.23. Symmetries of a formally integrable equation & C
J¥() coincide with symmetries of any prolongation of this equation. The
same is valid for infinitesimal symmetries.

Proof. We showed already that to any (infinitesimal) symmetry of £ there
corresponds an (infinitesimal) symmetry of £'. Consider an (infinitesimal)
symmetry of £. By Theorems B=Id on page Bl and E=I on page Bl it is
Tt x-fiberwise and therefore generates an (infinitesimal) symmetry of the
equation &. O

The result proved means that a symmetry of £ generates a symmetry of
£ which preserves every prolongation of finite order. A natural step to
generalize the concept of symmetry is to consider “all symmetries” of £°°.
Recall the notation

CD(r) ={X € D(7) | X liesin C(m) }
(cf. with (B=Z3) on page EI).

Definition 3.28. Let 7 be a vector bundle. A vector field X € D(x) is
called a symmetry of the Cartan distribution C(7) on J*(x), if [X,CD(7)] C
CD(n).
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Thus, the set of symmetries coincides with De(7) (see (B2Z) on page B
and forms a Lie algebra over R and a module over F(m). Note that since
the Cartan distribution on J*°(7) is integrable, one has CD(w) C De(7)
and, moreover, CD() is an ideal in the Lie algebra D¢ (7).

Note also that symmetries belonging to CD(7) are tangent to any integral
manifold of the Cartan distribution. By this reason, we call such symmetries
trivial. Respectively, the elements of the quotient Lie algebra

sym(m) = D¢(m) /CD(7)

are called nontrivial symmetries of the Cartan distribution on J>°(7).

Let now £% be the infinite prolongation of an equation & C J*(). Then,
since CD(7) is spanned by the fields of the form CY, where Y € D(M)
(see Remark B on page BJ), any vector field from CD(7) is tangent to
E>. Consequently, either all elements of the coset [X] = X mod CD(n),
X € D(m), are tangent to £ or neither of them do. In the first case we
say that the coset [X] is tangent to €.

Definition 3.29. An element [X] = X mod CD(x), X € D(x), is called a
higher symmetry of £, if it is tangent to £=°.

The set of all higher symmetries forms a Lie algebra over R and is denoted
by sym(&). We shall usually omit the adjective higher in the sequel.

Consider a vector field X € D(w). Then, substituting X into the struc-
tural element Ue (see (B2) on page B), we obtain a field XV € D(x). The
correspondence Ug: X — X" = ixUg possesses the following properties:

(1) The field XV is vertical, i.e., X?(C*°(M)) = 0.

(2) XV = X for any vertical field.

(3) X¥ =0 if and only if the field X lies in CD(7).

Therefore, we obtain the direct sum decomposition of F(7)-modules
D(m) = D"(7) @ CD(m),

where DV(7) denotes the Lie algebra of vertical fields. A direct corollary of
these properties is the following result.

Proposition 3.24. For any coset [X]| € sym(E) there exists a unique ver-
tical representative and thus

sym(€) ={X e D(€) | [X,CD(&)] C CD(E) }, (3.43)
where CD(E) is spanned by the fields CY, Y € D(M).

Lemma 3.25. Let X € sym(w) be a vertical vector field. Then it is com-
pletely determined by its restriction to Fo(mw) C F(m).
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Proof. Let X satisfy the conditions of the lemma and Y € D(M). Then for
any f € C°°(M) one has

[X,CY](f) = X(CY (/) = CY/(X(f)) = X(V(f)) =0

and hence the commutator [X,CY] is a vertical vector field. On the other

hand, [X,CY] € CD(7) because CD(n) is a Lie algebra ideal. Consequently,

[X,CY] = 0. Note now that in special coordinates we have D;(ul) = u!,

for all o and j. From the above said it follows that

X(u};) = Dy(X (u})). (3.44)
But a vertical derivation is determined by its values at the coordinate func-
tions u?. U

Let now Xg: Fo(m) — F(w) be a derivation. Then equalities (EZZH) al-
low one to reconstruct locally a vertical derivation X € D(w) satisfying
X | 7(x) = Xo. Obviously, the derivation X lies in sym(m) over the neigh-
borhood under consideration. Consider two neighborhoods U, Us C J*°(7)
with the corresponding special coordinates in each of them and two symme-
tries X* € sym(w |y, ), ¢ = 1,2, arising by the described procedure. But the
restrictions of X! and X? to Fo(7 |iyru, ) coincide. Hence, by Lemma E2Z3
on the page before, the field X! coincides with X2 over the intersection
Uy N Us. Hence, the reconstruction procedure X, +— X is a global one.
So we have established a one-to-one correspondence between elements of
sym(7) and derivations Fo(mw) — F(7).

Note now that due to vector bundle structure in 7: £ — M, derivations
Fo(m) — F(r) are identified with sections of 7*_(7), or with elements of
F(m, ).

Theorem 3.26. Let m: E — M be a vector bundle. Then:

(1) The F(m)-module sym(m) is in one-to-one correspondence with ele-
ments of the module F(m, ).

(2) In special coordinates the correspondence F(mw,m) — sym(nw) is ez-
pressed by the formulcl

.0
p—=Dp = Dol(¢')—, (3.45)
- Ous
where o = (p', ... ©™) is the component-wise representation of the

section @ € F(m,m).

Proof. The first part of the theorem has already been proved. To prove the
second one, it suffices to use equality (BEZZ). O

Definition 3.30. Let 7: £ — M be a vector bundle.
"To denote evolutionary vector fields (see Definition E=at), we use the Cyrillic letter

[P

9, which is pronounced like “€” in “ten”.
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(1) The field D, of the form (BZE) on the facing page is called an evolu-
tionary vector field on J*°(7).

(2) The section ¢ € F(m,7) is called the generating function of the field
Do

Remark 3.5. Let (: N — M be an arbitrary smooth fiber bundle and
& P — M be a vector bundle. Then it easy to show that any (-

vertical vector field X on N can be uniquely lifted up to an R-linear map
X€: T(C*(€)) — D(C7(€)) such that

X (fy) = X(f)y + fX(W), feC®(N), ¢ el("(§).  (346)

In particular, taking ., for ¢, for any evolutionary vector field 9, we obtain
the family of maps 9%: F(x,&) — F(w, &) satisfying (E=).

Consider the map 97: F(m,m) — F(m,7) and recall the element py €
Fo(m,m) C F(m, ) (see Example Elon page B). It can be easily seen that

95 (po) = ¢ (3.47)

which can be taken for the definition of the generating section.

Let ©,,, 9y be two evolutionary vector fields. Then, since sym(r) is a Lie
algebra and by Theorem B2 on the preceding page, there exists a unique
section {p, ¥} satisfying [D,, Dy| = Dyipuy-

Definition 3.31. The section {¢, ¥} € F(rm,x) is called the (higher) Jacobi
bracket of the sections o, € F(m).

Proposition 3.27. Let ¢, € F(m,m) be two sections. Then:

(1) {p, 9} = 9 (¥) — D5().
(2) In special coordinates, the Jacobi bracket of v and v is expressed by
the formula

=Y (Da«o%a‘“ ~ D, () “Oi) , (3.48)

oug oug

a,0

where superscript j denotes the j-th component of the corresponding
section.

Proof. To prove (1), let us use (BZ):
{0} =B, 4y (p0) = D597 () — D95 () = D5 () — D ().

The second statement follows from the first one and from equality (EZH) on
the preceding page. O
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Consider now a nonlinear operator A: I'(r) — T'(§) and let ¥a € F(7,§)

be the corresponding section. Then for any ¢ € F(m, m) the section
95 (Ya) € F(m, &) is defined and we can set

lali) = DE(a). (3.49)

Definition 3.32. The operator ¢a: F(m, ) — F(m, &) defined by (B3 is
called the universal linearization opemtorl of the operator A: T'(7) — T'(§).

From the definition and equality (BEZ&) on page B we obtain that for a
scalar differential operator

lol pJ
A:cpHF(xl,...,mn,...,a (p,...
0%,
one has lp = (f&,..., (%), m = dim 7, where
OF
a D,. (3.50)

A~ . a—ug
fdim=r>1and A= (Ay,...,A,), then

EA:HE‘Z, a=1,....m, B=1,...,r (3.51)

In particular, we see that the following statement is valid.

Proposition 3.28. For any differential operator A, its universal lineariza-
tion is a C-differential operator.

Now we can describe the algebra sym(€), £ C J¥(m) being a formally
integrable equation. Let I(€) C F(m) be the ideal of the equation &£ (see
page B). Then, by definition, 9, is a symmetry of £ if and only if

D,(L(E)) C I(€). (3.52)
Assume now that & is given by a differential operator A: I'(7) — I'(§) and
locally is described by the system of equations F' = 0,...,F" =0, F/ ¢

F(m). Then the functions F', ..., F" are differential generators of the ideal
I(€) and condition (B=) may be rewritten as

D,(FI) = a2, Do(F*), j=1,...,m, a3 € F(n). (3.53)
Using of (B, the last equation acquires the forml

lpi(p) =Y a2 D,(F*), j=1,....m, a2€ F(m). (3.54)

8Cf. with the algebraic definition on page B
9We use the notation z, F' € F (7, &), as a synonym for £a, where A: T'(7) — ['(€) is
the operator corresponding to the section F'.
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But by Proposition on the facing page, the universal linearization is a
C-differential operator and consequently can be restricted to £ (see Corol-
lary B2Z on page B). It means that we can rewrite (&) on the facing
page as

EFJ |£(x> (gOlgoo)ZO, j:]_,,m (355)

Combining these equations with (B2H) and (B=J) on the preceding page,
we obtain the following fundamental result:

Theorem 3.29. Let £ C J*(t) be a formally integrable equation and A =
Ag: T'(m) — T(&) be the operator corresponding to £. Then an evolutionary
vector field Oy, ¢ € F(m,m) is a symmetry of £ if and only if

le(p) =0, (3.56)

where lg and p denote restrictions of {a and @ on £ respectively. In other
words, sym(E) = ker (¢.

Exercise 3.3. Show that classical symmetries (see Subsection BH) are em-
bedded in sym £ as a Lie subalgebra. Describe their generating functions.

Remark 3.6. From the result obtained it follows that higher symmetries
of £ can be identified with elements of F(&, ) satisfying equation (B2H).
Below we shall say that a section ¢ € F(E,7) is a symmetry of £ keeping
in mind this identification. Note that due to the fact that sym(€) is a
Lie algebra, for any two symmetries p,1 € F(E, ) their Jacobi bracket
{p,v}e € F(E,m) is well defined and is a symmetry as well. If no confusion
arises, we shall omit the subscript £ in the notation of the Jacobi bracket.

Finally, we give a useful description of the modules D?(E) and C*A(E).
Denote » = F (&, 7).

First consider the case £€* = J*(m). From the coordinate expres-
sion (BEZZ¥) on page B for an evolutionary vector field it immediately follows
that any vertical tangent vector at point 6 € J*(m) can be realized in the
form 9,|, for some ¢. This shows that the map ¢ — 9, yields the canon-
ical isomorphism

DY(m) = T ().
The dual isomorphism reads
C'A(rm) = CDiff(s, F).
In coordinates, this isomorphism takes the form w’ to the operator
0,...,0,D,,0,...,0),
with D, on j-th place.
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It is clear that the Cartan k-forms can be identified with multilinear
skew-symmetric C-differential operators in k arguments:

CPA(r) = CDiffy)5 (52, F).
Now consider the general case. Suppose that the equation & is given by

an operator A: I'(r) — I'(§). Denote P = F(E,€), so that lg: 2 — P.
From (B23) on the preceding page we get

Proposition 3.30. (1) The module DV(E) is isomorphic to the kernel of
the homomorphism % . J>®(x) — J>(P);
(2) the module CPA(E) is isomorphic to CDiff?llf)(%, F) modulo the sub-
module consisting of the operators of the form V o le, where V &
CDiff(P,CDiffy)’ | (5, F)).
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4. COVERINGS AND NONLOCAL SYMMETRIES

The facts exposed in this section constitute a formal base to introduce
nonlocal variables to the differential setting, i.e., variables of the type [ ¢ dz,
¢ being a function on an infinitely prolonged equation. A detailed exposition
of this material can be found in [Ed] and [E4].

4.1. Coverings. We start with fixing up the setting. To do it, extend
the universum of infinitely prolonged equations in the following way. Let
N be a chain of smooth maps --- — Nt RAGELNNY N -+, where
N® are smooth finite-dimensional manifolds. Define the algebra F(N\)
of smooth functions on A as the direct limit of the homomorphisms

- — C®(NY) SEEEER C>°(N*!) — ... Then there exist natural homomor-
phisms 77, ;: C*(N') — F(N) and the algebra F(N') may be considered
to be filtered by the images of these maps. Let us consider calculus (see
Section @) over F(N) agreed with this filtration. Define the category Inf
as follows:

(1) The objects of Inf are the above introduced chains N endowed with
integrable distributions Dy C D(F(N)), where the word “integrable”
means that [Dy, Dy| C Dy

(2) Ny = {N}, 7}, No = {N3, 77, ;} are two objects of Inf, then a
morphism p: N1 — N is a system of smooth maps ¢;: NjT® — Ni,
where o € Z is independent of 7, satisfying 77 | ;0041 = ©iOT 011,10
and such that ¢, 9(Dn;,0) C Dy, ) for any point § € N;.

Definition 4.1. A morphism ¢: Nj — N is called a covering in the cat-
egory Inf, it v.0|py, o * Daio — Danp(e) is an isomorphism for any point

0 e N.

In particular, manifolds J*°(7) and £> endowed with the corresponding
Cartan distributions are objects of Inf and we can consider coverings over
these objects.

Example 4.1. Let A: T'(r) — I'(x’) be a differential operator of order < k.
Then the system of maps CID(Al) . JH (1) — JY7') (see the proof of Lemma E=1
on page B) is a morphism of J*(7) to J*(7’). Under unrestrictive condi-
tions of regularity, its image is of the form £ for some equation £ in the
bundle 7" while the map J>(7m) — £ is a covering.

Definition 4.2. Let ¢': NV — N and ¢”: N — N be two coverings.
(1) A morphism ¢: N’ — N is said to be a morphism of coverings, if
/ "
p =gl or.
(2) The coverings ¢, ¢" are called equivalent, if there exists a morphism

: N — N which is a diffeomorphism.
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Definition 4.3. A covering ¢ : N/ — N is called linear, if

(1) ¢ is a linear bundle;
(2) any automorphism of the bundle ¢ is a morphism of the covering ¢
to itself.

Let N be an object of Inf and W be a smooth manifold. Consider the
projection T : NV x W — N to the first factor. Then we can make a
covering of 1y by lifting the distribution Dy to N x W in a trivial way.

Definition 4.4. A covering 7: N/ — N is called trivial, if it is equivalent
to the covering 1y for some W.

Let again ¢ : NV — N, ¢": N7 — N be two coverings. Consider the
commutative diagram

N/ X./\/'NH " (¢") N//

w’*(w”)l lw”
N’ L N
where
N o N = {(0.6) € N x N7 | (0 = /(67
while ("), ©"*(¢') are natural projections. The manifold N7 X N is

supplied with a natural structure of an object of Inf and the maps (¢’)*(¢"),
(¢")*(¢") become coverings.

Definition 4.5. The composition
(p/ XN (p// — (p/ o (p/*((p//) — (p// o (p//*((p/): Nl ><./\/’./\/'// —- N
is called the Whitney product of the coverings ¢’ and ¢”.

Definition 4.6. A covering is said to be reducible, if it is equivalent to a
covering of the form ¢ X 7, where 7 is a trivial covering. Otherwise it is
called irreducible.

From now on, all coverings under consideration will be assumed to be
smooth fiber bundles. The fiber dimension is called the dimension of the
covering ¢ under consideration and is denoted by dim (.

Proposition 4.1. Let & C J*(7) be an equation in the bundle 7: E — M
and p: N — E* be a smooth fiber bundle. Then the following statements
are equivalent:

(1) The bundle ¢ is equipped with a structure of a covering.

(2) There exists a connection C¥ in the bundle moop: N — M, C?: X +—
X%, X e D(M), X¢ € D(N), such that
(a) [X¥, Y% =[X,Y]%, ie., C¥ is flat, and



71

(b) any vector field X% is projectible to £° under ¢, and p.(X¥) =
CX, where C is the Cartan connection on £°°.

The proof reduces to the check of definitions.

Using this result, we shall now obtain coordinate description of coverings.
Namely, let 1, ..., z,,u',...,u™ be local coordinates in J°(7) and assume
that internal coordinates in £> are chosen. Suppose also that over the
neighborhood under consideration the bundle p: N — £° is trivial with the
fiber W and w!,w?, ..., w®,... are local coordinates in W. The functions
w’ are called nonlocal coordinates in the covering . The connection C¥
puts into correspondence to any partial derivative 0/0z; the vector field
C#?(9/0x;) = D;. By Proposition = on the facing page, these vector fields
are to be of the form

Di=Di+ X} =Di+>» X7 0

fore =l (4.1)

where D; are restrictions of total derivatives to £, and satisfy the condi-
tions

(s, D) = [Ds, Dy] + (D5 XJ) 4+ X7, Dy + X7, X)) .
= [Di, Xj] + [X7, Dj] + [X}, X =0
foralli,j=1,...,n.

We shall now prove a number of facts that simplify checking of triviality
and equivalence of coverings.

Proposition 4.2. Let o1: N1 — E® and pa: No — E* be two coverings of
the same dimension r < oo. They are equivalent if and only if there exists
a submanifold X C Ni Xgoo Ny such that

(1) codim X =r;

(2) The restrictions ¢i(p2) |x and ©5(p1)|x are surjections.

(3) (Dpryxeoon)o € T X for any point 0 € X.

Proof. In fact, if ¢»: N1 — N> is an equivalence, then its graph G, =
{(y,¥(y)) | y € N1} is the needed manifold X. Conversely, if X is a
manifold satisfying (1)—(3), then the correspondence

y = 0} (2) (5 (2)) " (y) N X)

is an equivalence. O

Submanifolds X satisfying assumption (3) of the previous proposition are
called wnvariant.

Proposition 4.3. Let p1: N1 — % and pa: No — E% be two irreducible
coverings of the same dimension r < 0o. Assume that the Whitney prod-
uct of 1 and @9 is reducible and there exists an invariant submanifold X
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in N1 Xgo Na of codimension . Then o1 and o2 are equivalent almost
everywhere.

Proof. Since @1, py are irreducible, X is to be mapped surjectively almost
everywhere by ¢j(p2) and @5(p1) to N7 and N, respectively (otherwise,
their images would be invariant submanifolds). Hence, the coverings are
equivalent by Proposition = on the page before. O

Corollary 4.4. If o1 and py are one-dimensional coverings over £ and
their Whitney product is reducible, then they are equivalent.

Proposition 4.5. Let o: N — E* be a covering andU C E* be a domain
such that the the manifold U = o Y (U) is represented in the form U X R",
r < oo, while ply is the projection to the first factor. Then the covering ¢
15 locally irreducible if the system

DE(f)=0.....DE(f) =0 (4.3)
has only constant solutions.

Proof. Suppose that there exists a solution f # const of (E&). Then, since
the only solutions of the system

Di(f) =0,....Du(f) =0,
where D; is the restriction of the i-th total derivative to £°°, are constants, f
depends on one nonlocal variable w® at least. Without loss of generality we
may assume that df/0w' # 0 in a neighborhood U’ x V., U' C U, V C R".
Define the diffeomorphism ¢: U C U — (U C U) by setting

OOz w ) = (P R w® ).
Then .(D7) = D + >, X?0/0w* and consequently ¢ is reducible.

