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Introduction to Secondary Calculus

Alexandre VINOGRADOV

Abstract. First we exhibit some basic notions and constructions of modern

geometry of partial differential equations that lead to the concept of diffiety, an
analogue of affine algebraic varieties for partial differential equations. Then it is

shown how the differential calculus on diffieties which respects the underlying
infinite order contact structure is self-organized into Secondary Calculus in

such a way that higher symmetries of PDE’s become secondary vector fields

and the first term of the C-spectral sequence becomes the algebra of secondary
differential forms. Then the general secondarization problem is formulated.

Its solution for modules and multi-vector-valued differential forms is proposed
and the relevant homological algebra is discussed. Eventually, relations with

gauge theories are briefly outlined at the end.

Secondary Calculus sprang up at the fall of seventies as a result of a natural
evolution of ideas in the geometric theory of nonlinear partial differential equations.
Since basic facts and constructions of that theory are not yet of common knowledge,
the first goal of these notes is to exhibit a minimal set of them in order to give to a
nonexpert a first feeling of what Secondary Calculus is. This is done in Sec. 1 – 7.
Formulation of Secondarization Problem culminates this part.

After that, in Sec. 8 – 10 we present and discuss for the first time the key notion
of a secondary module over a “secondary smooth function algebra”. This subject
turned out to be a rather delicate matter which very successively slipped out an ex-
act formalization for a long time. Indeed, it appears very surprising that secondary
modules are suitable homotopy classes for some kind of differential complexes over
diffieties. Not less remarkable is that the simplest class of secondary modules is
formed by homotopy classes of complexes naturally associated with flat connec-
tions. The concept of a secondary module appears to be a natural junction point
of Secondary Calculus and QFT if understood as “cohomological physics”.

In Sec. 11 we solve the secondarization problem for multi-vector-valued differen-
tial forms (or form-valued multi-vectors). The corresponding cohomologies are
studied. These cohomologies are, in a sense, dual to those that appear in the first
term CE∗,∗1 of the C-spectral sequence. Secondary multi-vector-valued differential
forms act naturally on secondary differential forms, i.e., on CE∗,∗1 . It looks remark-
able that the k-lines theorem for secondary multi-vector-valued differential forms
holds under the same conditions as for CE∗,∗1 . Moreover, bigradings (p, q) of nontriv-
ial secondary multi-vector-valued differential forms are perfectly complementary to
those of nontrivial secondary differential forms by guaranteeing a nontrivial action
of the formers on the latters (see Fig. 5 and Fig. 6 below).

All natural operations with secondary multi-vector-valued differential forms are
proved secondarizable. To illustrate these topics, we show how the secondary
Frölicher –Nijenhuis bracket and some other secondary operations look like. A
systematic exposition of this subject will appear in [66].
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2 Alexandre VINOGRADOV

Except for some general remarks in Sec. 11, we do not go to discuss here physical
aspects of Secondary Calculus in more details. Instead, the reader is strongly sug-
gested to compare notions and constructions of this paper with other contributions
to these proceedings.

About fifteen years ago the author presented in [62] his expectations concerning
an eventual role of Secondary Calculus in QFT (see [63] for more details and the
updated version). These proceedings seems to confirm them.
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1. Infinite jets

Let E = En+m be an (n +m)-dimensional smooth manifold, m, n > 0. Fix non-
negative integers n and k. Then n-dimensional submanifolds of E passing through
a point a ∈ E can be subdivided into equivalence classes with respect to the rela-
tion: “to be tangent one another with the k-th order”. These equivalence classes
are called k-jets of n-dimensional submanifolds of E at a. If L ⊂ E is such a sub-
manifold and a ∈ L, then [L]ka denotes its k-jet at a, i.e., the above equivalence class
to which L belongs. For our purposes it is important to note that this definition is
also valid for k =∞.

The totality of all k-jets of n-dimensional submanifolds of E is in a natural way
a smooth manifold denoted by Jk = Jk(E, n) and called k-th jet manifold (of n-
dimensional submanifolds of E). For instance, as it is easy to see, J0(E, n) = E
while J1(E, n) is the Grassmannian fibre bundle of n-dimensional tangent subspaces
to E.

If L ⊂ E, dimL = n, then

jk(L) : L→ Jk(E, n) with jk(L)(a) = [L]ka
is the natural lift of L to Jk(E, n).

For k > l there exists a natural projection Jk → J l, [L]ka 7→ [L]la. The corre-
sponding chain of maps

E = J0 ← J1 ← · · · ← Jk ← · · · ← J∞ (1)

shows J∞ to be its inverse limit.
A standard coordinate-wise description of jet manifolds starts with a choice of

a local chart (y1, . . . , ym+n) in E. Divide it then into two parts (yα1 , . . . , yαn) and
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(yβ1 , . . . , yβm) and put xi = yαi , i = 1, . . . , n, uj = yβj , j = 1, . . . , m. Condition-
ally, the variables xi’s can be thought as independent while uj’s as dependent ones.
Such a divided chart in E induces a local chart in Jk as follows.

Consider n-dimensional submanifolds of E that can be represented locally in
the form L = {ui = fi(x1, . . . , xn), i = 1, . . . , m}. With a multi-index σ =
(σ1, . . . , σn), |σ| = σ1 + · · · + σn 6 k, one can associate a local function ui

σ on
Jk such that

ui
σ ◦ jk(L) =

∂|σ|fi

∂xσ
,

where ∂|σ|/∂xσ stands for the derivation corresponding to σ. Then

(x1, . . . , xn, u1, . . . , um, . . . , ui
σ, . . . )

with |σ| 6 k is a local chart on Jk. Obviously, for k =∞ there is no limitations on
σ.

The sequence of inclusions of smooth functions algebras is associated with se-
quence (1):

C∞(Jo) ↪→ C∞(J1) ↪→ · · · ↪→ C∞(Jk) ↪→ . . . (2)

The direct limit of (2) is called the smooth functions algebra on J∞. We denote
it by F = F(J∞) though C∞(J∞) would be more expressive. Denote also by
Fk = Fk(J∞) the image of C∞(Jk) in F . This way one gets a filtration of F :

F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ · · · ⊂ F . (3)

In terms of coordinates a smooth function f on J∞ is a function depending on a
finite number of coordinates (x, u, . . . , ui

σ, . . .).
The same procedure is applied to define any kind of “covariant” objects on J∞.

For instance, a differential form on J∞ is a differential form on one of jet spaces
Jk’s, k <∞, lifted to J∞. Its local expression is standard with respect to a finite
number of aforementioned jet coordinates.

A pithy differential calculus on J∞ can be developed if working with filtered
F-modules P = {Pi}. This means that Pi is an Fi-module and P is the direct limit
of the sequence of inclusions P0 ↪→ P1 ↪→ . . . . Coordinate-wisely, any p ∈ P can be
described by means of its components pα ∈ F . A differential operator

∆ : P = {Pi} → Q = {Qi}
of order 6 k is an R-linear map such that

[fo, [f1, . . . [fk, ∆] . . . ]] = 0, ∀fo, . . . , fk ∈ F
and ∆(Pi) ⊂ Qj(i) for all i.

The above construction can be specified to the case when E is supplied with a
fiber structure π : E →M, dimM = n. In this case considering only submanifolds
of the form L = s(M) with s : M → E being a (local) section of π one gets the jet
space Jk(π), k = 0, 1, . . . ,∞. A local chart on E respecting the fibre structure is
composed of a local chart {xj} on M completed by “fibre coordinates” {ui}. Such
a situation is typical in field theory where M is the space-time manifold and ui are
“fields”. Note that Jk(π) ⊂ Jk(E, n) is an open domain whose closure is the whole
Jk(E, n).

Denote by L(k) = im jk(L) ⊂ Jk, a natural lift of L ⊂ E to Jk. The following
assertion is almost evident.