Let now ¢ be a reducible covering, i.e., ¢ = ¢’ Xgo T, where 7 is trivial.
Then, if f is a smooth function on the total space of the covering 7, the
function f* = (7*(¢' ))*( f) is a solution of (E). Obviously, there exists an
f such that f* # const. O

4.2. Nonlocal symmetries and shadows. Let N be an object of Inf
with the integrable distribution D = D,ys. Define

Dp(N) ={X eDW) | [X,D]CcD}

and set sym N = Dp(N)/Dy. Obviously, Dp(N) is a Lie R-algebra and D
is its ideal. Elements of the Lie algebra sym N are called symmetries of the
object N.

Definition 4.7. Let ¢: N'— £ be a covering. A nonlocal p-symmetry of
£ is an element of sym . The Lie algebra of such symmetries is denoted
by sym,, £.
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A base for computation of nonlocal symmetries is the following two re-
sults.

Theorem 4.6. Let o: N — £ be a covering. The algebra sym,, £ s
isomorphic to the Lie algebra of vector fields X on N such that
(1) X is vertical, i.e., X(¢*(f)) = 0 for any function f € C*(M) C
F(€);
(2) [X,Df]=0,i=1,...,n.

Proof. Note that the first condition means that in coordinate representation
the coefficients of the field X at all 0/0z; vanish. Hence the intersection
of the set of vertical fields with D vanish. On the other hand, in any coset
[X] € sym,, & there exists one and only one vertical element XV. In fact,
let X be an arbitrary element of [X]. Then X" = X — >~ a;D7, where q;

1)

is the coefficient of X at 0/0z;. O

Theorem 4.7. Let o: N = E®° x R" — £ be the covering locally deter-
maned by the fields

- 0
Df:Di“LZX‘a " i=1,...,n, XecFWN),

where w', w?, ... are coordinates in R" (nonlocal variables). Then any non-

local p-symmetry of the equation € = {F = 0} is of the form
. . " 9
8 a — 8 a A~ A0 44
b, v+ ; a B ( )

where ¥ = Y1 ... Y™ a = (a',...;a"), V', a® € F(N) are functions

satisfying the conditions

lp(¥) =0, (4.5)
Di(a®) = Dy.q(X7) (4.6)

while
50 =Y Do) (47)

and g is obtained from (g by changing total derivatives D; for DY.

Proof. Let X € sym, . Using Theorem B, let us write down the field X
in the form

N
X:Zbg’au{, +Zla due’ (48)
0,J a=
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where “prime” over the first sum means that the summation extends on
internal coordinates in £ only. Then, equaling to zero the coefficient at
9/0ul in the commutator [X, Df], we obtain the following equations

, v if b/ is an internal coordinate,
Dy (b}) = 4 .
X(ul,) otherwise.
Solving these equations, we obtain that the first summand in (&) on the
page before is of the form 9, where 1) satisfies (&) on the preceding
page. 0

Comparing the result obtained with the description on local symmetries
(see Theorem on page B), we see that in the nonlocal setting an
additional obstruction arises represented by equation (EH) on the preceding
page. Thus, in general, not every solution of (&) corresponds to a nonlocal
¢-symmetry. We call vector fields Dy, of the form (E=), where 1) satisfies
equation (EJ), ¢-shadows. In the next subsection it will be shown that
for any p-shadow 9, there exists a covering ¢': N7 — A and a nonlocal
¢ o ¢/-symmetry S such that ¢.(S) = D,.

4.3. Reconstruction theorems. Let £ C J*(7) be a differential equation.
Let us first establish relations between horizontal cohomology of £ (see
Definition BEZZ on page BH) and coverings over £%°. All constructions below
are realized in a local chart U C £*.

Consider a horizontal 1-form w = Y | X; dr; € A(€) and define on the
space £ x R the vector fields

where w is a coordinate along R. By direct computations, one can easily
see that the conditions [D¥, D¥] = 0 fulfill if and only if dw = 0. Thus,
(E3) determines a covering structure in the bundle ¢ : £*° x R — £°° and
this covering is denoted by ¢“. It is also obvious that the covering ¢* and
¢“" are equivalent if and only if the forms w and ' are cohomologous, i.e.,
if w—w' = df for some f € F(&).

Let [wi],...,[w?],... be an R-basis of the vector space H'(E). Let us
define the covering a; o : A'(E) — £ as the Whitney product of all ¢“=. Tt
can be shown that the equivalence class of a; g does not depend on the basis
choice. Now, literary in the same manner as it was done in Definition BE=Za
on page for £*, we can define horizontal cohomology for A'(£) and
construct the covering as : A*(€) — A (E), ete.

Definition 4.8. The inverse limit of the chain

co AF(E) B ARLE) e ANE) 2 g (4.10)
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is called the universal Abelian covering of the equation £ and is denoted by

a: AE) — .
Obviously, H(A(E)) = 0.

Theorem 4.8 (see [E1]). Let a: A(E) — £ be the universal Abelian cov-
ering of the equation & = {F = 0}. Then any a-shadow reconstructs
up to a nonlocal a-symmetry, i.e., for any solution ¢ = (P, ... ™),
W e F(A(E)), of the equation {p(p) = O there exists a set of functions
a = (aqa;), where an; € F(A(E)) such that Dy.q is a nonlocal a-symmetry.

Proof. Let w’®, j < k, be nonlocal variables in A*(£) and assume that
the covering structure in a is determined by the vector fields D} = D; +
>0 X7 70/0w, where, by construction, X7 € F(A"(E)), ie., the
functions Xij’a do not depend on w*® for all k > j.
Our aim is to prove that the system
D} (aja) = Dy,a( X)) (4.11)

is solvable with respect to a = (a;,) for any ¢ € ker /p. We do this by
induction on j. Note that

[D2,9y4] = > (DXaja) — Dya(X7?))

j?a

0

awjva

1,

for any set of functions (a;4). Then for j = 1 one has [Df, Dy.4] (X, %) = 0,
or

D (Dya(Xp)) = Dya(DHXL)),

since X, are functions on £.
But from the construction of the covering a one has D#(X,*) = Dg(X,"*),
and we finally obtain

D (9u(X, ")) = DE(Du(X;).
Note now that the equality H'(A(£)) = 0 implies existence of functions
a1, satisfying
Df(a1,a) = Du(X; ),

i.e., equation (E=HH) is solvable for j = 1.
Assume now that solvability of (EZEl) was proved for j < s and the func-

tions (a1,a, .. .,0; 1) are some solutions. Then, since [DE, D] | i) =
0, we obtain the needed a;, literally repeating the proof for the case
j=1 O

Let now ¢: N — £% be an arbitrary covering. The next result shows
that any ¢-shadow is reconstructable.
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Theorem 4.9 (see also [Z4]). For any p-shadow, i.e., for a solution ¢ =
(pr .. ™), I € F(N), of the equation (r (1)) = 0, there exists a covering
0p: Ny — N 5 % and a py-symmetry Sy, such that Sy |ge = Dy |eo .

Proof. Let locally the covering ¢ be represented by the vector fields

DQP—D_{—Z Zaa

r < oo being the dimension of ¢. Con81der the space R* with the coordi-

nates w, o = 1,...,7r, 1 =0,1,2,..., wy = w®, and set Ny = N x R®

with
. ! P

D = D, (e Sw) xoy L 412

DS (Bur ) X (1.12)
where

. O
81# - ZDQP a k’ Sw = ;lea—wla (4.13)

and “prime”, as before, denotes summation over internal coordinates.

Set Sy = Dy + S,. Then

0
Sw,D% Z@¢ a k +Z<9¢+S )lH (Xia)awla

~ 1o 0
- Z PP DF ) oo = 30 (Bt 50) T (x) s

g la

=3 (Bl - DEWH) S =

Here, by definition, @®, = Df (u®) |y .
Now, using the above proved equality, one has

[D;"w,p;f’w]zz(p%(e¢+s)( ) — DP* (D + S,) (X2

l,a

owy

_Z Dy + Su) (D (X)) — DI (XL)) =0,

wy'
since D;pw(Xf) - wa(Xia) = Df (X)) — D7 (X{) = 0. U

Let now ¢: N — £ be a covering and ¢’ : N7 — N 5 £ be another
one. Then, by obvious reasons, any ¢-shadow 1 is a ¢'-shadow as well.
Applying the construction of Theorem B to both ¢ and ¢’, we obtain two
coverings, ¢, and ¢, respectively.
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Lemma 4.10. The following commutative diagram of coverings

./\/;2 —>N¢

Lo

N — N —— &%
takes place. Moreover, if Sy and S{p are nonlocal symmetries corresponding
in Ny and N{p constructed by Theorem [ on the preceding page, then
S |7 = Se.
Proof. Tt suffices to compare expressions () and ([EE&) on the facing
page for the coverings Ny and NV 0O

As a corollary of Theorem B3 and of the previous lemma, we obtain the
following result.

Theorem 4.11. Let p: N — %, E ={F =0}, be an arbitrary covering
and Py, ..., 1bs € F(N), be solutions of the equation {p(1)) = 0. Then there
exists a covering pg: Ny — N 5 £% and pg-symmetries Siprs -y Sepy s
such that Sy, 5

£oo :9¢i|gm,i:1,...,s.

Proof. Consider the section ¢, and the covering @y, : Ny, N L g
together with the symmetry Sy, constructed in Theorem EM on the pre-

ceding page. Then v, is a ¢,,-shadow and we can construct the covering

Dupy b * Nopy o BAZLEN Ny, 2, £% with the symmetry Sy,. Applying this

procedure step by step, we obtain the series of coverings

P s Pyr,hs—1 Py ,g Py %)
Ny = Ny, v Ny — N =&,
with the symmetries Sy,, ..., Sy,. But 91 is a ¢y, . y,-shadow and we can

construct the covering ¢y, : Nﬁ) — Ny, p, — € with the symmetry Sfpll)

satisfying Sfpll) ‘ FNyy) = Sun (see Lemma ), etc. Passing to the inverse
limit, we obtain the covering My we need. 0O
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5. FROLICHER—NIJENHUIS BRACKETS AND RECURSION OPERATORS

We return back to the general algebraic setting of Section M and extend
standard constructions of calculus to form-valued derivations. It allows us
to define Frolicher—Niyjenhuis brackets and introduce a cohomology theory
(C-cohomologies) associated to commutative algebras with flat connections.
Applying this theory to partial differential equations, we obtain an algebraic
description of recursion operators for symmetries and describe efficient tools
to compute these operators. For technical details, examples and generaliza-
tions and we refer the reader to the papers [Z, B2 IZ4] and [E9, EX, B0

In Subsection B2 C-cohomologies will be discussed again in the general
framework of horizontal cohomologies with coefficients.

5.1. Calculus in form-valued derivations. Let k be a field of charac-
teristic zero and A be a commutative unitary k-algebra. Let us recall the
basic notations from Section B

e D(P) is the module of P-valued derivations A — P, where P is an
A-module;

e D;(P) is the module of P-valued skew-symmetric i-derivations. In
particular, D;(P) = D(P);

e AY(A) is the module of differential i-forms of the algebra A;

e d: N'(A) — A"™(A) is the de Rham differential.

Recall also that the modules A*(A) are representative objects for the func-
tors D;: P = D;(P), i.e., D;(P) = Homyu(A*(A), P). The isomorphism
D(P) = Homa(A'(A), P) can be expressed in more exact terms: for any
derivation X: A — P, there exists a uniquely defined homomorphism
0% AY(A) — P satisfying X = ¢X od. Denote by (Z,w) € P the value of
the derivation Z € D;(P) at w € A'(A).

Both A*(A) = @50 A (A) and D.(A) = P,~, Di(A) are endowed with
the structures of superalgebras with respect to the wedge product operation
A N (A) @ N (A) — A (A) and A : D;(A) @ Dj(A) — D;y;(A), the de
Rham differential d: A*(A) — A*(A) becoming a derivation of A*(A). Note
also that D.(P) = @,-,D;(P) is a D,(A)-module.

Using the paring (-, -) and the wedge product, we define the inner product
(or contraction) ixw € A77(A) of X € D;(A) and w € A(A), i < j, by
setting

(Y, ixw) = (—1)0 (X A Y,w), (5.1)

where Y is an arbitrary element of D;_;(P), P being an A-module. We
formally set ixw = 0 for ¢ > j. When ¢ = 1, this definition coincides with
the one given in Section ll Recall that the following duality is valid:

(X,da \Nw) = (X(a),w), (5.2)
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where w € AY(A), X € D;;1(P), and a € A (see Exercise I on page IZ3).
Using the property (B=), one can show that
ix(wAf) =ix(W) A0+ (=1 “wAix(w)

for any w, 0 € A*(A), where (as everywhere below) the symbol of a graded
object used as the exponent of (—1) denotes the degree of that object.

We now define the Lie derivative of w € A*(A) along X € D.(A) as

Lyw = (ixyod — (-1)*doiy)w = [ix, dlw, (5.3)

where |-, -] denotes the supercommutator: if A; A" : A*(A) — A*(A) are
graded derivations, then [A, Al = Ao A’ — (=1)2* A’ o A. For X € D(A)
this definition coincides with the one given by equality (EX) on page [E1.

Consider now the graded module D(A*(A)) of A*(A)-valued derivations
A — A*(A) (corresponding to form-valued vector fields—or, which is
the same—vector-valued differential forms on a smooth manifold). Note
that the graded structure in D(A*(A)) is determined by the splitting
D(A*(A)) = @, D(A(A)) and thus elements of grading i are derivations
X such that im X C A%(A). We shall need three algebraic structures asso-
ciated to D(A*(A)). First note that D(A*(A)) is a graded A*(A)-module:
for any X € D(A*(A)), w € A*(A) and a € A we set (wA X)a =w A X(a).
Second, we can define the inner product ixw € A ~1(A) of X € D(AY(A))
and w € A(A) in the following way. If 7 = 0, we set ixw = 0. Then,
by induction on j and using the fact that A*(A) as a graded A-algebra is
generated by the elements of the form da, a € A, we set

ix(da Aw) = X(a) Aw— (—=1)%da Nix(w), a€ A. (5.4)

Finally, we can contract elements of D(A*(A)) with each other in the fol-
lowing way:

(ixY)a=ix(Ya), X,Y € D(A*(A)), ac€ A (5.5)
Three properties of contractions are essential in the sequel.
Proposition 5.1. Let X,Y € D(A*(A)) and w,0 € A*(A). Then
ix(wAB) =ix(w) A0+ (=1)*F Dy Aix(8), (5.6)
ix(WAY) =ix(W) AY 4 (1) Aix(Y), (5.7)
lix,iy] = ipx v,
where
[X, Y] = ix (V) = (=)D Dy (X). (5.9)

Proof. Equality (BH) is a direct consequence of (@). To prove (B=B), it
suffices to use the definition and expressions (BE=1) and (BE).
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Let us prove (B&) now. To do this, note first that due to (B=) the equality
is sufficient to be checked on elements w € AJ(A). Let us use induction on
j. For 7 =01t holds in a trivial way. Let a € A; then one has

lix,iv](da Aw) = (ix oiy — (—1) XDy ix)(da Aw)
= ix(iy(da Aw)) — (=1)FDE=Diy (i (da A w)).
But
ix(iy(da Aw)) =ix(Y(a) Aw — (—1) da A iyw)
= ix(Y(a) Aw+ (—)F DY (a) Aixw — (1) (X(a) Aiyw
— (=1)%da Nix(iyw)),
while
iy (ix(da Aw) =iy (X (a) Aw — (—1) da Aixw)
=iy (X(a)) Aw+ (DX VX (a) Ayw — (=1D¥(V(a) Aw
— (=1)Yda A iy (ixw)).
Hence,
lix,iv](da Aw) = (ix(Y(a)) — (—1)(X*1)(Y*1)iy(X(a))) Aw
+ (=) da A (ix(iyw) — (=1 DDy (xw)).
But, by definition,
ix(Y(a)) = (=)D iy (X (a))
= (ixY — (=) Py X)(a) = [X,Y]™(a),

whereas
IX(lYCU) _ (—]_)(Xil)(Yil)iY(in) = i[IX,YHrn(u))

by induction hypothesis. O

Definition 5.1. The element [X,Y]™ defined by equality (B is called
the Richardson—Nijenhuis bracket of elements X and Y.
Directly from Proposition Bl we obtain the following

Proposition 5.2. For any derivations X,Y,Z € D(A*(A)) and a form
w € AN (A) one has

[ Y] + (1) [y X =0, (5.10)
f (—)YFEED[X Y], 2] =0, (5.11)

[X,w AY]" =ix(w) AY + (=1)FE e A [X, Y™ (5.12)
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Here and below the symbol ¢ denotes the sum of cyclic permutations.

Remark 5.1. Note that Proposition BE= means that D(A*(A))! is a Gersten-
haber algebra with respect to the Richardson—Nijenhuis bracket [Ed]. Here
the superscript | denotes the shift of grading by 1.

Similarly to @) define the Lie derivative of w € A*(A) along X €
D(A*(A4)) by

Lyw = (ixod+ (-1)*doix)w = [ix, dw (5.13)

(the change of sign is due to the fact that deg(iy) = deg(X)—1). From the
properties of ix and d we obtain

Proposition 5.3. For any X € D(A*(A)) and w,0 € A*(A), one has the
following identities:

Lx(wAB) =Lx(w) A0+ (—1)“w A Lx(6), (5.14)
Loax = w A Lx + (—=1)“™d(w) Aix, (5.15)
[Lx,d] =0. (5.16)

Our main concern now is to analyze the commutator [Lx, Ly] of two Lie
derivatives. It may be done efficiently for smooth algebras (see Definition £

on page ).

Proposition 5.4. Let A be a smooth algebra. Then for any derivations
X,Y € D(A*(A)) there exists a uniquely determined element [X,Y]™ e
D(A*(A)) such that

[Lx, Ly| = Lix ypm- (5.17)
Proof. To prove existence, recall that for smooth algebras one has
D;(P) = Hom(A'(A), P) = P ®4 Hom4(A"(A), A) = P ®4 D;(A)

for any A-module P and integer ¢ > 0. Using this identification, represent
elements X,Y € D(A*(A)) in the form

X=w@X andY =0@Y forw,0 € A*(A), X" Y’ € D(A).
Then it is easily checked that the element
Z=wA0@ X YV]+wALxfQY + (—1)%dw Nix Y’
— (=)0 AN Lyw @ X' — (=1)“ %0 Adyiw @ X (5.18)
=wAIR XY+ Lx0®Y — (-1)*Lyw ® X’

satisfies (B=I).

Uniqueness follows from the fact that Ly (a) = X(a) for any a € A. O
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Definition 5.2. The element [X,Y]™ € Dt (A*(A4)) defined by formula
(B=3) is called the Frolicher—Nijenhuis bracket of elements X € DY(A*(A))
and Y € DI(A*(A)).

The basic properties of this bracket are summarized in the following

Proposition 5.5. Let A be a smooth algebra, X,Y,Z € D(A*(A)) be
derivations and w € A*(A) be a differential form. Then the following iden-
tities are valid:

[X YT" + (=) Y. X]" = 0, (5.19)
%(_1)Y(X+Z) [[X’ [[Y, Z]]fn]]fn _ 0’ (520)
ipcype = [Lx ]+ (—)* L, x, (5.21)
iZ[[X, Y]]fn _ [[iZX, Y]]fn + (—1)X(Z+1)[[X, izy]]fn
X (X+1)Y; (5.22)
+ (_]_) 1[IZ,X]]£HY - (_]_) 1[Z,Yﬂan’

[X,w AY]® = Lyw A Y — (—=1)XFDO+) gy A dy X

(5.23)

+ (—D)*w A [X, Y™

Note that the first two equalities in the previous proposition mean that
the module D(A*(A)) is a Lie superalgebra with respect to the Frolicher—
Nijenhuis bracket.

Remark 5.2. The above exposed algebraic scheme has a geometrical real-
ization, if one takes A = C°(M), M being a smooth finite-dimensional
manifold. The algebra A = C*°(M) is smooth in this case. However,
in the geometrical theory of differential equations we have to work with
infinite-dimensional manifolddl of the form N = projlimg. 4 Ny, where
all the maps 7py14: Nyp1 — N, are surjections of finite-dimensional
smooth manifolds. The corresponding algebraic object is a filtered alge-
bra A = Upey Ak, Ar C Agy1, where all Ay are subalgebras in A. As it
was already noted, self-contained differential calculus over A is constructed,
if one considers the category of all filtered A-modules with filtered homo-
morphisms for morphisms between them. Then all functors of differential
calculus in this category become filtered, as well as their representative
objects.

In particular, the A-modules A*(A) are filtered by Ap-modules A*(Ay).
We say that the algebra A is finitely smooth, if A'(Ay) is a projective Aj-
module of finite type for any k € Z. For finitely smooth algebras, elements
of D(P) may be represented as formal infinite sums >, pr ® Xj, such that
any finite sum S, = >, pr ® X}, is a derivation A,, — P, for some fixed

OTnfinite jets, infinite prolongations of differential equations, total spaces of coverings,
ete.
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s € Z. Any derivation X is completely determined by the system {S,,} and
Proposition obviously remains valid.

5.2. Algebras with flat connections and cohomology. We now intro-
duce the second object of our interest. Let A be an k-algebra, k being a
field of zero characteristic, and B be an algebra over A. We shall assume
that the corresponding homomorphism ¢: A — B is an embedding. Let
P be a B-module; then it is an A-module as well and we can consider the
B-module D(A, P) of P-valued derivations A — P.

Definition 5.3. Let V*: D(A,-) = D(-) be a natural transformations of
functors D(A,-): A = D(A, P) and D(-): P = D(:) in the category of B-
modules, i.e., a system of homomorphisms V¥: D(A, P) — D(P) such that
the diagram

D(A,P) Y D(P)

D(A,f)l lD(f)

D(4,Q) —— D(Q)
is commutative for any B-homomorphism f: P — (). We say that V*® is a
connection in the triad (A4, B, ), if VI(X) |4 = X for any X € D(A, P).

Here and below we use the notation Y |4 =Y o ¢ for any Y € D(P).

Remark 5.3. When A = C*°(M), B = C*(F), ¢ = ©*, where M and F
are smooth manifolds and 7: £ — M is a smooth fiber bundle, Definition
E=3 reduces to the ordinary definition of a connection in the bundle 7. In
fact, if we have a connection V*® in the sense of Definition B=3, then the
correspondence

D(A) — D(4, B) * D(B)
allows one to lift any vector field on M up to a w-projectible field on F.
Conversely, if V is such a correspondence, then we can construct a natural
transformation V* of the functors D(A, ) and D(-) due to the fact that for
smooth finite-dimensional manifolds one has D(A, P) = P ®4 D(A) and

D(P) = P ®p D(P) for an arbitrary B-module P. We use the notation
V = V58 in the sequel.

Definition 5.4. Let V* be a connection in (A, B, ) and X,Y € D(A4, B)
be two derivations. The curvature form of the connection V* on the pair

X,Y is defined by
Ry(X,Y)=[V(X),VY)] -V(V(X)oY —=V(Y) 0 X). (5.24)
Note that (B=ZH) makes sense, since V(X)oY — V(Y) o X is a B-valued

derivation of A.
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Consider now the de Rham differential d = dg: B — A'(B). Then the
composition dgoy: A — B is a derivation. Consequently, we may consider

the derivation V(dp o ¢) € D(AY(B)).
Definition 5.5. The element Uy € D(A(B)) defined by
Uy =V(dgoyp)—dp (5.25)
is called the connection form of V.
Directly from the definition we obtain the following
Lemma 5.6. The equality
ix(Uy) =X = V(X|a) (5.26)
holds for any X € D(B).
Using this result, we now prove
Proposition 5.7. If B is a smooth algebra, then
iyix[Us, Us]™ = 2Rv(X |4 ,Y |4) (5.27)
for any X, Y € D(B).
Proof. First note that deg Uy = 1. Then using (BE=2) and (EZ&) we obtain

. fn .
= 2(ﬂlev, Uv]] - I[IX,UV]]f“UV)'
Applying iy to the last expression and using (B=2) and (B=22), we get now
iyix [Uv, Us]™ = 2([ixUv, iy Uv]™ — iy yyuUs).
But [V, W]™ = [V, W] for any V, W € D(A°(A)) = D(A). Hence, by (=),
we have
ivix[Uy, Ue]™ = 2([X = V(X [4), Y = V(Y [)] = (X, Y] = V([X, Y] |1))).
It only remains to note now that V(X |a)|a = X |4 and [X,Y] |4 = X o
Y4 —-YoX|a. O
Definition 5.6. A connection V in (A, B, p) is called flat, if Ry = 0.
Thus for flat connections we have
[Uv, Uv]™ = 0. (5.28)
Let U € D(AY(B)) be an element satisfying (B=24). Then from the graded
Jacobi identity (=) we obtain 2[U, [U, X]™]™ = [[U, U]™, X]™ = 0 for
any X € D(A*(A)). Consequently, the operator 8y = [U,]™: D(AY(B)) —
D(A*1(B)) defined by the equality 9y (X) = [U, X]™ satisfies the identity

8U 9 8U =0.
Consider now the case U = Uy, where V is a flat connection.
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Definition 5.7. An element X € D(A*(B)) is called vertical, if X(a) =0
for any a € A. Denote the B-submodule of such elements by DY(A*(B)).

Lemma 5.8. Let V be a connection in (A, B, ). Then

(1) an element X € D(A*(B)) is vertical if and only if ixUy = X ;

(2) the connection form Uy s vertical, Uy € D(A'(B));

(3) the map Oy, preserves verticality, Oy, (DY(AY(B))) C D*(A"™(B)).
Proof. To prove (1), use Lemma B} from (B=Z) it follows that ixUy = X

if and only if V(X |4) = 0. But V(X |4)|a = X |a. The second statements
follows from the same lemma and from the first one:

i Uy =Uy —V(Uy |a) = Uy — V((UV — V(Uv|a) |A) =Uv.

Finally, (3) is a consequence of (B=Zd). O
Definition 5.8. Denote the restriction Jyg |pv(a+(a)) by Ov and call the
complex

0 — D*(B) <% D'(AY(B)) — - — D"(A(B)) <% D' (A (B)) — ---

(5.29)

the V-complex of the triple (A, B, ¢). The corresponding cohomology is de-
noted by He(B; A, @) = @50 Hy(B; A, ¢) and is called the V-cohomology
of the triple (A, B, ).

Introduce the notation
d% = Lyg : AY(B) — A™(B). (5.30)

Proposition 5.9. Let V be a flat connection in the triple (A, B, @) and B
be a smooth (or finitely smooth) algebra. Then for any X,Y € D?(A*(A))
and w € A*(A) one has

O[X, Y™ = [0 X, Y]™ 4+ (-1)¥[X, o9 Y]™, (5.31)
lix,0v] = (—=1)¥igox, (5.32)

Ov(wAX) = (d% —d)(w) A X + (—1)w A dv X, (5.33)
[dY,ix] = iaox + (—1)*Lx. (5.34)

Proof. Equality (B=2) is a direct consequence of (B=Zd). Equality (BE=)
follows from (B=Z3). Equality (B=23) follows from (B=Z3) and (B=20). Flnaully7
(BE=3) is obtained from (B=Z).

Corollary 5.10. The cohomology module Hg(B; A, ) inherits the graded

Lie algebra structure with respect to the Frélicher—Nijenhuis bracket [-, -]]fn,
as well as to the contraction operation.
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Proof. Note that D”(A*(A)) is closed with respect to the Frolicher—Nijen-
huis bracket: to prove this fact, it suffices to apply (BE=Z8). Then the first
statement follows from (B=2M). The second one is a consequence of (B=2).

U

Remark 5.4. We preserve the same notations for the inherited structures.
Note, in particular, that HY(B; A, ¢) is a Lie algebra with respect to the
Frolicher—Nijenhuis bracket (which reduces to the ordinary Lie bracket in
this case). Moreover, Hy, (B; A, ¢) is an associative algebra with respect to
the inherited contraction, while the action

Ra: X —ixQ, X € HY(B;A,¢), Q€ Hy(B;A, )
is a representation of this algebra as endomorphisms of HZ(B; A, ).

Consider now the map d¢: A*(B) — A*(B) defined by (B=3) and define
de =dp —d¥.

Proposition 5.11. Let B be a (finitely) smooth algebra and ¥V be a smooth
connection in the triple (B; A, ). Then

(1) The pair (d%,d%) forms a bicomplez, i.e.

dbods =0, dbodt=0, dbod%+d%ods=0. (5.35)

(2) The differential d% possesses the following properties
[dy,ix] = —logx, (5.36)
Ov(wA X) = —db(w) A X + (—1)w A Oy X, (5.37)

where w € A*(B), X € DY(A*(B)).
Proof. (1) Since deg d¥ = 1, we have
dev O dvv = [dvv, dvv] = [LUV, LUV] = L[vaUVﬂfn = O
Since d¥% = Ly, the identity [dp, d%] = 0 holds (see (BE=H)), and it concludes

the proof of the first part.
(2) To prove (B=H), note that

[d%,ix] = [dp — d,ix] = (1) Lx — [dy, ix],
and (B=20) holds due to (B=22d). Finally, (B2 is just the other form of
E3). O

Definition 5.9. Let V be a connection in (A, B, ¢).

(1) The bicomplex (B, d%, d%) is called the variational bicomplex associ-
ated to the connection V.

(2) The corresponding spectral sequence is called the V-spectral sequence
of the triple (A, B, ).
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Obviously, the V-spectral sequence converges to the de Rham cohomology
of B.

To finish this section, note the following. Since the module A'(B) is
generated by the image of the operator dg: B — A(B) while the graded
algebra A*(B) is generated by A'(B), we have the direct sum decomposition

- @ nm) N
120 p+qg=1

where

AR(B) = AL(B)A--- AAYB), AL(B)=ALB) A--- AAL(B),

.
g g

p times q times
while the submodules Al(B) c AY(B), A} (B) C A'(B) are spanned in
A'(B) by the images of the differentials d and d% respectively. Obviously,
we have the following embeddings:
dy (AD(B) ® Aj(B)) C AL(B) @ Af™(B),
dy (A(B) ® Aj(B)) C AJ(B) @ Aj(B).
Denote by DP?(B) the module D¥(A?(B) @ Aj(B)). Then, obviously,

DY(B) = @50 D, g DPU(B), while from equalities (B=2H) and (BE=3) we
obtain -

dv (DP(B)) C D**(B).
Consequently, the module HE (B; A, ¢) is split as

Hy(B; A, 0) = P €D HY(B; A, ¢) (5.38)

120 p+g=t

with the obvious meaning of the notation Hg?(B; A, ¢).

5.3. Applications to differential equations: recursion operators.
Now we apply the above exposed algebraic results to the case of infinitely
prolonged differential equations. Let us start with establishing a corre-
spondence between geometric constructions of Section l and algebraic ones
presented in the previous two subsections.

Let £ C J*(7) be a formally integrable equation (see Definition E=Z on
page BA) and £ C J*°(7) be its infinite prolongations. Then the bundle
Teo : € — M 1is endowed with the Cartan connection C (Definition BE=Z3
on page B) and this connection is flat (Corollary BE on page B3). Thus
the triple

(A =C*M), B=F(E), ¢ = W;O)
with V = C is an algebra with a flat connection, A being a smooth and
B being a finitely smooth algebra. The corresponding connection form is
exactly the structural element U of the equation £ (see Definition EZZ on

page B).
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Thus, to any formally integrable equation £ C J*(r) we can associate
the complex

0 — D*(€) % D'(A'(€)) — - — D'(A'(€)) % D' (A(€)) — ---
(5.39)
and the cohomology theory determined by the Cartan connection. We de-
note the corresponding cohomology modules by Hg(E) = ;5 HL(E). In
the case of the “empty” equation, we use the notation Hg(m) = @, Hé (7).

Definition 5.10. Let £ C J*(7) be a formally integrable equation and C
be the Cartan connection in the bundle 7o : £ — M. Then the module
HE(E) is called the C-cohomology of E.

Remark 5.5. Let us also note that the above introduced modules A} (B) are
identical to the modules AY(€) of horizontal g-forms on £, the modules
AP(B) coincide with the modules of Cartan forms CPA(E), the differential
d% is the extended horizontal de Rham differential d, while d3, is the Cartan
differential d¢ (cf. with constructions on pp. BIHEN). Thus we again obtain
a complete coincidence between algebraic and geometric approaches. In
particular, the V-spectral sequence (Definition B on page (2)) is the
Vinogradov C-spectral sequence (see the Section H).

The following result contains an interpretation of the first two of C-
cohomology groups.

Theorem 5.12. For any formally integrable equation & C J*(), one has
the following identities:
(1) The module H3(E) as a Lie algebra is isomorphic to the Lie algebra
sym& of higher symmetm’esﬂ of the equation &.
(2) The module H}(E) is the set of the equivalence classes of nontrivial
vertical deformations of the equation structure (i.e., of the structural
element) on &.

Proof. To prove (1), take a vertical vector field Y € D?(£) and an arbitrary
field Z € D(). Then, due to (B=20) on page BA, one has
i200Y = ig[Ue, Y]™ = [izUc, Y] — iz Ue
—[Z°Y] - [Z, Y] =[2" - Z, Y],

where Z¥ = izUc. Hence, 0¢Y = 0 if and only if [Z — Z%,Y]" = 0 for any
Z € D(€). But the last equality holds if and only if [CX,Y] = 0 for any
X € D(M) which means that

ker (9c: DY(€) — DY(AY(E))) = sym €.

1See Definition B=d on page B3
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Consider the second statement now. Let U(e) € D?(AY(£)) be a deforma-

tion of the structural element satisfying the conditions [U(e), U(e)]™ = 0
and U(0) = Uc. Then U(e) = Ue + Use + O(e?). Consequently,

[U(€), U@E)]™ = [Ue, Uel™ + 2[Ue, Uh] ™ + O(*) =0,

from which it follows that [Ue,U;]™ = @cU; = 0. Hence the linear part
of the deformation U(e) determines an element of H}(E) and vice versa.
On the other hand, let A: £*° — £ be a diffeomorphismu of £%°. Define
the action A* of A on the elements 2 € D(A*(E)) in such a way that the
diagram

Lo

A(€) —— A (E)
is commutative. Then, if A; is a one-parameter group of diffeomorphisms,
we have, obviously,

d d . o

a o Atv*(LQ) - a o At O LQ O (At) 1 == [LX, LQ] - L[[X,Q]]fn'
Hence, the infinitesimal action is given by the Frolicher—Nijenhuis bracket.
Taking 2 = Ue and X € DY(E), we see that im Oc consists of infinitesimal
deformations arising due to infinitesimal action of diffeomorphisms on the

structural element. Such deformations are naturally called trivial. O

Remark 5.6. From the general theory [i4], we obtain that the module HZ ()
consists of obstructions to prolongation of infinitesimal deformations to for-
mal ones. In the case under consideration, elements H3(E) have another
nice interpretation discussed later (see Remark B on page ).

We shall now compute the modules Hg(w), p > 0. To do this, recall the
splitting AY(€) = @, ,—; C"A(E) @ AI(E) (see Subsection EW).
Theorem 5.13. For any p > 0, one has

H{(m) = F(m,m) @r(x) CPA(T).
Proof. Define a filtration in D”(A*()) by setting
F'D*(AP (7)) = {X € D"(AP()) | X |7_,., =0}

Evidently,

F'D*(A?()) € F''DU(AP(w)),  c(F'DY(AP(n))) C F'DY(AP*!(x)).

12Gince £% is, in general, infinite-dimensional, vector fields on £ do not usually

possess one-parameter groups of diffeomorphisms. Thus the arguments below are of a
heuristic nature.
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Thus we obtain the spectral sequence associated to this filtration. To com-
pute the term Ej, choose local coordinates 1, . .., z,, u', ..., 4™ in the bun-
dle 7 and consider the corresponding special coordinates u/ in J*(w). In

these coordinates, the structural element is represented as

Ue = Z Z (duﬂ Zuj de‘Z> (9(Zj : (5.40)

\a\>0 J=1

while for X =307 ® 8/0ul, 6 € A*(r), one has

O'_]O'

0

= Z Z d; A D;(62)) ® R (5.41)

|o|>0 j=1 i=1

Obviously, the term
Eg™" = FPD*(AP™4(m)) /FP-IDY (AP 4(w)), p>0, 0<q<p,

is identified with the tensor product AP~4(7) @ r(x) I'(7%, .1 (Tg,0-1)). These
modules can be locally represented as F(m,m) ® AP~9(7)-valued homoge-
neous polynomials of order g, while the differential 95~ %: Ep™7 — Eb~9+
acts as the 0-Spencer differential (or, which is the same, as the Koszul differ-
ential; see Exercise I on page E). Hence, all homology groups are trivial
except for those at the terms Ef Y and one has

coker " = F (7, 7) @ r(x) CPA(T).

Consequently, only the 0-th line survives in the term F; and this line is of
the form

0,0

Flr,m) 2 Fr.7) @5 C-A(T) —

s Flr,m) @) CPA () # Flm,7) @) O A () —

But the image of Jc contains at least one horizontal component (see equal-
ity (B=23) on pageBd, where, by definition, d{, —d = d¢—d = —d). Therefore,
all differentials 9° vanish. O

Let us now establish the correspondence between the last result (describ-
ing C-cohomology in terms of C*A(7)) and representation of H () as classes
of derivations F(m) — A*(w). To do this, for any w = (w!,...,w™) €
F(m,m) @z(x) C*A(m) set

, 0
Ow =) Do) ® —, 5.42
Sodhe s (5.42)
where D, = D{' o---0 D% for o = (01, ...0y).

Definition 5.11. The element 9,, € DY(A*(7)) defined by (B=X) is called

the evolutionary superderivation with the generating section w € C*A(m).
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Proposition 5.14. The definition of 9, s independent of coordinate
choice.

Proof. 1t is easily checked that
D, (F(m)) C Aj(m), D, € ker .

But derivations possessing these properties are uniquely determined by their
restriction to Fo(m) which coincides with the action of the derivation w :
Fo(m) — C*A(r). Let us prove this fact.

Set X = 9, and recall that the derivation X is uniquely determined
by the corresponding Lie derivative Lx : A*(7) — A*(w). Further, since
Lxdf = (—1)%d(Lx0) (see (BH) on page El) for any 6 € A*(r), the deriva-
tion Ly is determined by its restriction to A%(w) = F(r).

Now, from the identity d¢c X = 0 it follows that

0 = [Ue, X]™(f) = Lu (Lx (f)) — (=1)*Lx (L, (f)),  f € F(E). (5.43)

Let now X be such that Ly ‘ 7oty = 0 and assume that Lx |7,y = 0 for
some r > 0. Then taking f = ul, |o| = r, and using (BZJ) we obtain

(duﬂ Zuj de‘Z> = Lyxdeu! = (—=1)%de(Lx (ul)) = 0.
In other words,
Lx (Z uﬁ”dxz> = ZLX(uf”dxz)) = ZLX(du{,)
i=1 i=1 i=1
= (1) d(Lxul) = 0.

Hence, L (u?) = 0 and thus Ly | £ = 0. O

T+1( )

From this result and from Corollary BEZI on page B&, it follows that if two
evolutionary superderivations 9,,, Dy are given, the elements

(i) [Du,D0]™,

(il)  in, (Dg)
are evolutionary superderivations as well.

In the first case, the corresponding generating section is called the Jacobi
superbracket of elements w = (w',...,w™) and 6 = (0',...,0™) and is
denoted by {w,f}. The components of this bracket are expressed by the
formula

{w,00 = Lo (#7) — (=1)*Ly, (W), j=1,...,m. (5.44)

Obviously, the module F (7, ) ®#@x) C*A(m) is a graded Lie algebra with
respect to the Jacobi superbracket. T he restriction of {-, -} to F(m,m) ®
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C°A(m) = F(m, ) coincides with the higher Jacobi bracket (see Defini-
tion B3 on page B).