Proposition 1.1. Let θ ∈ Jk and let L1 and L2 be n-dimensional submanifolds of
E such that θ = [L1]∞a = [L2]∞a . Then Tθ(L

(∞)
1 ) = Tθ(L

(∞)
2 ), i.e., tangent spaces

at θ to infinite lifts of L1 and L2 at θ coincides.
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This fact shows correctness of the following definition.

Definition 1.1. The Cartan subspace Cθ ⊂ Tθ(J∞) is defined to be Cθ = Tθ(L(∞))
if θ = [L]∞a .

Obviously, dimCθ = n. So, the correspondence θ
C7−→ Cθ is an n-dimensional

distribution on J∞, called the Cartan distribution, or infinite order contact struc-
ture.

The well-known total derivative operators Dk = ∂/∂xk +
∑

i,σ ui
σ+1k∂/∂ui

σ, 1 6
k 6 n, can be seen as vector fields on J∞. They annihilate Cartan forms ωi

σ =
dui

σ −
∑

k ui
σ+1k dxk for any i, σ.

Proposition 1.2. The Cartan distribution C can be given either as the span of
vector fields D1, . . . , Dn, or as the solution of the Pfaff system ωi

σ = 0, ∀ i, σ. The
latter the is a Frobenius one, i.e., satisfies the hypothesis of Frobenius theorem.

This result means that the linear space Cθ is generated by vectors D1,θ, . . . , Dn,θ

and a vector ξ ∈ Tθ(T∞) belongs to Cθ iff ξcωi
σ = 0 for all i, σ.

A submanifold N ⊂ J∞ is called integral (with respect to C), if TθN = Cθ for
any θ ∈ N .

Proposition 1.3. A manifold N is integral iff it is locally of the form L(∞).
Therefore, the set of integral submanifolds is identified with the set of immersed n-
dimensional submanifolds of E, or with multi-valued sections of π, if J∞ = J∞(π).

2. Infinite prolongations of PDE’s and diffieties

A system of k-th order partial differential equations E imposed on n-dimensional
submanifolds of E (sections of π) may be viewed geometrically as a submanifold
E ⊂ Jk. Indeed, such a submanifold can be given locally as F = 0, F = (F1, . . . , Fl)
with Fi = Fi(x, u, . . . , ui

σ, . . . ), |σ| 6 k. So, Fi’s are functions on Jk and the system
F = 0 defines locally a submanifold E in Jk. As it is easy to see, a submanifold
L ⊂ E is a solution of E iff L(k) ⊂ E.

The infinite prolongation of E is defined locally as a submanifold of J∞ given by
the following infinite system of equations

E∞ = {Fi = 0, Dk(Fi) = 0, DkDl(Fi) = 0, . . .} ⊂ J∞. (4)

In terms of jet coordinates, a point θ ∈ E∞ may be viewed as a formal solution of
the system E at a point x0 = (x0

1, . . . , x
0
u) of the space of independent variables.

In other words, jet coordinates of θ are coefficients of a formal series at x0 which
is a formal solution of E . The following rather elementary fact is, however, of
fundamental importance.

Proposition 2.1. If E is a formally integrable system and θ ∈ E∞, then Cθ is
tangent to E∞, i.e., Cθ ⊂ Tθ(E∞). Therefore, the Cartan distribution C on J∞ can
be restricted to E∞.

Put C(E∞) = C |E∞ and call this n-dimensional distribution on E∞ the Cartan
distribution on E∞. Its fundamental role in geometric theory of PDE’s is due to
the assertion:

Proposition 2.2. An n-dimensional submanifold L ⊂ E is a solution of E iff
L(∞) ⊂ E∞ and as such is an integral submanifold of C(E∞). Conversely, any
integral submanifold of C(E∞) is locally of the form L(∞) for a solution L of E .

So, we see that integral submanifolds of C(E∞) may be treated as multi-valued
solutions of E . Hence, the pairO = (E∞, C(E∞)) contains all necessary informations
concerning solutions of E and, speaking informally, may be viewed as a store, where
all solutions of E are stored.
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Definition 2.1. A pair of the form (E∞, C(E∞)) is called an elementary diffiety.

Diffieties are geometric objects which play the same role in the theory of partial
differential equations as affine algebraic varieties in the theory of algebraic equa-
tions.

The smooth function algebra on a diffiety O = (E∞, C(E∞)) is composed of
functions g which are locally of the form g = f |E∞ with f ∈ F(J∞). Denote it by
F(O) or F(E∞). This is a filtered algebra with a filtration inherited from F(J∞)
and what was said above with respect to F(J∞) remains also valid for F(O).

It is convenient to introduce the diffiety dimension DimO of an elementary
diffiety O = (E∞, C(E∞)) as the dimension of the structure distribution C(E∞), i.e.,
the number of independent variables.

Also, it is natural to introduce diffiety morphisms which will be called smaps.
If O = (E∞, C(E∞)) and O′ = (E ′∞, C(E ′∞)), then a smap of O to O′ is a smooth
map h : E∞ → E ′∞ respecting the Cartan distribution. More exactly, “smooth”
means that h ◦ f ∈ F(E∞) if f ∈ F(E ′∞). “Respects” means that the image of the
distribution C(E∞) under the differential of h belongs to C(E ′∞), i.e., dθh : Cθ →
Ch(θ), for all θ ∈ E∞, where dθh stands for the differential of h at θ.

Coordinate-wisely, smaps from O to O′ may be seen as infinite prolongations of
differential operators sending solutions of E to solutions of E ′. More exactly, if ∆ is
such an operator and u = f(x) is the local description of a submanifold L ⊂ E such
that θ = [L]∞xo ∈ E∞, then the derivatives of ∆(f) evaluated at the corresponding
point y are jet coordinates of h(θ) ∈ E ′∞.

The following class of smaps is to be singled out. A smap h is called a covering
if h is surjective and dθh : Cθ → Ch(θ) is an isomorphism for any θ ∈ E∞. Various
differential substitutions, quotiening of PDE’s, Wahlquist – Estabrook prolongation
structures, etc., are, in fact, coverings. This reveals the importance of this concept.
A Bäcklund transformation connecting solutions of equations E ′ and E ′′ can be seen
as a diagram of coverings

O′ h′←− O h′′−→ O′′

with O′ = (E ′∞, C(E ′∞)), O′′ = (E ′′∞, C(E ′′∞)) and O = (E , C(E∞)) for a suitable E .
For our current purposes the concept of a covering is important because it al-

lows us to introduce the general concept of a diffiety. These are inverse limits of,
generally, infinite sequences of coverings:

O1
h1←−− O2

h2←−− · · · ←− Oi
hi←−− . . .

Diffieties are objects on which Secondary Calculus grows naturally. The study of
diffieties of the most general form is now at its origin and many things can be
only suspected. One of them is that a more sophisticated definition of the diffiety
dimension could take values in R.

An n-dimension manifold can be viewed as a diffiety in two different but natural
ways depending on how the structure distribution is chosen. If we supply M with
the 0-dimensional distribution M 3 a 7→ {0} = Ca ⊂ TaM , then M becomes a 0-
Dimensional diffiety. The only integral submanifolds of it are points of M . Another
possibility is to put Ca = TaM . This way one gets an n-dimensional diffiety the
single integral submanifold of which is M itself. So, n-dimensional manifolds are
smallest possible n-Dimensional diffieties and as such they appear to be solutions
of PDE’s.

So, an n-dimensional manifold M viewed as a 0-Dimensional diffiety is a “society”
whose “members”, i.e., points, have no internal structure. On the other hand,
M viewed as n-Dimensional diffiety, is a social singleton having, however, a rich
internal structure. The general case is a mixture of these extremal options.
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Now we are ready to give a first vague idea of Secondary Calculus: this is a
kind of Calculus on diffieties which respects the Cartan distribution (infinite order
contact structure) on them.