In the case (ii), the generating section is i»_(#). Note now that any
element p € C'A(r) is of the form p = 3 asaws, where, as before,
we = deut = dul — Y 1, u%dr; are the Cartan forms on J*(7). Hence, if
0 € F(m,m) Qpx) C'A(m) and ¢/ =3 __ al ,w?, then

o, oo

(i5.(0) =" al Do (w). (5.45)

In particular, we see that (BZH) establishes an isomorphism between the
modules F(m, 7) @ 7(x) C*A(7) and CDiff(7, m) and defines the action of C-
differential operators on elements of C*A(7). This is a really well-defined
action because of the fact that icxw = 0 for any X € D(M) and w € C*A(7).

Consider now a formally integrable differential equation & C J*(7) and
assume that it is determined by a differential operator A € F(m,&). Denote,
as in Section B, by (¢ the restriction of the operator of universal linearization
la to £, Let Egﬂ be the extension of l¢ to F (7, 7) ®#(x) CPA(E) which is
well defined due to what has been said above. Then the module H:"(E) is
identified with the set of evolution superderivations 9, whose generating
sections w € F(m,m) @z(x) CPA(E) satisfy the equation

MWy =0 (5.46)

If, in addition, £ satisfies the assumptions of the two-line theorem, then
HE'(E) is identified with the cokernel of E‘[gpfu and thus

Hi(E) = ker £ @ coker (4

in this case. These two statements will be proved in Subsection B

As it was noted in Remark B on page B@ H} () is an associative algebra
with respect to contraction and is represented in the algebra of endomor-
phisms of H2(E). It is easily seen that the action of the HY'(£) is trivial

while H,°(£) acts on H2(E) = sym € as C-differential operators (see above).

Definition 5.12. Elements of the module Hz" () are called recursion op-
erators for symmetries of the equation £.

We use the notation R(E) for the algebra of recursion operators.

Remark 5.7. The algebra R(E) is always nonempty, since it contains the
structural element Ug which is the unit of this algebra. “Usually” this is
the only solution of (B=ZH) for p = 1 (see Example Bl below). This fact
apparently contradicts practical experience (cf. with well-known recursion
operators for the KdV and other integrable systems [Ed]). The reason is
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that these operators contain nonlocal terms like D~! or of a more compli-
cated form. An adequate framework to deal with such constructions will be
described in the next subsection.

Example 5.1. Let

Up = Uy + Ugy (5.47)
be the Burgers equation. For internal coordinates on £ we choose the func-
tions x,t,u = ug, ..., U, ..., where ug corresponds to the partial derivative

OFu/Ox".
We shall prove here that the only solution of the equation EQ] (w) =0 for
(B) is w = awp, a = const, where
Wy = deuy, = dug — up1de — Dl;(uul + ug)dt.

Let w = ¢%wg + -+ + ¢"w,. Then the equation (EZM) on the preceding
page for p = 1 transforms to

uoD,(6%) + D2(8°) = Di(¢) + 3wy,
j=1

r

uoDa(¢1) + D3(8") +2D.(6°) = Du(¢') + D _(j + Dy,

Jj=2

(5.48)

ug Dy (¢") + D2(¢") + 2D (¢°) = Dy(¢') + Z <j 1— 1) uj— i1’

j=i+1

uoDy(¢") + D3(67) +2D2(¢"") = De(¢") + rua g,

To prove the result, we apply the scheme used in [B4] to describe the sym-
metry algebra of the Burgers equation.

Denote by K, the set of solutions of (EZ3). Then a direct computation
shows that

K'={awy | « € R} (5.49)
and that any element w € IC., r > 1, is of the form
1
w=aq + <£U004r + 51‘041(}) + arl) + Q[r — 2], (5.50)

where o, = a,(t), a,_1 = a,_1(t), a? denotes the derivative d'a/dt', and
Q[s] is an arbitrary linear combination of wy,...,ws with coefficients in

F(E).
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Note now that for any evolution equation the embedding
[sym &, ker (2™ < ker /1)

is valid. Consequently, if ¢ € sym &€ and w € ker E‘[gu, then {¢,w} € ker EE].
Since the function w; is a symmetry of the Burgers equation (translation
along x), one has

0 0
{ulaw} = (; Uk+1a—uk> w—Dyw = —%w.

Hence, if w € K., then from (BE=H) we obtain that

adgrl)(w) = Oszﬁl)wl + Q[O] e Ky,
where ady, = {#,-}. Taking into account equation (B=H), we get that
al~t =0, or

o =ap+at+---+ ar,gtr*Q, a; € R. (5.51)

We shall use now the fact that the element ® = t?us+ (t*ug+tx)us+tug+1
is a symmetry of the Burgers equation (see [2d]). Then, since the action of
symmetries is permutable with the Cartan differential d¢, we have

{0, 0°w} = Do (Pws) = Do, (P) = D (9" )ws + ¢*Da(ws) — Dgow, (D).
But
Do(ws) = Dade(us) = deDe(us) = deD; (D)
= do (Pusya + (Puo + tx)ugr + (s + 1) (Fwr + t)u,) + Qs — 1],
On the other hand,
D g (P) = t?P°wiyia + (ZtQDi(gbs) + (tPug + tm)¢s)ws+1
+ (2D2(¢°) + (tPuo + tx) Do(¢°) + (Pur + £)9°)ws.
Thus, we finally obtain
{®, ¢°w,} = {D, ¢° tw, + (5 + 1) (t2ug + t)w, (5.52)
— 262D, (0% weyr + Qs —1].
Applying (B23) to (BE=20), we get
ade (W) = (rta, — t2aM)w, + Qr —1]. (5.53)
Let now w € K, and assume that w has a nontrivial coefficient a, of
the form (B23), and a; be the first nontrivial coefficient in «,.. Then, by
representation (B=2d), we have
ady "(w) = dw, + Q[r — 1] € K,

where /. is a polynomial of degree r — 1. This contradicts to (B2l and
thus concludes the proof.
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Remark 5.8. Let ¢ € sym & be a symmetry and R € R(E) be a recursion
operator. Then we obtain a sequence of symmetries ¢y = ¢, ©1 = R(p),

s on = R"(p), .... Using identity (B=Z) on page B one can compute the
commutators [pp,, ¢,] in terms of Jo, R]™ € Hy*(€) and [R, R]™ € HZ°(E).
In particular, it can be shown that when both [, R]™ and [R, R]™ vanish,
all symmetries ¢, mutually commute (see [Z1]).

For example, if £ is an evolution equation, Hg’o(é’) =0 for all p > 2
(see Theorem B on page ). Hence, if ¢ is a symmetry and R is a ¢-
invariant recursion operator (i.e., such that [, R]]fn = 0), then R generates
a commutative sequence of symmetries. This is exactly the case for the
KdV and other integrable evolution equations.

5.4. Passing to nonlocalities. Let us now introduce nonlocal variables
into the above described picture. Namely, let £ be an equation and ¢ : N' —
£ be a covering over its infinite prolongation. Then, due to Proposition E=l
on page B the triad (F(N), C®(M), (1o © ¢)*) is an algebra with the flat
connection C¥. Hence, we can apply the whole machinery of Subsections
EZB-E3 to this situation. To stress the fact that we are working over the
covering ¢, we shall add the symbol ¢ to all notations introduced in these
subsections. Denote by UZ the connection form of the connection C¥ (the
structural element of the covering ).

In particular, on N we have the C¢-differential 85 = [Ug,-]™ -
DY(AY(N)) — DY(A"(N)), whose 0-cohomology H(E,¢) coincides with
the Lie algebra sym,& of nonlocal ¢-symmetries, while the module
Hcl’o(é’ ,p) identifies with recursion operators acting on these symmetries
and is denoted by R(E, ). We also have the horizontal and the Cartan
differential d? and df on N and the splitting A'(N) = @, CPAP(N) ®
AYN).

Choose a trivialization of the bundle ¢ : N' — £° and nonlocal coordi-
nates w!',w?, ... in the fiber. Then any derivation X € DY(A*(N)) splits to
the sum X = X¢+ X", where Xg(w’) =0 and XV is a p-vertical derivation.

Lemma 5.15. Let p : £° x RY — £%, N < oo, be a covering. Then
HEY(E, ) = kerOF |ceaovy - Thus HEY(E, ) consists of derivations ) :
F(N) — CPA(N) such that

g, Qe =0, ([Ug,Q™)" =o. (5.54)

Proof. In fact, due to equality (B=3d) on page BA any element lying in the
image of 97 contains at least one horizontal component, i.e.,

8¢ (DY(CPA(N))) € DY(CPAN) @ AL(N)).
Thus, equations (B&) should hold. O
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We call the first equation in (B=52) on the preceding page the shadow equa-
tion while the second one is called the relation equation. This is explained
by the following result (cf. with Theorem =1 on page [Z3).

Proposition 5.16. Let £ be an evolution equation of the form

0*u
ou)
and o : N = E%®° x RNV — £% be a covering given by the vector ﬁeld&E

uy = f(z,t,u,...

D,=D,+X, D,=D+T,
where [Dy, D] =0 and

N ZS —8105’ N ZS ows’
1 S

w, ..., w® ... being nonlocal variables in p. Then the group Hg’o(é’, ©)
consists of elements

U= Z\If@ +Z¢ S €D (CPAN))

such that U; = DU, and

(W) =0, (5.55)
Z —D“ (Vo) + gi;@bﬂ = D,(¢*), (5.56)
G D)+ g’;w = D), (.57
s=1,2,..., where lﬂgp} 15 the natural extension of the operator Eg’} to N

Proof. Consider the Cartan forms
wi = du; — ujprdr — DL(f)dt, 0° = dw® — X5dw — T5dt

on N. Then the derivation

0 0
Ug = Zwi@) o, +26’5® S0

13To simplify the notations of Section B we denote the lifting of a C-differential oper-
ator A to N by A
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is the structural element of the covering . Then, using representation (B=Z3)
on page Bl, we obtain

- 0
OFV = da A Z (Vis1 — Do(1)) ® 5u

+dt/\z<za(aD7if)%—Dt\Pi) ®aii

«

9X° ) I B
Fan Y (L g, bt Dt~ D) @ 5

oT* oT* - 0
68 s
+dt A E ( d gu Yot d ot~ D@ ))®—aws’

which gives the needed result. O

Note that relations ¥; = D! (¥g) together with equation (B=3d) are equiv-
alent to the shadow equations. In the case p = 1, we call the solutions
of equation (BE=3) the shadows of recursion operators in the covering .
Equations (E=H) and (E=8) on the preceding page are exactly the relation
equations on the case under consideration.

Exercise 5.1. Generalize the above result to general equations using the
proof similar to that of Theorem E=1 on page 3

Thus, any element of the group Hcl’o (&, ) is of the form
. 0 0
v = D! — R — .
2D G+ Vegs (5.58)

where the forms ¢ = g, % € C'A(N) satisfy the system of equations
(E53)-B33D).

As a direct consequence of the above said, we obtain the following

Corollary 5.17. Let ¥ be a derivation of the form (BERA) with 1, ¢* €
CPA(N). Then ¢ is a solution of equation (B==d) on the facing page in the
covering ¢ if and only if 05 (V) is a p-vertical derivation.

We can now formulate the main result of this subsection.

Theorem 5.18. Let ¢ : N — £% be a covering, S € sym,& be a ¢-
symmetry, and b € CAN) be a shadow of a recursion operator in the
covering @. Then ' =ig is a shadow of a symmetry in p, i.e., Le(¢") = 0.

Proof. In fact, let U be a derivation of the form (BE23). Then, due to
identity (B=3) on page B3 one has
I (1s¥) = iges — is(FFV) = —is(F V),
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since S is a symmetry. But, by Corollary B on the preceding page, 95V is
a @-vertical derivation and consequently 9f (isV) = —ig(9FV) is p-vertical
as well. Hence, igWV is a ¢-shadow by the same corollary. O

Using the last result together with Theorem EZH on page I, we can
describe the process of generating a series of symmetries by shadows of
recursion operators. Namely, let ¢ be a symmetry and w € C'A(N) be a
shadow of a recursion operator in a covering ¢ : N' — £°. In particular, v
is a ¢-shadow. Then, by Theorem B on page B there exists a covering ¢y, :

Ny — N 5 €% where D, can be lifted to as a @y-symmetry. Obviously,
w still remains a shadow in this new covering. Therefore, we can act by w
on ¢ and obtain a shadow ¢ of a new symmetry on Ny. By Theorem E==1
on page &3, there exists a covering, where both ¢ and 1, are realized as
nonlocal symmetries. Thus we can continue the procedure applying w to
Yy and eventually arrive to a covering in which the whole series {iy} is
realized.

Example 5.2. Let u; = uu, + u,, be the Burgers equation. Consider the
one-dimensional covering ¢ : £ x R — £%° with the nonlocal variable w
and defined by the vector fields

0 u? 0
Dy ZDx+an—w, Df = D, + <?0+U1) 9w

Then it easily checked that the form
1 1
w=w1+§wo+§6’,
where wy and w; are the Cartan forms deug and deuy respectively and 6 =
dw — updx — (u3/2 + up)dt, is a solution of the equation lﬁgﬂw =0. If O, is
a symmetry of the Burgers equation, the corresponding action of w on 1 is

1 1
Dytp+ =+ =D, ')
2 2
and thus coincides with the well-known recursion operator for this equation,

see [E4].

Exercise 5.2. Let u; = uuy + ugzer be the KAV equation. Consider the one-
dimensional covering ¢ : £*° x R — £°° with the nonlocal variable w and
defined by the vector fields

0 u? 0
Dy ZDx+an—w, Df = D, + <?0+U2) 9w

Solve the equation ﬂ;]w = 0 in this covering and find the corresponding
recursion operator.
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Remark 5.9. Recursion operators can be understood as supersymmetries
(cf. Subsection B on page =) of a certain superequation naturally related
to the initial one. To such symmetries and equations one can apply nonlocal
theory of Section @ and prove the corresponding reconstruction theorems,

see |23, B0
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6. HORIZONTAL COHOMOLOGY

In this section we discuss the horizontal cohomology of differential equa-
tions, i.e., the cohomology of the horizontal de Rham complex (see Def-
inition B2Z4 on page B). This cohomology has many physically relevant
applications. To demonstrate this, let us start with the notion of a con-
served current. Consider a differential equation £. A conserved current is
a vector-function J = (Ji,...,J,), where J, € F(&), which is conserved
modulo the equation, i.e., that satisfies the equation

ka(Jk) —0, (6.1)

where Dy, are restrictions of total derivatives to £°. For example, take the
nonlinear Schrodinger equatio

n—1 2
W=ty Py, A=Y (6.2)
j=1 7"

Then it is straightforwardly verified, that the vector-function
J = (|¢|2a Z(@Z_}@Z}xl - @Z}@Z_)xl)a ) i(@z_}@ban - @Z}@Z_}an))

is a conserved current, i.e., that

D P) + 3 Diliitn, — 0,))

vanishes by virtue of equation (B=).
A conserved current is called trivial, if it has the form

J = i Di(Ly) (6.3)

for some skew-symmetric matrix, ||Lx|, L = —Lik, Lr € F(E). The
name “trivial currents” means that they are trivially conserved regardless
to the equation under consideration. Two conserved currents are said to be
equivalent if they differ by a trivial one. Conservation laws are defined to
be the equivalent classes of conserved currents.

Let us assign the horizontal (n—1)-form w; = > ;. (=1)* L dzi A+ A
Ex\k A -+ A dx, to each conserved current J = (Jy,...,J,). Then equa-
tions (B=8) and (B=1) can be rewritten as dw; = 0 and w; = dn respectively,
where n = Zk>l(—1)k+l£kl dxy N\ -+ /\c?x\l AREE /\@/\ -+« ANdz,. Thus, we
see that the horizontal cohomology group in degree n — 1 of the equation £
consists of conservation laws of €.

4Here 1) is a complex function and (E=d) is to be understood as a system of two
equations.



101

In physical applications one also encounters the horizontal cohomology
in degree less than n — 1. For instance, the Maxwell equations read

d(xF) =0,

where F' is the electromagnetic field strength tensor and * is the Hodge
star operator. Clearly *F is not exact. Another reason to consider the
low-dimensional horizontal cohomology is that it appears as an auxiliary
cohomology in calculation of the BRST cohomology [H|. Recently, by means
of horizontal cohomology the problem of consistent deformations and of
candidate anomalies has been completely solved in cases of Yang-Mills gauge
theories and of gravity [& .

The horizontal cohomology plays a central role in the Lagrangian formal-
ism as well. Really, it is easy to see that the horizontal cohomology group in
degree n is exactly the space of actions of variational problems constrained
by equation &.

For computing the horizontal cohomology there is a general method based
on the Vinogradov C-spectral sequence. It can be outlined as follows. The
horizontal cohomology is the term E? * of the Vinogradov C-spectral se-
quence and thereby related to the terms E**, p > 0. For each p, such a
term is also a horizontal cohomology but with some nontrivial coefficients.
The crucial observation is that the corresponding modules of coefficients are
supplied with filtrations such that the differentials of the associated graded
complexes are linear over the functions. Hence, the cohomology can be
computed algebraically. A detailed description of these techniques is our
main concern in this and the next sections.

6.1. C-modules on differential equations. Let us begin with the defini-
tion of C-modules, which are left differential modules (see Definition = on
page ) in C-differential calculus and serve as the modules of coefficients
for horizontal de Rham complexes.

Proposition 6.1. The following three definitions of a C-module are equiv-
alent:

(1) An F-module @ is called a C-module, if Q) is endowed with a left
module structure over the ring CDiff (F,F), i.e., for any scalar C-dif-
ferential operator A € CDitf,(F,F) there exists an operator Ag €
CDiff(Q, Q), with
(1) O fidi)g =22 filAi)g,  fie T,

(2) (idr)q = idg,
(3) (A10Az)q = (A1)g © (A2)e-

(2) A C-module is a module equipped with a flat horizontal connection,
i.e., with an action on Q of the module CD = CD(E), X — Vy,
which is F-linear:

va+gY:va+nga fﬂgej:a XaYGCDa
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satisfies the Leibniz rule:

Vx(fe) =X(fla+fVx(q), ¢€Q, XelCD, f[felF,

and is a Lie algebra homomorphism:
Vx,Vy] =Vixy).

(3) A C-module is the module of sections of a linear covering, i.e., Q
is the module of sections of a vector bundle T: W — €%, Q = I'(1),
equipped with a completely integrable n-dimensional linear distribution

(see Definition [ezd on page [[) on W which is projected onto the
Cartan distribution on £°.

The proof is elementary.

Exercise 6.1. Show that

(1) in coordinates, the operator (D;)q = ||Af]| is a matrix operator of
the form

k __ k k k
Al =Dio; + 15, T €F,

R
where 5;“ is the Kronecker symbol;

(2) the coordinate description of the corresponding flat horizontal con-
nection looks as

Vp,(s;) = Z F%Sk
k

where s; are basis elements of @);
(3) the corresponding linear covering has the form

3 )
k

j.k

where w® are fiber coordinates on .
Here are basic examples of C-modules.
Example 6.1. The simplest example of a C-module is () = F with the
usual action of C-differential operators.
Example 6.2. The module of vertical vector fields @ = D” = D?(£) with
the connection
Vx(Y)=[XY]", XeCD, YeD

where Z¥ = U¢(Z), is a C-module.
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Example 6.3. Next example is the modules of Cartan forms Q = C*A =
CFA(E). A vector field X € CD acts on C*A as the Lie derivative Lx. It is
easily seen that in coordinates we have

(Dy)era(wl) = wl,.

Example 6.4. The infinite jet module Q = J*(P) of an F-module P is a
C-module via

A 7o (p) (fT20(p)) = A(f)Too (),
where A € CDiff(F,F), f € F,p € P.

Example 6.5. Let us dualize the previous example. It is clear that for any
F-module P the module @) = CDiff(P, F) is a C-module. The action of

horizontal operators is the composition:
Ag(V) = AoV,
where A € CDiff(F, F), V € Q = CDiff(P, F).