It is important to stress that in view of what was said before the category of finite-
dimensional manifolds is identified with the 0-dimensional part of the category of
diffieties. By this reason, the classical mathematics (Calculus, differential geometry,
etc.) appears to be a very degenerated particular case of the diffiety theory. So, we
are led to face the secondarization problem: to extend the classical Calculus to the
whole category of diffieties.

Note the analogy with the quantization problem. While the latter requires to
respect Bohr’s correspondence principles to reach the classical limit when h → 0,
the former requires the same when DimO → 0. This analogy is, in fact, more
instructive than superficial as it could appear at first glance.

Now we pass to describe some facts of geometry of PDE’s that really gave birth
to Secondary Calculus.

3. Higher symmetries of PDE’s

It is convenient to interpret vector fields on a diffiety O as derivations of the
smooth function algebra F(O). For instance, any vector field on O = J∞ as it is
easy to see is an operator of the form

X =
∑
i,σ

ai
σ

∂

∂xk
+
∑

k

bk
∂

∂xk

This is an infinite series but no convergence problem arises because smooth func-
tions on J∞ depend only on a finite number of jet variables. Similar situations
appear in many other circumstances regarding Calculus on diffieties. But the gen-
eral algebraic approach [53], being coordinate-free, guarantees us of any difficulties
of that kind. A vector field X “respecting” a distribution is, obviously, an infinites-
imal contact transformations of it. This means, for instance, that the vector field
[X, Y ] belongs to the distribution if Y does. So, denote by DC(O) the totality of
all contact fields on a diffiety O. This is a Lie algebra with respect to the standard
commutation operation of vector fields. By starting from these observations it is
rather simple to describe all contact fields on J∞. Below Dσ for σ = (i1, . . . ik, )
stands for Di1

1 ◦ · · · ◦Din
n .

Proposition 3.1. Any vector field X ∈ DC(J∞) can be uniquely presented in the
form

X = �ϕ +
∑

k

akDk (5)

with ϕ = (ϕ1, . . . , ϕm), ϕi, ak ∈ F(J∞) and

�ϕ =
∑
σ,i

Dσ(ϕi)
∂

∂ui
σ

.

The vector field �ϕ is an evolutionary derivation corresponding to the generating
function ϕ.

Two components of the splitting (5) are of rather different kinds. Observe that
in view of Proposition 1.2 the vector field Y belongs to C(J∞) iff it is of the form
Y =

∑
k akDk. Denote the totality of such fields by CD(J∞). By the construction

of the Cartan distribution C(J∞) any, vector field Y ∈ CD(J∞) is tangent to any
integral submanifold in J∞. By this reason, the virtual flow generated by such a
field makes to slide any integral submanifold along itself. So, such a flow generates
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the trivial one in the “space” of all integral submanifolds. On the contrary, an
evolutionary derivation �ϕ generates a nontrivial virtual flow in this space if ϕ 6= 0.

Observing now that CD(J∞) is an ideal of the Lie algebra DC(J∞) it is natural
to introduce the quotient Lie algebra

κ = DC(J∞)
/
CD(J∞)

in order to get the Lie algebra of vector fields on the “space” of all integral sub-
manifolds of J∞. The Lie algebra κ is identified in view of Proposition 3.1 with the
F-module of generating functions. In terms of generating functions the Lie bracket
operations in κ looks as

{ϕ, ψ} = �ϕ(ψ) −�ψ(ϕ), (6)

where evolutionary derivations act on generating functions component-wisely.
The above general arguments are, evidently, valid for a general diffiety O and

we can define the quotient Lie algebra

SymO = DC(O)/CD(O)

with CD(O) being the totality of all vector fields on O belonging to the structure
distribution C(O). If O = E∞ it is natural denote SymO by Sym E and to call
elements of SymE higher (infinitesimal) symmetries of the equation E . It is not
difficult to verify that hierarchies associated with well-known completely integrable
systems like the KdV equation are composed of higher symmetries of the original
equation.

The basic technique used to find higher symmetries is as follows. If the equation
E is given by F = 0 with F = (F1, . . . , Fl), Fi ∈ F(J∞), then the matrix differential
operator

lF =

∥∥∥∥∥∑
σ

∂Fi

∂uj
σ

Dσ

∥∥∥∥∥
is called the universal linearization operator (for E). The operator lF is a C-
differential operator (see below) and as such admits restrictions to infinitely pro-
longed equations.

Theorem 3.1. If E = {F = 0}, then Sym E = ker l[F ] with l[F ] = lF |E∞ .

This result gives origin to some rather efficient methods of computing algebra
SymE for a concrete equation E .

The following notion will play an important role in what follows. A differential
operator ∆ : P → Q between two F(O)-modules is called C-differential, if it can
be restricted to any integral submanifold W of O. This means that the restriction
of ∆(p) to W is determined uniquely by the restriction of p to W for any p ∈ P .
Proposition 1.2 shows that vector fields from CD(J∞) are tangent to integral sub-
manifolds of J∞, i.e., are restrictable. Therefore, any matrix differential operator
whose entries are of the form

∑
σ aσDσ with aσ ∈ F is a C-differential one. More-

over, Proposition 2.1 shows that such operators can be restricted to E∞ ⊂ J∞ and,
therefore, are C-differential on O = E∞.

Proposition 3.2. The operators described above exhaust the class of C-differential
operators on E∞.

4. The C-spectral sequence

Denote by Λi(M) the C∞(M)-module of i-th order differential forms on the
manifold M . The sequence of projections (1) generates the sequence of inclusions

Λi(Jo) ↪→ Λi(J1) ↪→ · · · ↪→ Λi(Jk) ↪→ . . .
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Its direct limit denoted by Λi(J∞) is a F(J∞)-module filtered by the images of
Λi(Jk). By definition, differential forms on J∞ are elements of Λi(J∞). Local
expressions of such forms in terms of jet coordinates look as finite sums∑

aj1...jl
i1...ikσ1...σl

dxi1 ∧ · · · ∧ dxik ∧ duj1
σ1
∧ · · · ∧ dujl

σl
. (7)

Denote by CΛi(J∞) ⊂ Λi(J∞) the F-submodule of Λi(J∞) composed of differential
forms vanishing on the Cartan distribution C(J∞) or, equivalently, when being
restricted to any integral submanifold of J∞. The following proposition describe
the structure of CΛi.

Proposition 4.1. It holds

(i) CΛ1 =
{
ρ =

∑
ai

σωi
σ | ai

σ ∈ F
}

(the summation is finite),
(ii) CΛi = CΛ1 ∧ Λi−1,
(iii) CΛ∗ =

∑
CΛi is a differentially closed ideal in Λ∗ =

∑
i Λi(J∞).

The above definitions remains valid for an arbitrary diffiety O together with
assertions (ii) and (iii) of Proposition 4.1. We will denote by CΛi(O) the F(O)-
module of differential forms on O vanishing on the distribution C(O). Below we
write sometimes CΛi, Λi, etc. without referring to the base diffiety O.

The k-th power of the ideal CΛ∗ of Λ∗ is defined as

CkΛ∗ = CΛ1 ∧ · · · ∧ CΛ1 ∧ Λ∗ (k times).

Evidently, all ideals CkΛ∗ are differentially closed and so we get the C-filtration in
the de Rham complex Λ∗ on a diffiety O :

Λ∗ ⊃ CΛ1 ⊃ · · · ⊃ CΛk ⊃ . . .

The spectral sequence associated with the C-filtration is called the C-spectral se-
quence (on O).

Below we use the standard notation for terms of the C-spectral sequence (see,
for instance, ([36]) with added specifying C:

CEp,q
r = CEp,q

r (O), dr = dp,q
r : CEp,q

r → CEp−r,q+r−1
r

CEr =
∑

p,q CEp,q
r , CEp,∗

0 =
∑

q CE
p,q
0 .

Recall that CEr+1 is the cohomology of CEr with respect to dr = {dp,q
r }.

By definition,
CEp,q

0 = CpΛp+q
/
Cp+1Λp+q

-
p

6
q

n

Er, r > 0

p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p
Fig. 1

and d0 : CEp,q
0 → CEp,q+1

0 . So, the term CE0 is
splitting into subcomplexes CEp,∗

0 , p = 0, 1, 2, . . . ,
and CEp,q

0 = 0 for p < 0. Also, the fact that CΛi =
Λi, if i > n = DimO, and Proposition 4.1 shows that
Ep,q

0 = 0, if q > n. Therefore, all nontrivial terms
of the C-spectral sequence are located in the shaded
region of the standard (p, q)-diagram (see Fig. 1).

This shows that the C-spectral sequence converges
and CEp,q

∞ = CEp,q
n+1. The complex {E0,∗

0 , d0} de-
serves a special attention due to its role in various applications. Introduce the
alternative notation Λ̄q(O) = CE0,q

0 (O) and d̄ = d0,q
0 . By definition Λ̄q = Λq /CΛq .

Elements of Λ̄q are called horizontal forms. Put also Λ̄∗ =
∑

q Λ̄q, i.e., Λ̄∗ = CE0,∗
0 .

A local expression for a horizontal form looks as

ω =
∑

ai1,...,iqdxi1 ∧ · · · ∧ dxiq , ai1,...,iq ,∈ F(O).
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Its peculiarity is that only differentials of independent variables appear in it (com-
pare with (7)). Also,

dω =
∑

i1,...,iq,k

Dk(ai1,...,iq)dxk ∧ dxi1 ∧ · · · ∧ dxiq .

The complex {Λ̄∗, d̄} is called the horizontal ( de Rham) complex (of O) and its
cohomology is called horizontal (de Rham) cohomology (of O). In the context of
differential systems, Bryant and Griffiths [11] use characteristic cohomology in same
sense. We denote the horizontal cohomology by H̄i = H̄i(O), H̄∗ =

∑
H̄i.

If O = E∞, then horizontal differential n-forms are interpreted naturally as la-
grangian densities of variational problems constrained by E while n-dimensional
horizontal cohomology classes are functionals or “actions”. Similarly, conserved
currents (conserved densities, fluxes) admitted by the equation E are exact hori-
zontal (n − 1)-differential forms. Respectively, (n − 1)-dimensional horizontal co-
homology of E∞ consists of conservation laws for solutions of E . In other words,
E0,n

1 (E∞) is the space of functionals constrained by E and E0,n−1
1 (E∞) is the space

of conservation laws of E . Spaces H̄q(E∞) = E0,q
1 (E∞) are interpreted in various cir-

cumstances as lower order conservation laws, characteristic classes, etc. Horizontal
(= characteristic) cohomology is the object of the main interest in the BRST-anti-
field formalism.

In the situation when the manifold of independent variables is fixed, i.e., the
PDE system E is imposed on sections of a fibred manifold π : E →M (see Sec. 1)
another filtration of the de Rham complex on E∞ (or J∞(π)) arises. In fact, in that
case the projection π induces a projection π∞ : E∞ →M . Consider the ideal JΛ∗ of
the algebra Λ∗ = Λ∗(E∞) composed of differential forms vanishing on fibres of the
projection π∞. It is easy to see that JΛ∗ is generated by the pull-back of Λ∗(M)
with respect to π∞, i.e., JΛ∗ = π∗∞(Λ∗(M)) ∧ Λ∗. The ideal JΛ∗ is, obviously,
differentially closed and its powers JkΛ∗ = JΛ∗∧Jk−1Λ∗ furnish a filtration of the
de Rham complex {Λ∗, d} of E∞:

Λ∗ ⊃ J1Λ∗ = JΛ∗ ⊃ J2Λ∗ ⊃ · · · ⊃ JkΛ∗ ⊃ . . .

The spectral sequence associated with this filtration is nothing but the Leray – Serre
spectral sequence of the fibering π∞ : E∞ → M expressed in terms of differential
forms. Denote it by {Ẽp,q

r , d̃r}.

Proposition 4.2. There exists a natural isomorphism CEp,q
0 = Ẽq,p

0 and under
this isomorphism differentials d0 and d̃0 anticommute. So, the term CE0 acquires
the second differential sending CEp,q

0 to CEp+1,q
0 becoming a double complex, called

the variational bi-complex.

Note that for a generic diffiety a local choice of independent variables, for in-
stance, by means of a divided chart (see Sec. 1) allows to introduce into the cor-
responding C-spectral sequence a local bi-complex structure. So, the variational
bi-complex is a local form of the C-spectral sequence.

The first term of the C-spectral sequence is of the most interest in applications.
This is mainly due to the interpretation of terms CE0,q

1 = H̄q which was discussed
above. By this reason we shall concentrate in the further discussion around the
structure of spaces Ep,q

1 (O). Nevertheless, the importance of the second term is
to be stressed. For instance, various kinds of characteristic classes appear to be
elements of suitable spaces Ep,q

2 (O) for some “universal” O’s.
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5. The structure of the term CE1 for O = J∞

With any Cartan form ω ∈ CΛ1(J∞) a C-differential operator (see the end of
Sec. 3) �ω : κ → F is associated: �ω(χ) := χcω, χ ∈ κ. Note that CDcCΛ1 = 0
so that the insertion operator χc is well defined.

In a local jet-chart one can identify κ with the F-module of generating functions
Fm (Proposition 3.1). If ω =

∑
ai

σωi
σ, ai

σ ∈ F , then

�ω = (
∑

σ

a1
σDσ , . . . ,

∑
σ

am
σ Dσ).

This row differential operator acts naturally on the generating function column
ϕ = (ϕ1, . . . , ϕm)T .

Proposition 5.1. The correspondence ω 7→ �ω establishes a natural isomorphism
of F-modules η : CΛ1(J∞) → CDiff(κ,F). This isomorphism extends naturally to
isomorphisms

η = ηp,q : CEp,q
0 (J∞)→ CDiffalt

(p)(κ; Λ̄q(J∞)),

where CDiffalt
(k)(P ; Q) stands for the F-module of multi-differential skew-symmetric

linear operators of multiplicity k on P with values in Q. Under this isomorphism
the differential dp,q

0 is identified with (−1)pd̄, i.e., dp,q
0 (ρ)↔ (−1)pd̄ ◦ η(p).

Below we write ∆(χ1, . . . , χp) ∈ Λ̄q for a ∆ ∈ CDiffalt
(p)(κ; Λ̄q). In this nota-

tion (d̄ ◦ ∆)(χ1, . . . , χp) = d̄(∆(χ1, . . . , χp)) ∈ Λ̄q+1. Hence, the isomorphism η

identifies the complex {CEp,∗
0 (J∞), d0} and the complex {CDiffalt

(p)(κ; Λ̄∗), (−1)pd̄},
where

∑
q CDiffalt

(p)(κ; Λ̄q) is identified naturally with CDiffalt
(p)(κ; Λ̄∗). It is not dif-

ficult to describe completely the cohomology of the latter complex. With this
purpose we have to introduce F-modules Lp(κ), p > 1. First we put L1(κ) = κ̂ :=
HomF (κ, Λ̄n). If p > 1, then Lp(κ) is the submodule of CDiffalt

(p−1)(κ; κ̂) composed
of all skew-symmetric (p − 1)-differential operators from κ to κ̂ such that

∆∗χ1,...,χp−2
= −∆χ1,...,χp−2 , ∀ χi ∈ κ,

where “∗” stands for the canonical conjugation of C-differential operators and
∆χ1,...,χp−2(χ) = ∆(χ1, . . . , χp−2, χ). Recall that (�∗)ij = (�ji)∗ for a matrix C-
differential operator� = ‖�ij‖ and ∆∗ =

∑
(−1)σDσ◦aσ, if ∆ =

∑
aσDσ, aσ ∈ F .