Example 6.6. More generally, let A: P — P; be a C-differential opera-
tor and % : J>®°(P) — J>(P.) be the corresponding prolongation of A.
Obviously, ¥2 is a morphism of C-modules, i.e., a homomorphism over the
ring CDiff(F, F), so that kert5 and coker4 are C-modules.

On the other hand, the operator A gives rise to the morphism of C-mod-
ules CDiff (P, F) — CDiff(P, F), V + VoA. Thus the kernel and cokernel

of this map are C-modules as well.

Example 6.7. Given two C-modules (); and ()2, we can define C-module
structures on (1 ®x @2 and Homx(Q1, Q)2) by

Vx(g1®q) = Vx(q1) ® @2+ q1 ® Vx(qa),
Vx(f)q) =Vx(f(q)) = f(Vx(q)),

where X € CD, ¢1 € Q1, @2 € Q2, f € Homz(Q1,Q2).
For instance, one has C-module structures on Q = J*(P) @ CFA and
Q = CDiff(P,C*A) for any F-module P.

Example 6.8. Let g be a Lie algebra and p: g — gl(W) a linear represen-
tation of g. Each g-valued horizontal form w € A'(£)®g g that satisfies the
horizontal Maurer-Cartan condition dw + %[w, w] = 0 defines on the mod-
ule @) of sections of the trivial vector bundle £ x W — £ the following
C-module structure:

Vx(q)a = X(q)a + p(w(X))(da),
where X € CD, g € Q, a € £°, and X(q) means the component-wise action.
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Exercise 6.2. Check that () is indeed a C-module.

Such C-modules are called zero-curvature representations over £>. Take
the example of the KAV equation (in the form u; = uu, + Uz,) and g =
slo(R). Then there exists a one-parameter family of Maurer-Cartan forms
w(A) = A1(A\) dx + Ay()\) dt, X being a parameter:

AN = <(1) —(AO+ u))

6
and

—Luy =g — U+ P+ 2)?
As(\) = 6 3 3 3
2 1,1y 1 :
18 9 6t
This is the zero-curvature representation used in the inverse scattering

method.

Remark 6.1. In parallel with left C-modules one can consider right C-mod-
ules, i.e., right modules over the ring CDiff(F,F). There is a natural way
to pass from left C-modules to right ones and back. Namely, for any left
module () set

with the right action of CDiff(F,F) on B(Q) given by

(@@w)f=frow=q® fu, feF,
(W)X =-Vx(q)®w—q® Lxw, X €CD.

One can easily verify that B determines an equivalence between the cate-
gories of left C-modules and right C-modules.

By definition of a C-module, for a scalar C-differential operator A: F —
F there exists the extension Ag: @@ — @ of A to the C-module ). Similarly
to Lemma X on page I one has more: for any C-differential operator
A: P — S there exists the extension Ag: PR Q — S @7 Q.

Proposition 6.2. Let P, S be F-modules. Then there ezists a unique map-
ping
such that the following conditions hold:

(1) if P =S = F then the mapping is given by the C-module structure

on @,

(2) 2 fidi)o =22 filAi)g,  fi € F,

(3) if A € CDiffy(P,S) = Homz(P,S) then Ag = A ®@ridg,

(4) if R is another F-module and Ay : P — S, Ay : S — R are C-differ-
ential operators, then (Mg 0 A1)g = (Az)g o (A1)g.
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Proof. The uniqueness is obvious. To prove the existence consider the family
of operators A(p, s*): F — F,p € P, s* € S* = Homz(S, F), A(p, s*)(f) =
s*(A(fp)), f € F. Clearly, the operator A is defined by the family A(p, s*).

The following statement is also obvious.

FEzercise 6.3. For the family of operators Alp, s*] € CDiffy(F,F), p € P,
s* € S* we can find an operator A € CDiffy(P,S) such that Alp, s*] =
A(p, s*), if and only if

A[PaZfiSﬂ = ZszLPa sil,
A[Z fipi, 8| = ZA[Pia s*] fi.

In view of this exercise, the family of operators

Aglp® q,8" @ ¢*|(f) = ¢"(Ap, s7)q(fq))

uniquely determines the operator Ag. O
6.2. The horizontal de Rham complex. Consider a complex of C-dif-
ferential operators --- — P, =N % i P,y — ---. Multiplying it by

a C-module @) and taking into account Proposition B2 on the facing page,
we obtain the complex
A A
= PaeQ % PeQ PP 9Q
Applying this construction to the horizontal de Rham complex, we get hor-
1zontal de Rham complex with coefficients in Q:
OHQEN@?QCI—%“' EI\TL@?Q—)O,

where A” = AY(E).

The cohomology of the horizontal de Rham complex with coefficients in
Q is said to be horizontal cohomology and is denoted by H*(Q).

Ezercise 6.4. Proof that the differential d = dg can also be defined by
(dg)(X) = Vx(q), q€Q.
dw®q) =dv®q+ (—1)PwAdg, weAP.

One easily sees that a morphism f: @)1 — Q)2 of C-modules gives rise to
a cochain mapping of the de Rham complexes:

d d

O—>Q1L>/_\l®fQ1 A" ®rQ —— 0

! ! !

0—>Q2L>/_\1®fQ2 d A" ®FrQy — 0.

Let us discuss some examples of horizontal de Rham complexes.
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Example 6.9. The horizontal de Rham complex with coefficients in the
module J*°(P)

0= J%P) LA 0T*P) L ReITP) L. .. LA 0 T®P) —0
is the project limit of the horizontal Spencer complezes
0—J5P) S Mo (P S e T 2(P) S ... (6.4)
where S(w ® 7i(p)) = dw @ Ji_1(p). As usual Spencer complexes, they are
exact in positive degrees and
H(A*® J"*(P)) = P.
Recall that one proves this fact by considering the commutative diagram

0 0 0

(see page E).
FEzercise 6.5. Multiply this diagram by a C-module @ (possibly of infinite
rank) and prove that the complex

0—J>P)BQ LN I*P)BQ L - LA 0 T>(P)BQ —0
is exact in positive degrees and
HA®IT*(P)RQ)=P Q.
Here

J®(P) ® Q = projlim J*(P) ® Q.

Example 6.10. The dualization of the previous example is as follows. The
coefficient module is CDiff(P, F). The corresponding horizontal de Rham
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complex multiplied by a C-module @) has the form

0 — CDiff(P, F) ® Q % CDiff(P,A) ® Q % - .-
.2, CDiff(P,A") @ Q — 0.
As in the previous example, it is easily shown that
H'(CDiff(P,A*) ® Q) =0 fori<n,
H"(CDiff(P,A) @ Q) =P ®Q,
where P = Homz(P, A™).
One can use this fact to define the notion of adjoint C-differential operator

similarly to Definition 20 on page B3 The analog of Proposition Bl on
page & remains valid for C-differential operators.

Example 6.11. Take the C-module
Q = D" (CPA) = @) Homs(C'A, CPA).
p p

The horizontal de Rham complex with coefficients in () can be written as

0 — DY — DY(A') — DY(A?) — - -

Proposition 6.3. The differential dpvcra) of this complex is equal to —0c
(see page BA), so that the complex coincides up to sign with the com-

plez (B=3) on page BA.

Proof. Take a vertical vector field Y € D" and an arbitrary vector field Z.
By (B=Z3) on page B we obtain (cf. the proof of Theorem B on page EH)
i,0cY = [ZY — Z,Y]". Hence, 9c(D*) C D’ ® A and O¢|p. = —dp.. This
together with formula (B=3) on page Bl and Remark B on page B yields
8C(D“(CPA) & Aq) C DU(CPA) ® A1 and achU(CpA)(gAq = _de(CPA)- ]

6.3. Horizontal compatibility complex. Consider a C-differential oper-
ator A: By — P;. It is clear that by repeating word by word the construc-
tion of Subsection [E on page I one obtains the horizontal compatibility
complex

N N Ny N (6.5)

which is formally exact (see the end of Subsection I on page EJ).

Consider the C-module Ra = ker % (cf. Example Elon page ). Then
by Theorem IEZd on page Bl the cohomology of complex (B) is isomorphic
to the horizontal cohomology with coefficients in Ra:
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Theorem 6.4.
}_Ii(RA) = Hi(P.).

Recall that this theorem follows from the spectral sequence arguments
applied to the commutative diagram

0 — A2 J®(R) — A2QJT®(P) — A2 J®(P) — -
d d d
0 — AMQIT®R) — AMR@T®P) — AL@ T®(P) — -
d d d

0— J*B) — JT=P) — JTxFP) — -

0 0 0
Let us multiply this diagram by a C-module (). This yields

H(Ra® Q)= H'(P.®Q), (6.6)

where Ra ® Q = projlim RL ® Q, with Ry = ker 1[1]?“, ord A < k.
We can dualize our discussion. Namely, consider the commutative dia-
gram

0 «— CDiff(P, A"2) «— CDiff(P, A"2) «— CDiff(Py, A""2) «— ---
d d d
0 «— CDiff(P,A"') «— CDiff(P;, A"!) «— CDiff(Py, A"™) «— ---
d d d

0 «— CDiff(Py,A") «— CDiff(P,A") «— CDiff(P,A") «—— ---

0 0 0
As above, we readily obtain

A

H'(R}) = Hyi(Ps)
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and, more generally,
H(RA® Q) = Hyi(Pe®Q), (6.7)

where R, = Hom(Ra,F). The homology in the right-hand side of these
formulae is the homology of the complex

LA o AT o AL A
P P P Py SR

dual to the complex (B).

6.4. Applications to computing the C-cohomology groups. Let £ be
an equation,

14 A A

the compatibility complex for the operator of universal linearization, » =

F(&,m). Take a C-module Q.
Theorem 6.5. H'(D'(Q)) = H(P, ® Q).

Proof. The statement follows immediately from (BEH) on the preceding page
and Proposition BE&H on page O]

Let @ = CPA. The previous theorem gives a method for computing of the
cohomology groups H*(DY(CPA)), which are the C-cohomology groups (see

Example B2 on page IEX):
Corollary 6.6. H(D"(CPA)) = H'(P, ® CPA).

Let us describe the isomorphisms given by this corollary in an explicit
form. ~
Consider an element Y, w! ® jwo(s:) € A9 ® D”(CPA), where w] €
A1 ® CPA, s; € s, which is a horizontal cocycle. This means that
D Wl @ Juolle(si)) = 0 and Y dw! @ Joo(si) = 0.
iel iel
From the second equality it easily follows that there exists an element
Yienw! ! ®Jx(s) € M@ CPA® T*(x), such that 3, dof @

Joo(S ):Zzelw ® Joo(8i). Denote s; = £g(s}). The element Y, . w/ ®

Joo(sD) € A7 @ CPA ® J°°(P,) satisfies
D Wi @ Jeo(As(s))) =0 and Y dw? ™ @ Juo(s)) = 0.
i€l 1elh

Continuing this process, we obtain elements ), ., w/~ "® Joo(sh) € AT @
CPA @ J°°(P,) such that

Zw ® Joo(Ay(sh)) = 0 and Zcﬁuf*l ® Joo(st) = 0.

1€l] 1€
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For | = ¢ these formulae mean that the element ), . I W) ®7o0(s7) represents
an element of the module P, ® CPA that lies in the kernel of the operator
Agq1. This is the element that gives rise to the cohomology class in the
group H9(P, ® CPA) corresponding to the chosen element of A7 ® DV(CPA).

It follows from our results that if there is an integer k£ such that P, =
Pii1 = Pyig =--- =0, i.e., the compatibility complex has the form

l A A A Ap_
Pp=»-5P =LPp225p = . 2222 P, 0,

then
HY(D"(CPA)) =0 fori> k.

This result is known as the k-line theorem for the C-cohomology.

What are the values of the integer k for differential equations encountered
in mathematical physics? The existence of a compatibility operator A is
usually due to the existence of dependencies between the equations under
consideration: Ay(F) = 0, &€ = {F = 0}. The majority of systems that
occur in practice consist of independent equations and for them k = 2.
Such systems of differential equations are said to be ¢-normal. In the case
of ¢-normal equations the two-line theorem for the C-cohomology holds:

Theorem 6.7 (the two-line theorem). Let a differential equation & be (-
normal. Then:

(1) H(D*(CPA)) =0 fori>2,

(2) HY(DY(CPA)) = ker({g)con,

(3) HY(D¥(CPA)) = coker({g)con-

Further, we meet with the case k£ > 2 in gauge theories, when the de-
pendencies A;(F') = 0 are given by the second Noether theorem (see page
EX3). For usual irreducible gauge theories, like electromagnetism, Yang-
Mills models, and Einstein’s gravity, the Noether identities are independent,
so that the operator A, is trivial and, thus, £ = 3. Finally, for an L-th stage
reducible gauge theory, one has k = L + 3.

Remark 6.2. For the “empty” equation J°°(m) Corollary Bl on the preced-
ing page yields Theorem BEZE on page BR (the one-line theorem).

6.5. Example: Evolution equations. Consider an evolution equation
E=A{F =wu — f(z,t,u;) = 0}, with independent variables x,¢ and depen-
dent variable u; u; denotes the set of variables corresponding to derivatives
of u with respect to x.

Natural coordinates for £ are (z,t,u;). The total derivatives operators
D, and D; on £ have the form

d d d .0
D, = %+Zui+la—ui, Dy = a+;Dx(f)aui.
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The operator of universal linearization is given by

0 4
fg:Dt—ff:Dt—ZaiD;.

Clearly, for an evolution equation the two-line theorem holds, hence the
C-cohomology H?(D?(CPA)) is trivial for ¢ > 2. Now, assume that the order
of the equation & is greater than or equal to 2, i.e., ord¢; > 2. Then one
has more:

Theorem 6.8. For any evolution equation of order > 2, one has
AYDY(CPA)) =0 forp >2,

Proof. Tt follows from Theorem = on the facing page that H°(D"(CPA)) =
ker({¢)crn. Hence to prove the theorem it suffices to check that the equation

(Dy —4f)(w) =0, (6.8)

with w € CPA, has no nontrivial solutions for p > 2.
To this end consider the symbol of (BH). Denote smbl(D,) = 0. The

symbol of ¢; has the form smbl({;) = go*, k = ord ¢; > 2, where g = g—f
u

k
An element w € CPA can be identified with a multilinear C-differential
operator, so the symbol of w is a homogeneous polynomial in p variables

smbl(w) = (64, ...,0,). Equation (B3) yields

[9(0F + -+ 0;) = g(b1+ - +6,)"] - 6(61,....6,) = 0.
The conditions & > 2 and p > 2 obviously imply that §(6,,...,60,) = 0.
This completes the proof. O

Remark 6.3. This proof can be generalized for determined systems of evo-
lution equations with arbitrary number of independent variables (see [if]).
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7. VINOGRADOV’S C-SPECTRAL SEQUENCE

7.1. Definition of the Vinogradov C-spectral sequence. Suppose
E C Jk(m) is a formally integrable differential equation. Consider the
ideal CA* = CA*(E) of the exterior algebra A*(E) of differential forms
on £ generated by the Cartan submodule C*A(E) (see page Bl): CA* =
C'A(E) AN A*(E). Clearly, this ideal and all its powers (CA*)"* = C5A A A%,
where C°A = C'A A --- AC'A, is stable with respect to the operator d, i.e.,

v
S times

d((CA*)®) C (CA)™*.
Thus, in the de Rham complex on £ we have the filtration
A*DCA* D (CA)™? DD (CAHY¥ D ---

The spectral sequence (EP?, dP7) determined by this filtration is said to be
the Vinogradov C-spectral sequence of equation £. As usual p is the filtration
degree and p + ¢ is the total degree.

It follows from the direct sum decomposition (BEZH) on page Bl that Ef*
can be identified with CPA ® A9,

Ezercise 7.1. Prove that under this identification the operator dj? coincides
with the horizontal de Rham differential dery with coefficients in CPA (cf.

Example BEE3 on page [II3).

Thus, the Vinogradov C-spectral sequence is one of two spectral sequences
associated with the variational bicomplex (CPA ® A9),d,d¢) constructed in
Subsection B on page

Remark 7.1. The second spectral sequences associated with the variational
bicomplex can be naturally identified with the Leray-Serre spectral se-
quence of the de Rham cohomology of the bundle £* — M.

Remark 7.2. The definition of the Vinogradov C-spectral sequence given
above remains valid for any object the category Inf (see page B), whereas
the variational bicomplex exists only for an infinite prolonged equation.

FEzercise 7.2. Prove that any morphism F': Ni — N3 in Inf gives rise to
the homomorphism of the Vinogradov C-spectral sequence for A into the
Vinogradov C-spectral sequence for Nj.

7.2. The term FE; for J>°(m). Let us consider the term FEj of the Vino-
gradov C-spectral sequence for the “empty” equation £ = J*°(7).

By definition the first term E; of a spectral sequence is the cohomology
of its zero term Ejy. Thus, to describe the terms EP?(7) we must compute
the cohomologies of complexes

d

0 — CPA(m) % CPA(m) @ Al () % - L CPA(r) @ A" () — 0.
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Using Proposition B2 on page B3, this complex can be rewritten in the
form

0 — CDiff(}) (s(r), F(m)) — CDiff{) (¢ (7?) Al(m)) =
= CDiff{;) (5«(r), A" (7)) — 0,

where w(A) = (=1)Pd o A.
Now from Theorem B on page B we obtain the following description of
the term FE; for J*(r):

Theorem 7.1. Let © be a smooth wvector bundle over a manifold M,
dim M =n. Then:

(1) EY(m) = HY(x) for all ¢ > 0;

(2) EY(m) =0 forp >0, q#n;

(3) EY"(m) = Ly (5(m)), p > 0,

where L (»(m)) was defined in Theorem B on page B4

Since the the Vinogradov C-spectral sequence converges to the de Rham
cohomology of the manifold J*°(7), this theorem has the following

Corollary 7.2. For any smooth vector bundle m over an n-dimensional
smooth manifold M one has:

(1) Eri(r)=0,1<r<o0,ifp>0,qg#n orp=0, ¢ >n;
(2) E)(m) = B (m) = HI(J>(n)) = H(J (), ¢ < n;
(3) B3 (m) = ER(m) = HP*™"(J*(mr)) = HP*"(J°(m)), p = 0.

Erercise 7.3. Prove that HI(J> (7)) = HY(J°(x)).

We now turn our attention to the differentials di"". They are induced
by the Cartan differential de. For p = 0, we have de(w) = 4, w € A™.
(Note that the expression ¢, is correct, because w is a horizontal form, i.e.,
a nonlinear operator from I'(7) to A"(M).) Therefore the operator

O,TL r7n do " 1 Ne} ~
B (m) = 0™ (1) — By () = %(n)
is given by the formula dY"([w]) = (L) = €5(1), where w € A™(7), [w] is
the horizontal cohomology class of w.

FExercise 7.4. Write down the coordinate expression for the operator d?’"
and show that it coincides with the standard Euler operator, i.e., with
the operator that takes a Lagrangian to the corresponding Euler—Lagrange
equation.

Let us compute the operators dy"", p > 0.
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Consider an element V € L3%(x(m)) and define the operator O €
CDiff (1) (3¢(m), A™(7)) via

p+1
D(Xla ) Xp+1) = Z(_l)ZJrlaXi(v(Xla s a)%ia s aXerl))
=1
+ Z z+]v {XUXJ} Xla"'aXia"'ana"'aXerl)' (7]-)
1<i<j<p+1

Ezercise 7.5. Prove that i (V) = pgp+41)(0) (see page B3 for the definition
of N(p+1))'

Remark 7.3. Needless to say that this fact follows from the standard for-
mula for exterior differential. It needs however to be proved that one may
use this formula even though V as an element of CDiff, (5, A") is not
skew-symmetric.