Proposition 5.2. The n-th cohomology of the complex

{CDiffalt
(p)(κ; Λ̄∗), (−1)pd̄}

is isomorphic to Lp(κ), p > 1, while all other ones are trivial.

Corollary 5.1 (One Line Theorem). If p > 0, then CEp,q
1 (J∞) = 0 for q 6= n and

CEp,n
1 (J∞) = Lp(κ). Moreover, CE0,q

1 (J∞) = H̄q(J∞).

Therefore, the (p, q)-diagram of the term CE1(J∞) looks as it is shown on Fig. 2
(the “nontrivial” region is shaded).

q
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ppp
n p p p
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p p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p p p p p pp p p p pp p p p pp p p p pp p p p p

Fig. 2

This configuration implies that
CE0,q

r (J∞) = H̄q(J∞) for q < n, r > 1,
and
CEp,n

r (J∞) = Ep,n
2 (J∞), r > 2.

Also,
CE∞(J∞(E, n)) = H∗(J1(E, n))

and
CE∞(J∞(π)) = H∗(E).

This shows that

H̄q(J∞(E, n)) = Hq(J1(E, n)) and H̄q(J∞(π)) = Hq(E) for q < n.
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Also, CEp,n
2 (J∞(E, n)) = Hp+n(J1(E, n)) and CEp,n

2 (J∞(π)) = Hp+n(E). In
other words, the n-th row of CE1(J∞) is identified with the complex

H̄n(J∞) d1−→ L1(κ) d1−→ . . .
d1−→ Lp(κ) d1−→ . . . (8)

and p-th cohomology of it is isomorphic to Hp+n(J1(E, n)) (resp., Hp+n(E)) for
J∞ = J∞(E, n) (resp., J∞(π)). The differential d1 of this complex is described as
follows.

First, the differential

d1 = d0,n
1 : CE0,n

1 (J∞) = H̄n(J∞)→ κ̂ = CE1,n
1 (J∞)

is the Euler operator assigning to a functional (action) the corresponding Euler –
Lagrange equation. It is natural to denote the cohomology class of a Lagrangian
density Ldx1 ∧ · · · ∧ dxn = Ldx by

∫
Ldx. In this notation we have

d1

(∫
Ldx

)
= l∗L(1),

i.e., the Euler –Lagrange equation corresponding to the functional
∫

Ldx is l∗L(1) =
0. So, complex (8) may be seen as a “resolvent” of the Euler operator. The
description of its cohomology given above shows that it is locally acyclic.

Next, note that L2(κ) = CDiffanti(κ, κ̂), where

CDiffanti(κ, κ̂) = {∆ ∈ CDiff(κ, κ̂)|∆∗ = −∆}.

Then the differential d1 = d1,n
1 : CE1,n

1 (J∞) = κ̂ → CDiffanti(κ, κ̂) = CE2,n
1 (J∞)

acts as
d1(ϕ) = lϕ − l∗ϕ, ϕ ∈ κ̄.

This shows, for instance, that an equation ϕ = 0 is locally the Euler – Lagrange
one iff l∗ϕ = lϕ and the obstruction to be such globally belongs to Hn+1(J1(E, n))
or Hn+1(E), respectively. For p > 1 the differential d1 = dp,n

1 : Lp(κ) → Lp+1(κ)
looks as follows:

d1(∆)(χ1, . . . , χp) =
∑

i(−1)p−1�χi(∆(χ1, . . . , χ̂i, . . . , χp))+∑
i<j(−1)i+j∆({χi, χj}, χ1, . . . , χ̂i, . . . , χ̂j, . . . , χp)+∑

(−1)i−1[(p− 1)l∗χi (∆(χ1, . . . , χ̂i, . . . , χp))− l∗∆(χ1,...,χ̂i,...,χp)
(χi)]

The reader can see that these formulae are rather complicated and contain both
“traditional” terms (first two summands) and some unexpected ones (the third
summand).

6. The structure of the term CE1 for O = E∞
Locally a PDE system E can be given by F = 0 with F = (F1, . . . , Fl), Fl ∈

F(J∞). But globally it is not so (for instance, for the equation of minimal sur-
faces) and F must be thought as an element of a suitable (projective) F(J∞)-
module P . So, further on we suppose that E = {F = 0} with F ∈ P and locally
F = (F1, . . . , Fl). Moreover, E will be assumed formally integrable and regular.
The latter means that the ideal of E∞ in J∞ is generated by F together with all
�(F ), � ∈ CDiff(P,F(J∞)).

Consider the universal linearization operator lF : κ → P and the map

lDiff
F : CDiff(P,F(J∞))→ CDiff(κ,F(J∞))

with lDiff
F (∆) = ∆ ◦ lF . The equation E is called nonoverdetermined, if the kernel

of lDiff
F restricted to E∞ is trivial. This condition is guaranteed by nondegeneracy

of the main symbol of lf , i.e., by the fact that the rank of the l ×m-matrix with
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entries mij =
∑

σ(∂Fi/∂uj
σ)pσ , where pσ = pσ1

1 · · · · · pσ1
n for σ = (σ1, . . . , σn) and

pi’s are some formal variables, is equal to l.
For an arbitrary diffiety O the F(O)-module CpΛp(O), p > 0, carries a natural

CDiff(F(O),F(O))-module structure extending the original F(O)-module one. In
fact, if ∆ = X1 ◦ · · ·◦Xk with X1, . . . , Xk ∈ CD(O) and ω ∈ CpΛp(O), then ∆(ω) =
LX1(. . .LXk (ω) . . . ). This action is well defined due to the fact that LfX(ω) =
fLX (ω) for X ∈ CD(O).

An important property of a CDiff(F(O),F(O))-module R is that any C-differen-
tial operator � : P → Q can be extended canonically to a C-differential operator
�R : P ⊗F R → Q ⊗F R (see Sec. 10). This construction is a key one for what
follows.

Theorem 6.1 (Two Line Theorem). If E is regular and nonoverdetermined, then
all terms CEp,q

1 (E∞) with p > 0, q 6= n − 1, n are trivial. Moreover, the terms
CEp,n−1

1 (E∞) and CEp,n
1 (O) are isomorphic to the skew-symmetric parts of the ker-

nel and the cokernel, respectively, of the extended operator l∗[F ]:

(l∗[F ])Cp−1Λp−1 : P̂ ⊗F(E∞) Cp−1Λp−1(E∞)→ κ̂ ⊗F(E∞) Cp−1Λp−1(E∞).

So, the eventually nontrivial terms of the C-spectral sequence of E for r > 1 are
situated in the shaded region of the (p, q)-diagram in Fig. 3.
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Fig. 3

The standard spectral sequence arguments
show that CEr(E∞) = CE∞(E∞) for r > 3 and
H̄q(E∞) = Hq(E∞) for q < n − 1. If E is for-
mally integrable, then, additionally, H∗(E∞) =
H∗(E(1)) (or, even H∗(E), if E ⊂ Jk(π)) with
E(1) being the first prolongation of E . These
facts help to estimate various terms of CE2

and CE3 of a special interest. For instance,
one can see that CE0,n−1

2 (E∞) = ker d0,n−1
1 =

Hn−1(E(1)) (resp., Hn−1(E)). Therefore, the cohomology Hn−1(E(1)) (respectively,
Hn−1(E)) takes part of the conservation laws space H̄n−1(E∞) = CE0,n−1

1 (E∞).
The corresponding conservation laws are not sensitive to deformations of solutions
and as such are as a rule negligible. So, the differential d0,n−1

1 embeds conservation
laws of E up to that “negligible” part into the term CE1,n−1

1 (E∞) which is isomor-
phic, according to the two line theorem, to ker l∗[F ] . So, the problem of finding all
conservation laws admitted by the equation E is reduced to solving the equation
l∗[F ](ψ) = 0. Recollecting (Theorem 3.1) that the symmetries of E are solutions of
the equation l[F ](ϕ) = 0 one can see that symmetries and conservation laws are in
a sense dual concepts which fall in an interaction when operators l[F ] and l∗[F ] are
in a way related one another. For instance, this is the case if l∗[F ] = ±l[F ] . For such
an equation any conservation law determines a symmetry of it. This reveals the
nature of the Noether theorem since equations obtained from variational principles
have self-adjoint universal linearizations (see Sec. 5), i.e., l∗[F ] = l[F ] . On the other
hand, we see that the same relations between symmetries and conservation laws
remain valid also for equations in a sense opposite to the Euler – Lagrange ones,
i.e., for which l∗[F ] = −l[F ] .

We mention also without entering into details that the isomorphism

CE1,n
1 (E∞) = coker l∗[F ]

may be viewed as a very generalized Lagrange’s multipliers method in the Calculus
of Variations.
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The above discussion illustrates the C-spec-
tral sequence in action. It is worth also to men-
tion that the hypothesis of the two line theo-
rem is, as a rule, satisfied by most equations
of mathematical physics, differential geometry,
etc. There are, however, very important excep-
tions. One of them are Yang– Mills equations.
Nevertheless, the techniques used to prove the
One or Two Line Theorem are sufficiently ef-
ficient to approach the general case. One of
the typical results in this direction is reported
below.

From the formal theory of PDE’s it is known that under a weak regularity
condition any linear DO ∆ : P → Q can be extended to a complex R:

0→ P
∆−→ Q = Q1

∆1−−→ Q2
∆2−−→ . . .

∆p−2−−−→ Qp−1 → 0 (9)

of differential operators such that the sequence

Diff(P, A) S0←−− Diff(Q, A) S1←−− . . .
Sp−2←−−− Diff(Qp−1, A)← 0 (10)

with Si(�) = �◦∆i for � ∈ Diff(Qi+1, A) and A = C∞(M) being the base algebra
is exact. Complex (10) is called a compatibility complex for ∆ and its length p− 1
does not exceed n.

The above result is generalized naturally to C-differential operators. Such an
operator is of length k, if k − 1 is the minimal length of compatibility complexes it
admits.

Theorem 6.2 (p-Line Theorem). If the operator l[F ] is of length p, then the terms
CEp,q

1 (E∞) with p > 1 are trivial for q 6 n− p (and, obviously, for q > n).

So, eventually nontrivial terms CEp,q
1 (O) are situated in the shaded region of the

(p, q)-diagram on Fig. 4.
These terms can be described in a more explicit way. For instance, let

0→ κ = Q̂0

l[F ]−−→ P = Q1
∆1−−→ . . .

∆p−1−−−→ Qp−1 → 0

be a compatibility complex for l[F ] . Passing to adjoint operators one gets the
complex R∗

0→ Q̂p−1

∆∗p−1−−−→ Q̂p−2

∆∗p−2−−−→ . . .
∆∗1−−→ Q̂1

l∗[F ]−−→ Q̂0 → 0. (11)

Then CE1,n−i
1 (O) = Hi(R∗). Similarly can be described terms CEp,q

1 (E∞) with
p > 1 and n− p + 1 6 q 6 n.

7. The conception of Secondary Calculus: vectors and differential

forms

Three natural operation put in interaction vector fields and differential forms on
a manifold: the exterior differential d : Λp(M) → Λp+1(M), the insertion iX(ω) =
Xcω with X ∈ D(M), ω ∈ Λ∗(M), and the Lie derivative LX(ω). They are related
by the infinitesimal Stokes formula LX = iX ◦ d + d ◦ iX. Having at disposal higher
symmetries and C-spectral sequence one can observe that for any diffiety O the
insertion operation of a higher symmetry χ into an element θ ∈ CE1(O) is well
defined by passing to quotients as well as that of the Lie derivative of θ along χ.
Denoting them by

iχ (or χc) : CEp,q
1 (O)→ CEp−1,q

1 (O)
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and
Lχ : CEp,q

1 (O)→ CEp,q
1 (O)

respectively, one can then prove that they are related by means of the following
“infinitesimal Stokes formula”:

Lχ = iχ ◦ d1 + d1 ◦ iχ,

where d1 stands as above for the differential in the first term of the C-spectral
sequence. Moreover, these operations can be introduced naturally only in the term
CE1(O).

For O = J∞ operations iχ and Lχ can be described explicitly in the notation of
Sec. 5 as follows.
Insertion iχ = χc :

p = 1⇒χch = (the cohomology class of) h(χ) in H̄n(J∞)),

if h ∈ κ̂ = CE1,n
1 (J∞),

p > 1⇒(χc∆)(χ1, . . . , χp−2) = ∆(χ, χ1, . . . , χp−2), if ∆ ∈ Lp(κ).

Lie derivative Lχ :

p = 0⇒Lχ(L) =
∫

�χ(ω) dx, if L =
∫

ω dx ∈ H̄n(J∞) = CE0,n
1 (J∞),

p = 1⇒Lχ(h) = �χ(h) + l∗h(χ), if h ∈ κ̂ = CE1,n
1 (J∞),

p > 1⇒Lχ(∆)(χ1, . . . , χp−1) = �χ(∆(χ1, . . . , χp−1)) +∑
i

∆(χ1, . . . , {χi, χ}, . . . , χp−1) + l∗χ(∆(χ1, . . . , χp−1)),

if ∆ ∈ Lp(κ) = CEp,n
1 (J∞).

Hence, we have established the key analogy

D(M)↔ SymO, Λp(M)↔ CEp,∗
1 (O) =

∑
q

CEp,q
1 (O)

which becomes an identity for any 0-Dimensional diffiety O = M . This means that
the modified “Bohr correspondence principle” DimO → 0 is satisfied, if SymO and
CEp,∗

1 (O) are interpreted as secondary vector fields and secondary differential forms,
respectively. We used here “secondary” just conventionally in order to stress the
observed analogy between the classical “primary” Calculus and the “C-respecting
Calculus” on diffieties.

There is a number of different arguments that sustain this analogy. The following
is classical: the Euler operator, i.e., d0,n

1 plays the same role in Calculus of Variation
as the differential d : C∞(M)→ Λ1(M) when looking for the extremes of functions.

So, we are led to the suspicion that all natural ingredients of the classical Calculus
have secondary analogues. The problem to find them is called the secondarization
problem and by many reasons we put it in parallel with the quantization problem
(see, for instance, [63]). Essentially, the secondarization problem is the search of
“right definitions” and as such is not a very usual one. The recent history of the C-
spectral sequence (variational bi-complex) method shows that it is in no way trivial.
Below in this section we reproduce an old examples of secondarization concerning
the Poisson bracket. Some new ones are discussed in the rest of these notes.

In the classical situation a Poisson bracket {·, ·} on a manifold M can be given by
means of a homomorphism Γ : Λ1(M)→ D(M). Namely, one has to put {f, g} =
Γ(df)(g). We call Γ Hamiltonian, if the so-defined bracket is skew-symmetric and
satisfies Jacobi identity. So, the Poisson manifold structures on M are in one-to-one
correspondence with Hamiltonian homomorphisms.
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To secondarize the concept of a Poisson structure one has to secondarize that of
the exterior differential d and of a Hamiltonian homomorphism. To secondarize the
latter one needs the “secondary Λ1(M)”, the “secondary D(M)” and “secondary
homomorphisms”. All these ingredients are already at our disposal except for the
last one, i.e., secondary homomorphisms. In the next section the reader will see
that this is a very delicate point and the concept of a secondary homomorphism
looks rather surprising. For the time being we postpone the complete solution
of this problem and shall interpret “secondary homomorphisms” for O = J∞ as
C-differential operators. Numerous known Poisson structures in the theory of inte-
grable systems in favor of this choice.