From (E=H) we get

p

O(x1, -+ Xpr1) = Z(_l)iﬂaxi(vbﬁa ey Xy e - aXp))(Xerl)

=1
Z Z+1v Xla"'af(ia"'aXp’SXi(Xerl))

+ (=195, (VX155 X))
+ Z Z+Jv {XZ’XJ} Xla"'a)%ia"'a)%ja""Xerl)

1<z<]<p

+Z DNV ({6 Xpa1 5 X155 X -+ Xp)

= Z Z+19X1 (VX155 X X)) (Xp1)

+ Z Z+Jv {XZ’XJ} Xlﬂ"'ﬂXia"'a)Zja"'aXerl)

1<i<j<p
p

) (DX K X b (1)) F (1Pl () (1)

i=1
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Therefore
(V) (X155 Xp) = e (D) (X1, -5 xp)

_Z Z+18X1 Xl;-"aiia"'axp))

+Z Z+Jv {XZ’XJ} Xh"'a)%ia"'a)%ja"'axp)

1<jg
p

------

i=1
Exercise 7.6. Prove that

G (1) = O(@) + (D), pes(m), e x(m)

Using this formula, let us rewrite the last term of (E) in the following
way:

Finally we obtain

p
(dij’n(v)) (Xla . 'aXp) - Z(_l)ZJrlaXi(v(Xla - 'a)%ia .- 'aXp))
=1
+Z Z+Jv {XZ’XJ} Xlﬂ""Xia"'ana"'aXp)
1<J
1 p
F LS = DT 00t e 00) ~ B ()

i=1

In particular, for p = 1 we have d;" () (p) = D, (1) — 4 (p) = Ly(p) —
(), ¥ € 3(m), p € 3(m), that is
a4 () = by — L,

Consider the following complex, which is said to be the (global) varia-
tional comple,

dl,n d2,n

0— .7:(’71') i) [_\1(71.) i) - i) /_\TL(,H_) E) Ell,n(ﬂ_) 1_) Ef,n(ﬂ_) 1_) o
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where operator E is equal to the composition of the natural projection
0,n

A"(7) — H™(7) and the operator H™(r) 4, e A

In view of Corollary on page L, the cohomology of this complex
coincides with H*(J%(7)).

The operator E is the Euler operator (see Exercise EZM on page E). It
takes each Lagrangian density w € Af(m) to the left-hand part of the cor-
responding Euler-Lagrange equation E(w) = 0. Thus the action functional

. /Mjoo(s)*(w), s e T(m),

is stationary on the section s if and only if j(s)* (E(w)) = 0.

If the cohomology of the space J°(m) is trivial, then the variational com-
plex is exact. This immediately implies a number of consequences. The
three most important are:

(1) ker E = imd (“a Lagrangian with zero variational derivative is a total
divergence” ); B B

(2) dw = 0 if and only if w is of the form w = dn, w € A" () (“all zero
total divergence are total curls”);

(3) £y = £, if and only if ¢ is of the form ¢ = E(w), ¢ € s(7) (this is

the solution of the inverse problem to the calculus of variations).

Now suppose that we are given ¢ € 3(m) such that £, = ;. How one
can find a Lagrangian w such that ¢ = E(w)? To this end take a one-
parameter family of fiberwise transformations Gy: F — E, 0 <t < 1, of
the space of the bundle 7: £ — M, with Gy = 0 and G; = idg. Consider
the corresponding family of evolutionary vector field 9,,, i.e.,

d 00 )* 00 )*

ZG =0, 06
for t > 0. Let us compute the correspondent Lie derivative 9, (1) (which is
different from the usual “component-wise” derivative). Take Q € A" @ C'A,
dQ) = 0, that represents ¢. Then 9, (Q2) = dc(Q2(Dy,)). Therefore D, () =

E(¢(¢:)). Hence
%G§m>*(¢) = E(Gy (¥(¢0))),

and integrating this with respect to ¢, we obtain the following homotopy (or
inverse) formula

o-n(f 1 GE (ulp0) it ).

15Below we use the notation E for the operator d™: H™ (1) — E}™ () as well.



117
o
Take, for instance, Gi(e,) = tes, e, € E, = 7 !(x). Then ! = n and we

have
=E Y’ INdt | .
Y (/0 E u'Y*(z, tu) t)

Ezercise 7.7. Let A € CDiff(P,A"(r)). Using the Green formula and Ex-
ercise on page [E&, prove that for any p € P one has

E(A(p)) = £,(A%(1)) + a1 (p)-

Deduce from this formula that for any ¢ € »(7) and w € A"(7) the following
equality holds

E(Dy(w)) = 9(E(w)) + £ (E(w)).

Ezercise 7.8. Let J = (Jo, J1,...,Jn) be a conserved current for an evolu-
tion equation £ = {u; = f(t, x, u, Uy, Uy, - . . ) }. Using the previous exercise,
prove that the vector-function ¢ = E(Jy), where Jy is the t-component of
the conserved current that is regarded as a function of (¢, z, u, Uy, Ugg, - . . ),
satisfies the equation

Dy(9) + £3(4) =0
(cf. Theorem on page [EZ3).

7.3. The term FE; for an equation. Let £ be an equation,
Py—=s 5 p AL p B2 p fs p B
be the compatibility complex for the universal linearization operator, and
A ey oA AT A A3 AL A A
P():?Af(ipl 1P2 2 3P4 LIRS
be the dual complex. Take a C-module Q.

Py

Theorem 7.3. For any equation £ and a C-module () one has
H"(C'A® Q) = Hy(P, ® Q).

Proof. The statement follows immediately from (B=0) on page and
Proposition B2 on page B3 O]

Let @ = CPA. The theorem gives a method for computing the Vinogradov
C-spectral sequence. Namely, since the term Ef'? = H9(CPA) of the Vino-
gradov C-spectral sequence is a direct summand in the cohomology group
HI(C*A®CP~LA), we have a description for the first term of the Vinogradov
C-spectral sequence. Thus:

Corollary 7.4. The term EV? of the Vinogradov C-spectral sequence is the
skew-symmetric part of the group H,_,(Ps @ CP~'A).
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It is useful to describe the isomorphisms given by this corollary in an
explicit form.

Consider an operator V € CDiff (s, A? ® CP~'A) that represents an ele-
ment of £V, This means that

doV =V,o/le

for an operator V; € CDiff(P;, A%"! @ CP~'A). Applying the operator d to
both sides of this formula and using Exercise I on page & we get

doVi=Vy0A

for some operator Vy € CDiff(P,, A%? ® CP~'A). Continuing this process,
we obtain operators V; € CDiff(P;, A% @ CP~'A), i =1,2,...,n — ¢, such
that

do Vioi=V;o A

For i = n—gq, this formula means that the operator V,,_, € CDiff(P,_,, A"®

CP~1A) represents an element of the module B, , ® C*~'A that lies in the
kernel of the operator A}, ;. This is the element that gives rise to the
homology class in Hn,q(lﬁ. ® CP7'A) corresponding to the chosen element
of B,

If the compatibility complex has the length k£,

Ag_
Py=sx B p By p 22 p 85 22 p )
then E7"? =0 for p > 0 and ¢ < n — k. This is the k-line theorem for the
Vinogradov C-spectral sequence.
In the case k = 2, i.e., for -normal equations, the two-line theorem holds:

Theorem 7.5 (the two-line theorem). Let £ be an (-normal differential
equation. Then:

(1) E¥"=0 forp>0andqg<n-—2,

(2) EP" 1 C ker(£y)er-1p  forp >0,

(3) EP™ C coker({)er-1a  for p > 0.

This theorem has the following elementary

Corollary 7.6. The terms EP(E) of the Vinogradov C-spectral sequence
satisfy the following:
(1) EPUE)=0ifp>1,qg#n—1n, 1 <r <o
(2) E5°(€) = ELI(E);
(3) B)U(E) = EQ/(E) = HI(E™), g <n—2
(4) Ey"N(E) = EX 1 (€) = H™H(E>);
(5) By () = EXH(E).
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Example 7.1. For an evolution equation & = {F = wu —
f(z,t,u, Uy, Upy . .. ) = 0} the two-line theorem implies that the Vinogradov
C-spectral sequence is trivial for ¢ # 1,2, p > 0, and exactly as in Exam-
ple B23 on page I one proves that Ef’l =0 forp > 3.

7.4. Example: Abelian p-form theories. Let M be a (pseudo-)Rieman-
nian manifold and 7: £ — M the p-th exterior power of the cotangent
bundle over M, so that a section of 7 is a p-form on M. Evidently, on the
jet space J°°(7) there exists a unique horizontal form A € AP(J*(x)) such
that j (w)(A) = w for all w € AP(M). Consider the equation & = {F = 0},
with F' = dxdA, where * is the Hodge star operator. Our aim is to calculate
the terms of the Vinogradov C-spectral sequence EV9(&) for ¢ < n — 2. We
shall assume that 1 < p <n — 1 and that the manifold M is topologically
trivial.

Obviously, we have Py = s = AP, P, = A" P, and (g = dxd: A? — A"P,
Taking into account Example I on page B, we see that the compatibility
complex for f¢ has the form

H (7.3)

AP

Py P P, Py
Thus £k = p + 2 and the k-line theorem yields Ei’q = 0 for « > 0 and
g < n—p—1. Since the Vinogradov C-spectral sequence converges to
the de Rham cohomology of £, which is trivial, we also get E? 4 =0 for
0<g<n—p—1, and dimE?’O =1, i.e.,‘H1 =H*>=...=H" P2 =0and
dim H° = 1. Next, consider the terms Ey? forn —p—1<qg<2n—p—1)
and ¢ > 0. In view of Corollary & on page I one has

Ei’q C qu(nfpfl)(ciflA) _ Eifl,qf(nfpfl)’

ISH
S|

Le

LI N NN ¥ s A" —— 0

because the complex dual to the compatibility complex (=) has the form

d d d

An—p g AP Ap—1 F «— 0.
po pl pQ perl

(Throughout, it is assumed that ¢ < n — 2.) Thus we obtain E* = 0 for
n—p—1<qg<2n-—p—1),i>0and dimFE; """ = 1. Again, taking
into account that the spectral sequence converges to the trivial cohomology,
we get BY? =0forn—p—1<q<2n—p—1)and dimE)" 7" = 1.
In addition, the map d" 7~ ': EY" ' — E/™ P! is an isomorphism.
Explicitly, one readily obtains that the one-dimensional space EY"™ 77! is
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@ @
3(n—p—1) | e 3(n—p—1)
2(n —p—1)| e—re 2(n—p—1) o—tre
n_p_]- o—>o n—p—l o—1o
n—p—11iseven n—p—1isodd

DIAGRAM 7.1.

generated by the element *dA € A"?~! and the map dP" P takes this
element to the operator *d: » = AP — A" P~! which generates the space

1,n—p—1
Eln p .

Further, let us consider the terms E9 for 2(n —p—1) < ¢ < 3(n—p—1).
Arguing as before, we see that all these terms vanish unless ¢ = 2(n—p—1)
and i = 0,1,2, with dim E}*™ 7™ = 1 and dim EF*™ 7Y <1, i = 0,2.
To compute the terms Ei’Q(nfp "D for i = 0 and i = 2, we have to consider
two cases: n —p — 1 is even and n — p — 1 is odd (see Diagram ).

In the first case, the map di’ﬂn*p*l): Ell’Q(nfpfl) — Ef’ﬂn*p*l) is trivial.
Indeed, the operator (xdA) A *d: 32 = AP — A2("P~1) which generates the
space El1 Anp 71), under the mapping @i’Q(nfp s the antisymmetrization
of the operator (w1, ws) — (xdwy) A (xdws), w; € 3 = AP. But this operator

is symmetric, so that d}’ﬂn*p*l) = 0. Consequently, Ef’ﬂn*p*l) = 0 and

dim E?’Q(nfpfl) = 1. This settles the case when n —p — 1 is even.

In the case when n—p—1is odd, the operator (wy,ws) + (*dw;) A (*dws)

. . 1,2(n—p—1) . . .
is skew-symmetric, hence the map d; (== ig an isomorphism. Thus,

dim E7?"P7Y = 1 and BV =0,

Continuing this line of reasoning, we obtain the following result.
Theorem 7.7. Fori = q =0 one has dim E?’O = 1. If either or both i and
q are positive, there are two cases:

(1) if n —p—1 is even then

dim B — {1 fori=Il(n—p—1) and ¢ =0, 1,

0 otherwise;
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(2) if n—p—1 is odd then

dim EY? = {

n—1

1 fori=Iln—p—1)andqg=1-1,1,

0 otherwise.

Herel<l< ————.
n—p-—1

In other words, let A be the _exterior algebra generated by two forms:
w1 = *xdA € A" P71 and wy = di(w) = *d € A" P=1 @ C'A; then we see
that the space P, ,.,,_, £1" is isomorphic to the subspace of A containing
no forms of degree ¢ > n — 2.

7.5. Conservation laws and generating functions. We start by de-
scribing the differentials d)""" and d;""" for an f-normal equation since
they directly relate to the theory of conservation laws.

Suppose that an f-normal equation & C J*(r) is given by a section F' €
F(m, &) = P.

Proposition 7.8. The operator

A0 BONE) = ANE) — EYMHE) = ker (6g)* C P
has the form

d" (k) =07 (1),

where h = [w] € H"1(£), w € A" 1(&) and O € CDiff(P,A"(£)) is an
operator satisfying dw = O(F).
Proof. We have d o (,, = 0o {s. Thus O is an operator that represents the
element d""'(h) € E;"™ (). Hence d)™ ' (h) = O*(1). O

Proposition 7.9. The term E" ' (E) can be described as the quotient

{V € CDiff(s, P) | l; 0V = V* 0 ls }/0,
where § = { ol | O € CDiff(P, P),0* =0 }.

Proof. Take a horizontal (n — 1)-cocycle with coefficients in C'A ® C*A. Let
an operator A € CDiff (s, P) corresponds to this cocycle by Theorem =3

on page B Then there exists an operator A € CDiff(P, [3) such that
¢ o A = Ao/lg. By the Green formula we have

(Cz(A(x1)), x2) — (Axa), Le(x2)) = d(A1(x1, X2)),

where x1, x2 € s, and Ay € CDiff(5)(5¢, A""!). The cocycle under consider-
ation belongs to Ef "1 if the operator A; is skew-symmetric:

A1()(1&(2) = _Al(XQaX1) mod K,
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where K C CDiff 2) (3¢, A"!) is the submodule consisting of the operators

of the form ~(x1, x2) = 71(Ze(x1). x2) + 12(fe(x2). x1) for some operators
1, Y2 € CDIiff (P, CDiff (s, A" 1)). In this case

(Ce(A(x1))s x2) — (A(x1), le(x2)) = —(Ce(A(x2)), x1) + (Alx2), le(x1))
= —(le(Alx2)), x1) + (x2, A" (le(x1)))
= —(A(le(x2)): x1) + (X2, Lz (A" (x1)))
modulo dK . This implies A = A*+ Bo (s for an operator B € CDiff(P, P).
One has (g oBols =l;0 A —l;0 A" =l; 0o A — A*olg, hence B* = —B.
Now we see that the operator V = A — %B o l¢ satisfies (g oV = V* o l¢.

The operator V is defined modulo the operators of the form [Jo fg. We
have ¢z oo lg = {3z o 0" o lg, so that [ = [ O

Proposition 7.10. The operator d;" " ': By (&) = ker s — EP"71(E)
15 given by

d;" (W) = (Ly + A*) mod 6,
where A € CDIff(P, 5) is an operator satisfying (5 (1) = A(F).

Proof. By Green’s formula on J*°(7) we have

(W, tr(x)) = {p(¥), x) = d([O(K),
where x € s(m), O € CDiff (3¢(r), A" (7)) = C*'A(r) ® A" (7). Let us
compute d o d¢(0) € C*A(m) @ A™(7):
d(de(O)(x1, x2)) = D (d (D(XQ))) 9 (d0(x1))) — dO{x1, x2}))
= le(w,fF(Xz))) A (0, Lr(x1))) — (¥, £e({x1, x2}))
D (LR (¥), X >)+9><2(<EF(¢),X )+ (Cr(), {x1, x2})
= <f¢(X1)afF(X2)> (ly(x2), €r(x1)) = (lacr) (X1), X2) + (laem) (X2), X1)-

Therefore, the restriction of d o d¢(0J) to £ equals to

d o de(D) ‘goo (X1, X2)
= <f¢(X1),f£(X2)> - <€¢(X2)a€£(X1)> — (A(le(x1)), x2) + (ALe(x2)); x1)

= ((ly + A%)(x1), Le(x2)) = ((Ly + A7) (x2), e (1)) + dy(xa, X2),
where v € K. This completes the proof. O

Now we apply these results to the problem of computing conservation
laws of an ¢-normal differential equation &.

First, note that for a formally integrable equation £ the projections
EFFD 5 £ are affine bundles, therefore £+t and £® are of the same
homotopy type. Hence, H*(£*) = H*(E).
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Further, it follows from the two-line theorem that there exists the follow-

ing exact sequence:
0,n—1
0 — H™ (&) — A" 1(E) 2 ker (le)".

Recall that the group H" '(€) was interpreted as the group of conserva-
tion laws of the equation &£ (see the beginning of Section | on page ).
Conservation laws w € H"1(&) € H" (&) are called topological (or rigid),
since they are determined only by the topology of the equation £. In par-
ticular, the corresponding conserved quantities do not change under defor-
mations of solutions of the equation £. Therefore topological conservation
laws are not very interesting for us and we consider the quotient group
cl(€) = H1(E)/H™1(E), called the group of proper conservation laws of
the equation £. The two-line theorem implies immediately the following.

Theorem 7.11. If £ is an {-normal equation, then
cl(€) C ker 4.
If, moreover, H*(£) C H™(E) (in particular, H*(E) = 0), we have
(&) =kerd™ .
Element 1 € ker (¢ that corresponds to a conservation law [w] € cl(€) is

called its generating function.
Theorem IZX gives an effective method for computing conservation laws.

Remark 7.4. In view of Proposition B on page EZN, elements of Ef’"fl
can be interpreted as mappings from ker (3 to ker {g, i.e., from generating
functions of conservation laws to symmetries of £.

Proposition 7.12. Let £ = {u; = f(t,z,u, Uy, Ugy,...)} be an evolution
equation and J = (Jo, J1,...,Jn) a conserved current for €. Then the
generating function of J is equal to ¢ = E(Jy), where Jy is the t-component

of the conserved current that is regarded as a function of (t,z,u, Ug, Ugs, - . . ).

Proof. The restriction of the total derivative D; to the equation £ has the

form: D, = % + 9. Hence % +9¢(Jo)+ > i Di(J;) = 0. On the other
0 0J,

hand, Dy = —- + ., therefore D,(Jo) + 1L, Di(h) = 8—750 + 9, (o) —

0J,

8—750 —9(Jo) = Dur—y(Jo) = Ly (uy — f). Thus ¢ = 5 (1) = E(Jy). O

Let ¢ € kerle be a symmetry and [w] € H"(£) a conservation law of
the equation £. Then [9,(w)] is a conservation law of £ as well.

Proposition 7.13. If ¢ € kerl: is the generating function of a conser-
vation law [w] of an ¢-normal equation € = {F = 0}, then the generating
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function of the conservation law [Dy,(w)] has the form D,(¢)+A*(¢), where
the operator A € CDiff(P, P) is defined by 9,(F) = A(F).