Thus, the previous discussion leads us to the following definition.

Definition 7.1. A secondary Poisson structure on J∞ is defined to be a Lie al-
gebra structure in H̄n(J∞) = CE0,n

1 (J∞) given by a C-differential operator ∆ :
CE1,n

1 (O) = κ̂ → κ = SymJ∞ :

{L1,L2} = L∆d1(L1)(L2), (12)

where Li ∈ H̄n(J∞), i = 1, 2, and d1 = d0,n
1 is, as above, the differential in the first

term of the C-spectral sequence (= the Euler operator).

As in the classical case a C-differential operator ∆ : κ̂ → κ is called Hamilton-
ian, if the corresponding bracket (12) is a Lie bracket, i.e., a skew-symmetric one
satisfying Jacobi identity.

A natural question to characterize explicitly Hamiltonian operators can be an-
swered by making use of some simple formulae of Secondary Calculus.

Theorem 7.1. A C-differential operator ∆ : κ̂ → κ is Hamiltonian iff it is skew-
adjoint, i.e., ∆∗ = −∆, and

[�∆ϕ, ∆] = l∆ϕ ◦∆ + ∆ ◦ l∗∆ϕ

takes place for any polynomial σ = σ(x) in x of order 6 deg ∆ + Φ(∆) with Φ(∆)
being the highest jet order of coefficients of ∆.

This theorem allows, for instance, a complete classification of Poisson structures
in field theory for small values of n, m and deg ∆ and even to prove a kind of
Frobenius lemma for them.

8. Secondary modules

Of course, the general concept of a secondary differential operator should be
central in Secondary Calculus. It, however, must be preceded by that of a secondary
module over the “secondary smooth function algebra” of a diffiety O. The latter
turned out to be rather delicate and it may happen that the solution presented
below will require some polishing.

Fix a diffiety O. A C-complex K = {Ki, ∆i} over O is a complex

0→ K0
∆0−−→ . . .K1

∆1−−→ . . .
∆i1−−→ Ki

∆i−→ . . .

of F(O)-modules and C-differential operators. With given C-complexes (K, ∆) =
{Ki, ∆i} and (K̃, ∆̃) = {K̃i, ∆̃i} one can associate the complex {GCDiff(K, K̃), L},
where GCDiff(K, K̃) =

∑
α GCDiffα(K, K̃) and

GCDiffα(K, K̃) = {� : K → K̃ |�(Ki) ⊂ K̃i+α, �|Ki ∈ CDiff(Ki, K̃i+α), ∀i}
while the differential is defined as

L(�) = (−1)α� ◦∆− ∆̃ ◦� for � ∈ GCDiffα(K, K̃).
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Denote its α-th cohomology by CLα(K, K̃) and put CL(K, K̃) =
∑

α CLα(K, K̃).
So, elements of CL(K, K̃) are homotopy classes of graded cochain maps from K to
K̃. Therefore, any h ∈ CL(K, K̃) generates naturally a map in cohomology which
is also denoted by h : H∗(K)→ H∗(K̃). Two C-complexes K and K̃ are said to be
C-homotopy equivalent if there exist h ∈ CL0(K, K̃) and h̃ ∈ CL(K̃, K) such that
h̃h = idH∗(K), hh̃ = idH∗(K̃).

Secondary modules turn out to be special C-homotopy equivalence classes of C-
complexes. In less solemn terms this means that the cohomology space V = H∗(K)
is the main object of our interest but the complex K itself can vary in the limits
of the corresponding C-homotopy class. Nevertheless, the cohomological origin of
V is indispensable to put it in interaction with other similar objects. This point
seems to be of crucial importance in what concerns applications to (quantum) field
theory.

Definition 8.1. The “secondary smooth functions algebra” of a diffiety O is the
C-homotopy type of the complex {GCDiff(Λ̄∗(O), Λ̄∗(O)), L}.

According to the scheme at the end of Sec. 7, H̄n(O) = E0,∗
1 (O) is the secondary

analogue of the smooth function algebra C∞(M) on a smooth manifold M . The
following result shows that the above definition refines this idea.

Theorem 8.1. A natural isomorphism takes place:

CL(Λ̄∗(O), Λ̄∗(O)) = H̄∗(O).

Put now S(O) = GCDiff(Λ̄∗(O), Λ̄∗(O)) and note that d̄ = d̄(O) ∈ S(O).

Definition 8.2. An S-module (overO) is a C-complex (K, ∆) supplied with a (left)
S(O)-module structure µ : S(O)→ GCDiff(K, K) such that

(i) µ is C-differential,
(ii) if f ∈ F(O), then µ(f) = f (multiplication by f operator),
(iii) µ(d̄) = ∆.

An S-module is, in particular, an unitary Λ̄∗(O)-module. Besides, the struc-
ture homomorphism µ is, in view of (iii), a cochain map of sending {S(O), L} to
{GCDiff(K, K), L}. So, by passing to cohomologies it defines a map H̄∗(O) →
CL(K, K) and, therefore, an action H̄∗(O) × H̄∗(K)→ H̄∗(K).

The differential ∆ is a first order C-differential operator as it results from (iii).
S-modules possess a number of “good” properties allowing naturally expected con-
structions with them.

The concept of a morphism of two S-modules is obvious. We only stress that
the corresponding map K → K̃ is supposed to be a graded C-differential operator.
Accordingly, two S-modules (K, µ) and (K̃, µ̃) are S-homotopy equivalent, if they
are C-homotopy equivalent and the cochain maps h and h̃ (see above) realizing this
equivalence are additionally S-homomorphisms.

Definition 8.3. A secondary module over a diffiety O is an S-homotopy type of
S-modules.

Now we are ready to introduce secondary differential operators. Let (K, ∆, µ),
(K̃, ∆̃, µ̃) be S-modules and Ξ : K → K̃ be a graded differential operator (not
necessarily C-differential). Put for a � ∈ S(O)

δ�(Ξ) = Ξ ◦ µ(�) − (−1)�·Ξµ̃(�)) ◦ Ξ.

Definition 8.4. LetM,M̃ be secondary modules (K, δ, µ) and (K̃, ∆̃, µ̃), respec-
tively. A secondary differential operator of order 6 k from M to M is a map
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H∗(K)→ H∗(K̃) induced by a cochain map Ξ : K → K̃ which is a graded differen-
tial operator over F(O) such that

δ�1(δ�2 . . . (δ�k(Ξ)) . . . ) ∈ GCDiff(K, K̃)

for any �1, . . . ,�k ∈ S(O).

Example 8.1. Consider a secondary module Ωp represented by the S-module
(CEp,∗

0 (O), d0) (see Sec. 9, Example 9.1, for a description of the action of S(O)
on CEp,∗

0 (O)). Then d1 : Ep,∗
1 (O) → Ep+1,∗

1 (O) is a first order secondary differen-
tial operator.

Note that in virtue of the One Line Theorem (Sec. 5) for O = J∞ the differential
d1 : CE0,∗

1 (O) → CE1,∗
1 (O) reduces essentially to the Euler operator assigning to

an action the corresponding Euler – Lagrange equation. The Euler operator written
explicitly in terms of local jet-coordinates looks as a differential operator of infinite
order. But it is just a first order secondary differential operator as the secondary
analogue of the classical differential d : C∞(M)→ Λ1(M) should be.