Proof. First, we have

(W, le(x)) = dlu(x) + dy(le(x)), X € 3,

where v € CDiff (P, A"!). Using the obvious formula

ESM(W)(XQ) - 8Xl (EW(XQ)) - En({xla XQ})’ X1, X1 €%, nNeE /_\n’

where {-, -} is the Jacobi bracket (see Definition E=3 on page B, we obtain

dls ) (X) = d(Dyp (Lo (X)) —d(lu({, X})) = Dy (d(Lu(X)) —d(lu({©, x}))
(X)) = (W, Le({2, x3)) — Doldy(Le (X)) + dy(Le({p, x}))

= (Du(1), Le(X)) + (¥, (Dp(le(X)) — Le({p, X)) + dY (Le(x))
= (Do (¥), Le (X)) + (W, lo (7| goo) + ' (Le (X))
= (1), Le (X)) + (¥, A(Le(X))) + dy' (Le(x))
= (D + A (W), Le (X)) + d" (X)),

~— O

where 7/, 7" € CDiff(P,A""'). This completes the proof. O]

7.6. Generating functions from the antifield-BRST standpoint. A
differential equation & = {F = 0}, F' € P, is called normal, if any C-differ-
ential operator A, such that A(F') = 0, vanishes on £*. A normal equation
is obviously /-normal.

Consider a normal equation £ and the complex on J*°(7)

0 F < CDiff(P, F) < CDiffsl} (P, F) < CDIff2 (P, F) < -+,

(A1, .. ypk) = A(F,pr,y...,pk), pi € P. This complex is exact in all
terms except for the term F. At points § € £, the exactness follows
immediately from the normality condition. At points 6§ ¢ £, this is a
well known fact from linear algebra (see Example B2 on page IEd). The
homology in the term F is clearly equal to F(E).

In physics, this complex is said to be the Koszul-Tate resolution, and
elements of CDiff?}Ct) (P, F) are called antifields.
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Consider the commutative diagram

0 0 0

0 e—— A" >~ CDiff(P,A") «"— CDifflli(P.A") «"— ...

d d d

0 e—— A™! % CDiff(P,A™") «"— CDiffai(P, A1) «"— ...

d d d

0 e—— A" % CDiff(P,A"?) «"— CDiffli(P,A"2) «"— ...

d d d

From the standard spectral sequence arguments (see the Appendix) and
Theorem B3 on page BA it follows that H?(E) = H,_,(L2*(P),d). Since the
complex (L(P), §) is a direct summand in the complex (CDiff?lt)(P, P),6),
it is exact in all degrees except for 0 and 1. This yields the two-line theorem
for normal equations. We also get

H" (&) = Hy(L2(P),8) = {¢ € Pmod T | (¢, F) € dA™ '},

where T = {4 € P | ¢ = O(F), O € CDiff(P, P), 0* = —O}. The condi-
tion (1, F) € dA™"! is equivalent to 0 = E(y, F) = (3,(¢) + €;,(F). So we
again obtain the correspondence between conservation laws and generating
functions together with the equation ¢%(¢)) = 0.

7.7. Euler—Lagrange equations. Consider the Euler-Lagrange equation
E = {E(L) = 0} corresponding to a Lagrangian £ = [w] € H"(7). Let
¢ € x(m) be a Noether symmetry of L, i.e., D,(L) =0 on J>®(r).

FExercise 7.9. Using Exercise [Z0 on page IEE check that a Noether sym-
metry of £ is a symmetry of the corresponding equation £ as well, i.e.,
sym(L) C sym(&).

Ezercise 7.10. Show that if E5"™(£) = 0, then finding of Noether sym-
metries of the Lagrangian £ = [w] amounts to solution of the equation
E(lu(v) = frr)(v) + L,(E(L)) = 0. (Thus, to calculate the Noether
symmetries of an Euler-Lagrange equation one has no need to know the
Lagrangian.)
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Let 9,(w) = dv, where v € A"~!(7). By the Green formula we have

V(W) — dv = Lu(p) — dv = L(1)(p) + dy(p) — dv
=E(L)(p) +d(v(p) —v) =0.
Set

n=(—=7p))leg~ €A"(E).
Thus, d n|ee. =0, i.e., [g] € H"1(€) is a conservation law of the equation
&. The map

sym(£) — H* (&), ¢ [n],

is said to be the Noether map.
An arbitrariness in the choice of w and v leads to the multivaluedness of
the Noether map.

Ezercise 7.11. Check that the Noether map is well defined up to the image
of the natural homomorphism H" !(r) — H" ().

Proposition 7.14. If the Fuler-Lagrange equation £ corresponding to a
Lagrangian L is ¢-normal, then the Noether map considered on the set of
Noether symmetries of L is inverse to the differential dcl)’"fl.

Proof. On J*(m) we have

dln(X) = Upie)(X) = (s (), #) + (E(L), Lo ().
Therefore on £ we obtain df,(x) = (fe(X), ), i.e., )" ([n]) = . O

Remark 7.5. The Noether map can be understood as a procedure for finding
a conserved current corresponding to a given generating function.

Thus, we see that if 9, is a Noether symmetry of a Lagrangian, then
@ is the generating function of a conservation law for the corresponding
Euler-Lagrange equation. This is the (first) Noether theorem. Note that
since for Euler-Lagrange equations one has /i = (¢, the inverse Noether
theorem is obvious: if ¢ is the generating function of a conservation law for
an BEuler-Lagrange equation, then ¢ is a symmetry for this equation.

Let us discuss the Noether theorem from the antifield-BRST point of
view. Consider a 1-cycle ¢ € » of the complex L3(3). We have (¢, E(w)) €
dA"1, where w is a density of the Lagrangian £ = [w]. Hence D, (w) €
dA"~! and, therefore, 9,(L) = 0, i.e.,  is a Noether symmetry. Thus, the
Koszul-Tate resolution gives a homological interpretation of the Noether
theorem.

Now, suppose that the Lagrangian has a gauge symmetry, i.e., there exist
an F-module a and a C-differential operator R: a — s such that R(«)
is a Noether symmetry for any a € a. This means that Dp)(£) = 0 or
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lroR = 0. Hence R*ol}; =0 and, finally, R*(¢;:(1)) = R*(E(L)) = 0. Thus,
if the Lagrangian is invariant under a gauge symmetry, then theNoether
identities R*(E(L)) = 0 between the Euler-Lagrange equations hold (the
second Noether theorem).

7.8. The Hamiltonian formalism on J>(7). Let A € CDiff(3¢(r), 5¢(7))
be a C-differential operator. Define the Poisson bracket on H"(m) corre-
sponding to the operator A by the formula

{wi,wata = (A(E(w1)), E(w2)),

where (, ) denotes the natural pairing s(7) x (7)) — H"(7).
The lemma below shows that the operator A is uniquely determined by
the corresponding Poisson bracket.

Lemma 7.15. Let m: E — M be a vector bundle.
(1) Consider an operator A € CDiff(3(r), P), where P is an F(r)-
module. If for all wy, ... ,w; € H"(w) one has

A(E(wl), ...,E(w)) =0,

then A= 0.

(2) Consider an operator A € CDiff () (3¢(r), A"(r)). If for all cohomology
classes wy, ... ,w € H"(7) the element A( (w1), ..., E(w)) belongs to
the image of d, then im A C imd, i.e., —1) ) (see Subsection

2.
3) Consider an operator A € CDiff_1y(3(m), s¢(7)). If for all elements
(1-1)

Wi, ..., w € HY(7) one has (A(E(w), ..., E(w_1)), E(w)) =0, then
A=0.

Proof. (1) It suffices to consider the case [ = 1. Obviously, on J*°(7) every
element of (r) = F(m, ) of the form 7*(f), with f € ['(x), (in other
words, every element of 3(m) depending on base coordinates x only) can
locally be presented in the form 7*(f) = E(w) for some w € A™(7). Thus
A(m*(f)) = 0 for all f. Since A is a C-differential operator, this implies
A=0.

(2) It is also sufficient to consider the case [ = 1. We have E(A(E(w))) =
0. Using Exercise & on page EE, we get

0= E(A(EW))) = e, (A1) + ) (EW))
for all w € A™(m). As above, we see that for any f € ['(7) there exists w €
A" () such that 7*(f) = E(w). Since lz+(y) = 0, we obtain £}. ,(7*(f)) = 0.
Hence 0. ;) = 0, so that 0 = E(A(E(w))) = (g, (4"(1)).

Ezercise 7.12. Prove that locally there exists a form w € A"(7) such that
(g () is the identity operator.
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Using this exercise, we get 0 = A*(1) = p(A), which is our claim.
(3) The assertion follows immediately from (1) and (2) above. O

Definition 7.1. An operator A € CDiff(5(), s(m)) is called Hamiltonian,
if its Poisson bracket defines a Lie algebra structure on H" (), i.e., if
{wi,wata = —{wa, w1 }a, .
Hwi,wata,wsta + {{we, wata,wifa + {{ws, wita,wafa = 0. (7.5)
The bracket {, } 4 is said to be a Hamiltonian structure.

Proposition 7.16. The Poisson bracket {, } 4 is skew-symmetric, i.e., con-
dition () holds, if and only if the operator A is skew-adjoint, i.e.,
A= —A*

Proof. Since
{wr,wata + {ws,wita = (A + A7) (E(wr)), E(w)),
the claim follows immediately from the previous lemma. O

Now we shall prove criteria for checking an arbitrary skew-adjoint op-
erator A € CDiff(5(m), »(m)) to be Hamiltonian. For this, we need the
following

Lemma 7.17. Consider an operator A € CDiff(3¢(r), s(m)) and an ele-

ment ¢ € x(m). Define the operator {4, € CDiff(s¢(m), s¢(m)) by
lag(p) = (Lale))(W) ¢ € x(m).
Then
@wl (¢2) - @1*@2 (@Z}l)' (7-6)
Proof. By the Green formula,
(A1), ¥2) = (b1, A™(¥2)).
Applying 9, to both sides, we get
(Dp(A) (W), th2) = (Y1, D,(A")(¥2)),
and so
(Caw, (0),¥2) = (Y1, Lar ()
Again the Green formula yields
(0, Ch .y, (V2)) = (Cae 4, (1), ),
and the lemma is proved. O

Theorem 7.18. Let A € CDiff(3(n), »(m)) be a skew-adjoint operator;
then the following conditions are equivalent:

(1) A is a Hamiltonian operator;
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(2) (Ca(A1))(¥2), ths) + (La(A(h2))(hs), Un) + (Ca(A(Ws))(¢n), ¥2) = 0
fOT all ¢1a¢25¢3 € }Af(ﬂ-)7

(3) Caun (A(¥2)) = Caw, (A(Wn)) = Al y, (1)) for all 1y, 1by € 3(7);

(4) the expression €ay, (A(12)) + 3 A, (V2)) is symmetric with respect

to 1,1y € 32(m);
(5) [Pag), Al = Lawy o A+ Aol for allyy € ImE C ().

Moreover, it is sufficient to verify conditions (2)—(4) for elements ¢; € imE
only.

Proof. Let wi,ws, w3 € H™(7) and ¥; = E(w;). The Jacobi identity (ZJ) on
the preceding page yields

Fllorunbawada = § ~Dag (Alw), v

= (A ) — (Al (), ) = (A1), Lo (A(w2)

= § —(CAlAWR) (1), ) + (Aa), Loy (AD))) — (A, i (A())
= § (At W), v =0,

where as above the symbol § denotes the sum of cyclic permutations. It
follows from Lemma EZX on page IEZA that this formula holds for all 1; €
#(m). Criterion (2) is proved.

Rewrite the Jacobi identity in the form

(Cawy (A1), ¥3) + (AWn), €4y, (2)) — (AL, (Y1), ¥3) = 0.
Using (BEH) on the preceding page, we obtain

(Can, (A(2)), ¥s) — (Ca, (A(¥1)), ths) — (A(Cy, (1)), ¥s) = 0,
which implies criterion (3).
The equivalence of criteria (3) and (4) follows from () on the facing

page.
Finally, criterion (5) is equivalent to criterion (3) by virtue of the following
obvious equalities:

[814(1112)’ A] (¢1) - EAJ/H (A(¢2))’
lapoA="LyypyoA—AoclyoA.
This concludes the proof. O

Example 7.2. Consider a skew-symmetric differential operator A f(w) —
['(7). Then its lifting (see Definition BZZ on page BR) CA: s¢(m) — () is
obviously a Hamiltonian operator.
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Exercise 7.13. Check that in the case n = dim% =land m =dimnr =1
operators of the form A = D? + (a+ Bu)D, + 5 Ua aT€ Hamiltonian.

Let A: 3(m) — s(7) be a Hamiltonian operator. For any w € H"(r) the
evolutionary vector field X, = 9 4g(w)) is called Hamiltonian vector field
corresponding to the Hamiltonian w. Obviously,

Xy (w2) = (AE(w1), E(w2)) = {wi,wa}a.
This yields

X{UJLUJQ}A (w) - {{wla wQ}A’ W}A - {wla {wQ, W}A}A - {WQa {Wla W}A}A
= (le 0 Xy, — Xuy 0 le)(w) = [qu XwQ](w)

for all w € H™(r). Thus
Xiwrwata = [Xon, Xu)- (7.7)

As with the finite dimensional Hamiltonian formalism, EZdimplies a result
similar to the Noether theorem.
For each H € H" (), the evolution equation

u = A(E(H)), (7.8)

corresponding to the Hamiltonian H is called Hamiltonian evolution equa-
tion.

Example 7.3. The KdV equation u; = uuy 4tz admits two Hamiltonian
structures:

and

2 1 u?
= (D 4+ ZuD,+-u, | (E[ =) ).
= (g (2(3))

Theorem 7.19. Hamiltonian operators take the generating function of a
conservation law of equation (BA) to the symmetry of this equation.

Proof. Let A be a Hamiltonian operator and
Qo(t) + @1 (t) Adt € N*(m) @ A" () A dt

be a conserved current of equation (). This means that D;(wy(t)) = 0,
where wo(t) € H"(r) is the horizontal cohomology class corresponding to
the form @y(t), and D, is the restriction of the total derivative in ¢ to the
equation. Further,

0 0
Di(wg) = % + D 4wy (wo) = % +{H,wo}
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This yields

0

ano + [ X, Xy = 0.

Hence X,, = DaE(w)) is a symmetry of () on the preceding page. It
remains to recall that E(wy) is the generating function of the conservation
law under consideration (see Proposition 2 on page [EZ3). O]

Remark 7.6. Thus Hamiltonian operators are in a sense dual to elements of

E?" " (cf. Remark I on page EZ3).

7.9. On superequations. The theory of this and preceding sections is
based on the pure algebraic considerations in Sections ll and B Therefore
all results remain valid for the case of differential superequations, provided
one inserts the minus sign where appropriate (detailed geometric definitions
of superjets, super Cartan distribution, and so on the reader can find, for
example, in [@4, FH]). So we discuss here only a couple of somewhat less
obvious points and the coordinates formula.

Let M be a supermanifold, dim M = n|m, and 7 be a superbundle over
M, dim7 = s|t. The following theorem is the superanalog of theorem E=3
on page B3

Theorem 7.20. (1) A, = 0 for s # n.

(2) A, is the module of sections for the bundle Ber(M), the latter being
defined as follows: locally, sections of Ber(M) are written in the form
f(z)D(x), where f € C®U) and D is a basis local section that is
multiplied by the Berezin determinant of the Jacobi matriz under the
change of coordinates. The Berezin determinant of an even matriz

(& B) is equal to det(A — BD™'C)(det D).

Proof. The assertion is local, so we can consider the domain U with lo-
cal coordinates z = (v;,&;), ¢ = 1,...,n, j = 1,...,m, and split the
complex () on page B Diff*(A*) in the tensor product of complexes
Diff " (A*)even ® Diff " (A*)oqq, where Diff " (A*)eyen is complex (&) on the
underlying even domain of & and Diff*(A*),qq is the same complex for the
Grassmann algebra in variables &, ..., &,.

We have H'(Diff" (A*)eyen) = 0 for i # n and H (Diff " (A*)even) = A},
where A7} is the module of n-form on the underlying even domain of ¢. To
compute the cohomology of Diff"(A*)qq consider the quotient complexes

O — Smblk(A)Odd —_— SmblkJrl(Al)Odd —

where Smbly(P)oaa = Diff} (P)oaa/Diff; (P)oaa- Then an easy cal-
culation shows that these complexes are the Koszul complexes, hence

H(Diff" (A*))oaa = 0 for ¢ > 0 and HO(Diff"(A*)) is a module of rank
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1. Therefore A; = H(Diff*(A*)) = 0 for i # n and the only operators that

0
mf(f%f)

To complete the proof it remains to check that A, is precisely Ber(M),
i.e., that changing coordinates we obtain:

represent non-trivial cocycles have the form dy; A- - - Ady,

m

0& ... 0&n
= dv; /\---/\dvnam'a'infa%fBer <J <§)> + T,

dyy A=+ N dyy f

where z = (v;,7);) is a new coordinate system on U/, Ber denotes the Berezin
x

determinant, J <—) is the Jacobi matrix, T" is cohomologous to zero. This
z

is an immediate consequence of the following well known formula for the
Berezin determinant: Ber(4 £) = det A - det D, where D is defined by

(28)" =(23) O

The coordinate expression for the adjoint operator is as follows. Let
|o|

0
A € Diff(A, B) be a scalar operator A =) Daga—. Then
Ty
olel
A" = ;(—1)”%%%—% o ay.
Here the symbol of an object used in exponent denotes the parity of the
object.
Now, consider a matrix operator A: P — Q, A = ||A%||, where the matrix

elements are defined by the equalities A(Y", eaf®) = -, 5 A%(f7), {ei}

a,f Ca
is a basis in P, {e!} is a basis in Q. If D is even, then A* has the form

D(A*)Z _ (—1)(€i+€;)(A+ei)(DA5)*.
If D is odd, then
D((A*)H)Z (_1)(e¢+A)(e;+l)+Aei (DA?)*,

where (45 )H = (5 9)is the II-transposition.
Remark 7.7. One has (A™)! = (—1)eFe Al
Remark 7.8. There is one point where we need to improve the algebraic

theory of differential operators to extend it to the supercase. This is the
definition of geometrical modules that should read:
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Definition 7.2. A module P over C*(M) is called geometrical, if
ﬂ FLI;P =0,

x € Mg
k>1

where M,q is the underlying even manifold of M and p, is the ideal in
C*°(M) consisting of functions vanishing at point z € Mq.
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APPENDIX: HOMOLOGICAL ALGEBRA

In this appendix we sketch the basics of homological algebra. For an
extended discussion see, e.g., [E4 2, [, Z3, H].

8.1. Complexes. A sequence of vector spaces over a field k and linear
mappings
e — K1 ﬂKiii)KiH d_H>

is said to be a complex if the composition of any two neighboring arrows is
the zero map: d' o d'~! = 0.

The maps d' are called differentials. The index 7 is often omitted, so that
the definition of a complex reads: d* = 0.

By definition, imd"~! C kerd'. The complex (K*,d®) is called exact (or
acyclic) in degree i, if imd"~! = kerd’. A complex exact in all degrees is
called acyclic (or eract, or an ezact sequence).

Example 8.1. The sequence 0 — L L Kis always a complex. It is acyclic
if and only if f is injection. The sequence K -5 M — 0 is always a complex,
as well. It is acyclic if and only if ¢ is surjection.

The sequence

0—-LLKLM—0 (8.1)

is a complex, if go f = 0. It is exact, if and only if f is injection, g is
surjection, and im f = ker ¢g. In this case we can identify L with a subspace
of K and M with the quotient space K /L. Exact sequence (B is called a
short exact sequence (or an exact triple).

Example 8.2. The de Rham complezr is the complex of differential forms
on a smooth manifold M with respect to the exterior derivation:

ey AL i)Aii)AiJrl i) '
The cohomology of a complex (K*,d®) is the family of the spaces
HY(K*,d*) = kerd'/imd' .
Thus, the equality H(K*®,d*) = 0 means that the complex (K*,d®) is
acyclic in degree 7. Note that for the sake of brevity the cohomology is
often denoted by H'(K*®) or H'(d*). Elements of kerd’ C K° are called
i-dimensional cocycles, elements of imd~! C K are called i-dimensional
coboundaries. Thus, the cohomology is the quotient space of the space of
all cocycles by the subspace of all coboundaries. Two cocycles k; and ko

from common cohomology coset, i.e., such that ky — ks € imd‘~!, are called
cohomologous.
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Remark 8.1. In the case of the complex of differential forms on a manifold
cocycles are called closed forms, and coboundaries are called exact forms.

Remark 8.2. 1t is clear that the definition of a complex can be immediately
generalized to modules over a ring instead of vector spaces.

Exercise 8.1. Prove that if
g S g g £

is a complex of modules (and d* are homomorphisms) and P is a projective

module, then H(Q* ® P) = H'(Q*) ® P.

Complexes defined above are called cochain to stress that the differentials
raise the dimension by 1. Inversion of arrows gives chain complexes

di—1 d; dit1

e K — K —— K — -+,

homology, cycles, boundaries, etc. The difference between these types of
complex is pure terminological, so we shall mainly restrict our considerations
to cochain complexes.

A morphism (or a cochain map) of complexes f: K* — L* is the family
of linear mappings f': K* — L' that commute with differentials, i.e., that
make the following diagram commutative:

4 dit . di ‘ ditt
[N KZ*l L) KZ —K) KZ+1 L)

J/fi—l J/fz J/fi«rl

4 di=t P 4 ditt

s Y o o
Such a morphism induces the map H'(f): H (K®) — H'(L®), [k] — [f(k)],
where k is a cocycle and [ - ] denotes the cohomology coset. Clearly,
Hi(fog) = H(f)o H(g) (so that H* is a functor from the category of
complexes to the category of vector spaces). A morphism of complexes is
called quasiisomorphism (or homologism) if it induces an isomorphism of
cohomologies.

Example 8.3. A smooth map of manifolds F': M; — M, gives rise to the
map of differential forms F™*: A*(M;) — A®*(M;), such that d(F*(w)) =
F*(d(w)). Thus F* is a cochain map and induces the map of the de Rham
cohomologies F*: H*(My) — H*(M,). In particular, if M; and M, are
diffeomorphic, then their de Rham cohomologies are isomorphic.

Exercise 8.2. Check that the wedge product on differential forms on M
induces a well-defined multiplication on the de Rham cohomology H*(M) =
€, H' (M), which makes the de Rham cohomology a (super)algebra, and not
just a vector space. Show that for diffeomorphic manifolds these algebras
are isomorphic.
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Two morphisms of complexes f® g*: K* — L*® are called homotopic if
there exist mappings s': K* — Li~! such that

fi_ gl = sitldi 4 gi1st.
The mappings s’ are called (cochain) homotopy.

Proposition 8.1. If morphisms f* and ¢g* are homotopic, then H'(f*) =
Hi(g®) for all i.

Proof. Consider a cocycle z € K%, dz = 0. Then

1(2) = g(2) = (sd + ds)(2) = d(s(2)).
Thus, f(z) and g(z) are cohomologous, and so H'(f*) = H'(g°). O

Two complexes K*® and L® are said to be cochain equivalent if there exist
morphisms f®: K* — L® and ¢*: L* — K* such that g o f is homotopic to
idge and fog is homotopic to idz.. Obviously, cochain equivalent complexes
have isomorphic cohomologies.

Example 8.4. Consider two maps of smooth manifolds Fy, Fy: My — Ms
and assume that they are homotopic (in the topological sense). Let
us show that the corresponding morphisms of the de Rham complexes
Fy, Fyf: A*(My) — A*(M,) are homotopic (in the above algebraic sense).

Let F': My x [0,1] — M; be the homotopy between Fy and Fy, Fy(z) =
F(z,0), Fi(z) = F(x,1). Take a form w € A’(M,). Then

F*(w) = wi(t) + dt N wso(t),

where wy(t) € AY(My), wa(t) € A"1(M;) for each t € [0,1]. In particular,
Fi(w) = wi(0) and Fj(w) = wi(l). Set s(w) = fol wa(t)dt. We have
F*(dw) = d(F*(w)) = dw; (t) + dt Awi(t) — dt A dws(t), where ' denotes the
derivative in ¢. Hence, s(d(w)) = fol (Wi (t) — dwa(t))dt = wi(1) — w1 (0) —
dfol wa(t)dt = Ff(w) — F§(w) — d(s(w)), so s is a homotopy between F{
and FY.

FEzercise 8.3. Prove that if two manifolds M; and M, are homotopic (i.e.,
there exist maps f: M; — My and g: My — M; such that the maps fog
and g o f are homotopic to the identity maps), then their cohomology are
isomorphic.

Corollary 8.2 (Poincaré lemma). Locally, every closed form w € A'(M),
dw =0,1>1, is exact: w = dn.

A complex K* is said to be homotopic to zero if the identity morphism
idge homotopic to the zero morphism, i.e., if there exist maps s': K* —
K ! such that idge = sd + ds. Obviously, a complex homotopic to zero
has the trivial cohomology.
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Example 8.5. Let V' be a vector space. Take a nontrivial linear functional
u: V — k and consider the complex

0—kLVELAw) L. LAy Lanw) &L

where d is the inner product with u:
k
dlvy AN+ Nvg) = Z(—l)”lu(vi)vl AN ANV AVgr A e A V.
i=1
Take also a nontrivial element v € V' and consider the complex
0—-kSVSAYV) S .. S ALY SANV) S ..
where s is the exterior product with v:
s(vpy A Avg) =vAvg A A Ug.

Since d is a derivation of the exterior algebra A*(V'), we have (ds+ sd)(w) =
dlvAw)+vAdw = dvAw = u(v)w. This means that both complexes under
consideration are homotopic to zero and, therefore, acyclic.

Example 8.6. Consider two complexes
0— S"(V) L V)@V & s 2(V)@ A2(V) & - | (8.2)
0—S"(V)SS" M V)eV S S"2(V)o A2 (V) S ... (8.3)

where
q

dw@vy A=+ Avy) :Z(—l)iﬂviw@vl/\---/\vi,l/\viﬂ/\---/\Uq,
i=1

P
s(wy - wy, ®v) = E Wy Wim Wi+ - Wy @ Wy A .
i=1

Both maps d and s are derivations of the algebra S*(V) @ A*(V), therefore
their commutator is also a derivation. Noting that on elements of degree
one the commutator is identical, we get the formula

(ds + sd)(x) = (p+ q)x, zeSP(V)eA(V).
Thus again both complexes under consideration are homotopic to zero (for

n > 0). Complex &) is called the Koszul complez. Complex [BZD) is the
polynomial de Rham complex.

A complex L*® is called a subcomplex of a complex K*®, if the spaces L are
subspaces of K*, and the differentials of L® are restrictions of differentials
of K*, i.e., dg(L"™') c L'. In this situation, differentials of K* induce
differentials on quotient spaces M* = K*/L' and we obtain the complex M?*
called the quotient compler and denoted by M*® = K*/L®.
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The cohomologies of complexes K®, L*®, and M* = K*®/L* are related
to one another by the following important mappings. First, the inclusion
p: L* — K* and the natural projection ¢: K* — M?* induce the cohomol-
ogy mappings H'(¢): H'(L®*) — H'(K®) and H'(¢)): H(K®) — H'(M?*).
There exists one more somewhat less obvious mapping

o' H'(M®) — H"™Y(L*)

called the boundary (or connecting) mapping.

The map &' is defined as follows. Consider a cohomology class z €
H'(M?®) represented by an element y € M'. Take an element z € K such
that ¢(z) = y. We have ¢(dz) = dip(z) = dy = 0, hence there exists an
element w € L' such that p(w) = dz. Since p(dw) = dp(w) = ddz = 0,
we get dw = 0, i.e., w is a cocycle. It can easily be checked that its coho-
mology class is independent of the choice of y and z. This class is the class
' (x).

Thus, given a short exact sequence of complexes
0— L5 K% M —0 (8.4)
(this means that ¢ and 1 are morphisms of complexes and for each i the
sequences 0 — L! KT M 0 are exact), one has the following

infinite sequence:

Hzfl(Mo) oi-1 HZ(L.) H(p) HZ(K.) H'(y) HZ(M.)

1 . i+1
2 gy 229 (85)

H'7' ()
C—

The main property of this sequence is the following.
Theorem 8.3. Sequence (BR) is exact.

Proof. The proof is straightforward and is left to the reader. O

Sequence (B is called the long exact sequence corresponding to short
exact sequence of complexes (B).

Exercise 8.4. Consider the commutative diagram

0 Ay As As 0
I e [
0 By By B3 0.

Prove using Theorem Bl that if f and h are isomorphisms, then ¢ is also
an isomorphism.
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8.2. Spectral sequences. Given a complex K*® and a subcomplex L* C
K*, the exact sequence (B&) on the preceding page can tell something about
the cohomology of K*, if the cohomology of L* and K*®/L® are known. Now,
suppose that we are given a filtration of K*, that is a decreasing sequence
of subcomplexes

K DK DK DK D---.
Then we obtain for each p =0,1,2,... complexes

—1 1
s BReTl L pra et

where Ef? = Kr+e/KP71. The cohomologies BV = HPT1(E}®) of these
complexes can be considered as the first approximation to the cohomology
of K*. The apparatus of spectral sequences enables one to construct all
successive approximations F,, r > 1.

Definition 8.1. A spectral sequence is a sequence of vector spaces EP?
r > 0, and linear mappings d??: EP? — EPTT47+1 guch that d? = 0 (more
precisely, d?t1" 1 o P% = () and the cohomology HP4(E®* d**) with
respect to the differential d, is isomorphic to EXY,.

Thus F, and d, determine F, 1, but do not determine d, ;.

Usually, p + ¢, p, and ¢ are called respectively the degree, the filtration
degree, and the complementary degree.

It is convenient for each r to picture the spaces EP? as integer points on
the plain with coordinates (p,q). The action of the differential d, is shown
as follows:

q
E,
(p. q)

K\\\\.(p+nq—r+1)

Take an element o € EP9. If d.(a) = 0 then a can be considered as
an element of EYf . If again d,;1(a) = 0 then « can be considered as an
element of E?’f, and so on. This allows us to define the following two vector
spaces:

Cri={aeEy|dy(a)=0,di(a) =0, ...,d-(x)=0,... }, (8.6)
BP9 = {« € CP? | there exists an element 5 € EP? such that o« = d,.(3) }.

Set EP1 = CP49/BP4. A spectral sequence is called regular if for any p and
q there exists r¢, such that d?¢ = 0 for » > 7. In this case there are natural
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projections
BP0 — BV — - — ERS r 2,

and EP? = injlim £P9.

Let E and 'E' be two spectral sequences. A morphism f: E — 'E is
a family of mappings fP?: EP? — 'EP4 gsuch that d, o f, = f. od, and
fre1 = H(fr). Obviously, a morphism f: F — 'E induces the maps
fra: EP4 — 'EP4. Further, it is clear that if f, is an isomorphism, then
fs are isomorphisms for all s > r. Moreover, if the spectral sequences F
and 'E are regular, then f., is an isomorphism as well.

Ezercise 8.5. Assume that EP? #£ 0 for p > po, ¢ > qo only. Prove that in
this case there exists ry such that EP¢ = EPf, = ... = EP9 for r > .

Consider a graded vector space G = @D, G* endowed with a decreasing
filtration --- D G D Gpy1 D -+, such that 2(, G, = 0 and J, G, = G.
The filtration is called regular, if for each ¢ there exists p, such that G;) = 0.

It is said that a spectral sequence E converges to G, if the spectral
sequence and the filtration of G are regular and E?? is isomorphic to

Gngq /Gp+q

p+1

Exercise 8.6. Consider two spectral sequences F and 'F that converge to G
and G’ respectively. Let f: ' — 'E be a morphism of spectral sequences
and g: G — G’ be a map such that f27: EP4 — 'EP4 coincides with the
map induced by g. Prove that if the map f??: EP? — 'EP4 for some r is an
isomorphism, then ¢ is an isomorphism too.

Now we describe an important method for constructing spectral se-
quences.

Definition 8.2. An ezact couple is a pair of vector spaces (D, E) together
with mappings i, j, k, such that the diagram

D - D
N S
E

is exact in each vertex.

Set d = jk: E — E. Clearly, d> = 0, so that we can define cohomology
H(E,d) with respect to d. Given an exact couple, one defines the derived
couple

’

D/ _Z_) D/
BN
E/
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as follows: D' = imi, ' = H(F,d), ¢ is the restriction of i to D', j'(i(x))
for x € D is the cohomology class of j(z) in H(E), the map k' takes a
cohomology class [y], y € E, to the element k(y) € D'.

Exercise 8.7. Check that mappings 7', j', and k" are well defined and that
the derived couple is an exact couple.

Thus, starting from an exact couple C; = (D, E,i, j, k) we obtain the
sequence of exact couples C, = (D, E,, i, jr, k) such that C,;; is the
derived couple for Ci.

A direct description of C, in terms of C is as follows.

Proposition 8.4. The following isomorphisms hold for all r:
D, =imi" !,
E, =k Yimi" ) /j(keri"t).

The map i, is the restriction of i to D,, j.(i" *(x)) = [j(z)], and k.([y]) =
k(y), where [ -] denotes equivalence class modulo j(keri™™1).

Proof. The proof is by induction on r and is left to the reader. O

Now suppose that the exact couple (' is bigraded, i.e., D = ®p,q Dra
E=,, ", and the maps 4, j, and k have bidegrees (—1,1), (0,0), (1,0)
respectlvely In other words, one has:

P DPe Dpfl,qul’

jpvq: Dpvq — Epvq’

kpvq: Epvq — Derl,q'
It is clear that the derived couples C) are bigraded as well, and the map-
pings ., j., and k, have bidegrees (—1,1), (r— 1,1 —r), (1,0) respectively.
Therefore the differential d,. is a differential in E, and has bidegree (r, 1—r).
Thus, (£ dP9) is a spectral sequence.

Now, suppose we are given a complex K*® with a decreasing filtration K.
Each short exact sequence

0— Ky, — K, — KK}

p+1 — 0

induces the corresponding long exact sequence:
S HP( ) < HPY() S HPP(G 1)
K HPH (K, ) S

Hence, setting Di? = HP*(K}) and EYY = HPPY(K}/K}, ;) we obtain a
bigraded exact couple, with mappings having bldegrees as above. Thus we
assign a spectral sequence to a complex with a filtration.
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Let us compute the spaces EP? in an explicit form. Consider the up-
per term k~!(im¢"!) from the expression for EP? (see Proposition EZ on
the preceding page). An element of Ef? is a class [z] € HPT(K3 /K, ),
x € Krti dr € KPIT. The class [z]lies in k'(imi"), if k([z]) €
HPrat Ky, ) € HPTHY(KS ). This is equivalent to do = y + dz, with
y € KII 2 € KVT. Thus, we see that © = (z—2)+z, with d(z—2z) € KJ{}.
Denoting

Z29={we KM | dwe K},

we obtain k7 (im" ) = ZP9 + KPIT.

Further, consider the lower term j(keri"~!) from the expression for EP4.
The kernel of the map "' : HPT(K}) — HPTI(K3_, ) consists of cocycles

x € KP™ such that 2 = dy for y ¢ Ké’fﬁ;ll, Soy € ZP T2 and
r—1 p71“+1,q+r72 . =1\ p*T+1,q+r72 p+q
keri" ™ = dZ~] . Then j(keri"™") = dZ~] + Ky
Thus, we get

Pyq ptg Pyq
EPra — Zrt+ Ky — Zy
T p—r+1,g+r—2 ptq p—r+1,g+r—2 p+1,g—1°
er,1 + Kp+1 er,1 + erl

Remark 8.3. The last equality follows from the well known Noether modular
isomorphism

M+N M
Mi+N M+ (MNON)’

M, C M.

Theorem 8.5. If the filtration of the complex K* is reqular, then the spec-
tral sequence of this complex converges to H*(K*®) endowed with the filtration
H}(K*) =im H"(ip), where i,: K} — K* is the natural inclusion.

Proof. Note first, that if the filtration of the complex K* is regular, then
the spectral sequence of this complex is regular too. Further, the spaces
CP4 and BPY (see (BEH) on page IE) can easily be described by

pa_ T, (KEAAEP) + zge
< ZgoJrl’qil’ oo ZgoJrl,qfl )

where Z24 = {w € K" | dw = 0}, whence

EP9 — Z&q
*(KEY A d(Kpre)) 4 ZB e
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7P 4 J(KPta-t
Since HPTI(K*) = Oodz—Kp(Jrql) ), we have

HYMI(K®) 200+ d(H)

HPF(KS) ~ 2B g d(K )

Z! P.q
= opFlg1 pta TR B
7% + (K Nd(Krtra-1))

This concludes the proof. O

Definition 8.3. A bicomplexr is a family of vector spaces K** and lin-
ear mappings d': KP4 — KP4 d": KP4 — KP4t guch that (d')* = 0,
(d")? =0, and d'd" + d"d" = 0.

Let K* be the total (or diagonal) complex of a bicomplex K**, i.e., by
definition, K' = @,_,,, K?? and d = d' + d’. There are two obvious
filtration of K*:

filtration I: 'K! = @ K7

P
J+g=i
Jj>p
filtration II: ”K; = @ KP7,
ptj=i
Jj>q

These two filtrations yield two spectral sequences, denoted respectively
by 'EP? and "EP1.

It is easy to check that 'EY"? = "HI(K?*) and "EV'? = 'HI(K*?), where 'H
(resp., "H) denotes the cohomology with respect to d' (resp., d”), with the
differential d; being induced respectively by d’ and d”. Thus, we have:

Proposition 8.6. 'EY'? ='HP("HY(K**)) and "EY? = "HP('HI(K**)).
Now assume that both filtrations are regular.

Exercise 8.8. Prove that

(1) if kP9 =0 for g < qo (resp., p < po), then the first (resp., second)
filtration is regular;
(2) if K9 =0 for ¢ < qo and ¢ > ¢y, then both filtration are regular.

In this case both spectral sequences converge to the common limit

H*(K*).

Remark 8.4. This fact does not mean that both spectral sequences have a
common infinite term, because the two filtrations of H*(K*) are different.

Let us illustrate Proposition B
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Example 8.7. Consider the commutative diagram

d d
2,0 2, K2l 2, 22

dy dy dy

d d
1,0 2, KU1 2, K12

dy dy dy

0 — - K00 9 po1 & opo2

0 0 0

and suppose that the differential d; is exact everywhere except for the terms
K% in the bottom row, and the differential d, is exact everywhere except
for the terms KP° in the left column. Thus, we have two complexes L$ and
LS, where L} = HY(K"* dy), L}, = HY(K*' dy) and the differential of L,
(resp., Lo) is induced by dy (resp., d2). Consider the bicomplex K** with
(d)P? = dP? (d"P? = (—1)1d5?. We easily get

P9 =P — ... = EPA = 0 %fq#o’
HP(L3) if g =0,
’E;”q:’Equ:--.:’Egg: 0 %fp;«éo,
HY(LS) ifp=0.

Since both spectral sequences converge to a common limit, we conclude that
H(L}) = HY(LY).

Let us describe this isomorphism in an explicit form. Consider a coho-
mology class from H*(L}). Choose an element k*° € K“° d;(k*°) = 0,
do (k") = 0, that represents this cohomology class. Since d; (k“°) = 0, there
exists an element x € K10 such that d;(z) = k*0. Set k"1 = —dy(x) €
Kbl We have dg(k’iil’l) =0 and dl(k’iil’l) = —dl(dg(l‘)) = —dg(dl(l‘)) =
—dy(k"Y) = 0. Further, the elements k*? and £"~!! are cohomologous in the
total complex K*®: k™0 — k"1 = dyz + dyx = (d' + d")(x). Continuing this
process we obtain elements k' € K97 dy(k'97) = 0, do(k'97) = 0,
that are cohomologous in the total complex K*®. Thus, the above isomor-
phism takes the cohomology class of k%° to that of k%%
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FEzercise 8.9. Discuss an analog of Example B on the preceding page for
the commutative diagram

O<—K2’0<d—2K2’1<d—2 22 .
dy dy dy
O<—K1’0<d—2K1’1<d—2 L2 .
dy dy dy
0 KOO0 % gpo1 % gpo2,
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