Example 8.2. If O = E∞ and χ ∈ SymO, then the secondary Lie derivative Lχ

along χ is a first order secondary differential operator.

For O = J∞ secondary “scalar” differential operators, i.e., those acting on the
“secondary smooth function algebra” (Definition 8.1), can be described as follows.
Fix a local jet-chart (xi, u

j
σ). An operator � : F → F , F = F(J∞) is called

vertical (with respect to the chosen chart), if its local expression does not contain
derivations with respect to xi’s. In other words, it looks as

� =
∑

0<|s|6k

∑
i1,...,is
σ1,...,σs

ai1,...,is
σ1,...,σs

∂s

∂ui1
σ1 . . . ∂uis

σs

.

Proposition 8.1. A vertical differential operator represents a secondary differe-
ntial operator iff [Di,�] = 0, i = 1, . . . , n, and conversely. Any such operator is of
the form

�∇ =
∑
i,σ

Lσ(∇i) ◦
∂

∂ui
σ

with ∇ = (∇1, . . . ,∇m) being a vertical differential operator and

Lσ(∇i) = [Di1 , [Di2, . . . , [Dis,∇i] . . . ]] for σ = (i1, . . . , is).

Vertical operators ∇’s play the same role as generating functions for evolutionary
derivations. However, ∇ is not defined uniquely if ord∇ > 0. In fact, �2 = 0, i.e.,
��∆ = 0 for any vertical ∆.

A shortage of the above approach is that it does not manifest directly tha co-
homological nature of secondary operators. How it can be done for evolutionary
derivations (Example 8.2) and similar operators is shown in Sec. 11. See also [25],
[27] and [26] in this connection. A systematic exposition of this topics will appear
somewhere.

9. Secondary modules and flat connections

The class of secondary modules we are going to describe now is distinguished at
least by two features. First, the C-spectral sequence construction can be literally
repeated for them and analogues of the results reported in Sec. 4 – 6 can be proved.
Second, they attach the gauge theory directly to Secondary Calculus.

The following is the C-analogue of the standard notion of a connection.



18 Alexandre VINOGRADOV

Definition 9.1. Let P be an F(O)-module. An F(O)-module homomorphism
∇ : CD(O) → CDiff1(P, P ) is called a C-connection in P if

∇(X)(fp) = f∇(X)(p) + X(f)p

for any f ∈ F(O), X ∈ CD(O), p ∈ P .

Below we follow the standard notation and write ∇X instead of ∇(X). A C-
connection is said to be flat, if [∇X ,∇Y ] = ∇[X,Y ] for any X, Y ∈ CD(O). Since
∇X is a C-differential operator, it can be restricted to any integral submanifold of
O by supplying it with a “usual” connection.

Associate with P the graded Λ̄∗(O)-module Λ̄P =
∑

i Λ̄iP with

Λ̄P = Λ̄∗(O) ⊗F(O) P, Λ̄iP = Λ̄i(O) ⊗F(O) P.

Elements of Λ̄P are called P -valued horizontal differential forms.
A flat C-connection ∇ in P supplies Λ̄P with a differential d∇:

d∇(ω)(X1, . . . , Xp+1) =
∑

i(−1)i−1∇Xi(ω(X1, . . . , X̂i, . . . , Xp+1)+∑
i<j(−1)i+jω([Xi, Xj], X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1)

with ω ∈ Λ̄pP and Xi ∈ CD(O) for all i. Obviously, (Λ̄P, d∇) is a C-complex.

Proposition 9.1. The C-complex (Λ̄P, d∇) admits a unique S-module structure µ
such that

µ(ω) = ωP , µ(iX) = iPX , ∀ω ∈ Λ̄∗(O), X ∈ CD(O),

where ωP stands for the left multiplication by ω in Λ̄P and iPX denotes the insertion
of X into P -valued forms.

This is almost a direct consequence of the fact that the algebra S(O) is generated
by the operators d̄, iX , X ∈ CD(O), and by multiplications by ω, ω ∈ Λ̄∗(O).

Corollary 9.1. A flat connection ∇ defines a unique CDiff(F(O),F(O))-module
structure ν on P such that

(i) ν(f) = f (multiplication by f ∈ F(O)),
(ii) ν(X) = ∇X , X ∈ CD(O),
(iii) [f, ν(�)] = ν([f,�]), � ∈ CDiff(F(O),F(O)).

So, a flat C-connection ∇ supplies P with a horizontal module structure (see
[51]).

We distinguish S-module (respectively, horizontal module) structures described
in Proposition 9.1 (respectively, Corollary 9.1) by calling them natural.

Hence, for a projective F(O)-module P there are natural identifications:

Flat C-connections in P ←→
Natural horizontal
module structures
in P

←→ Natural S-module
structures in Λ̄P

Example 9.1. If X ∈ CD(O) and ω ∈ CpΛp, then LfX(ω) = fLX (ω) due to
Xcω = 0. This shows that CpΛp is supplied canonically with a flat C-connection
∇(p) such that ∇(p)

X = LX |CpΛp , X ∈ CD(O). Therefore, (CEp,∗
0 , d0) possesses

a canonical S-module structure, i.e., secondary differential p-forms constitute a
secondary module. As we have already seen this is a key fact in computation of
CE1(O) (see also [51]).

Cohomologies involved in the preceding discussion can be, in fact, “computed”
as follows. Let P and P ′ be F(O)-modules supplied with flat C-connections ∇ and
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∇′, respectively. Then the F(O)-module HomF(O)(P, P ′) can be supplied with a
flat C-connection ∇Hom such that

∇Hom
X (h) = ∇′X ◦ h− h ◦ ∇X , h ∈ HomF(O)(P, P ′).

Below we use d∇,∇′ instead of ambiguous d∇Hom. Note also that the F(O)-module
GCDiff(Λ̄P, Λ̄P ′) becomes a complex with respect to the differential L∇,∇′ :

L∇,∇′(�) = � ◦ d̄∇ − (−1)�d̄∇′ ◦�.

Theorem 9.1. The cohomology of the complex {GCDiff(Λ̄P, Λ̄P ′), L∇,∇′} is canon-
ically isomorphic to that of the complex {Λ̄HomF(O)(P, P ′), d̄∇,∇′}:

0→HomF(O)(P, P ′)
d̄∇,∇′−−−−→ Λ̄1(O) ⊗F(O) HomF(O)(P, P ′)→ . . .

→Λ̄n(O)⊗F(O) HomF(O)(P, P ′)→ 0.

If P = P ′, then EndP = HomF(O)(P, P ′) and we put d̄End
∇ = d̄∇,∇. So, it holds

H∗(L∇,∇) = H∗(d̄End
∇ ), (13)

where H∗(δ) denotes the cohomology of the complex whose differential is δ. Note
that (13) generalizes Theorem 8.1 to arbitrary flat C-connections. In fact, this the-
orem is a particular case of (13) for P = F(O) and the canonical flat C-connection
∇ in F(O) for which ∇X = X.

Let now µ be the natural S-module structure on P corresponding to a flat C-
connection ∇. Then by virtue of (13) the cohomology map induced by µ may be
seen as

H̄∗(O) = H∗(d̄)
H∗(µ)−−−−→ H∗(dEnd

∇ ).
Moreover, as it results from the construction of isomorphism (13), H∗(µ) is iden-
tical to the cohomology map induced by the canonical cochain map {Λ̄∗(O), d̄} →
{Λ̄P, d̄∇} with ω 7→ ω ⊗ idP . This implies the result that can be suspected from
the very beginning:

Theorem 9.2. The action of H̄∗(O) on H̄∗(d̄∇) induced by the natural S-module
structure on {Λ̄P, d̄∇} coincides with the canonical action of H̄∗(O) on H̄∗(d̄∇).

Concluding this section, it is worth to stress the “secondarizability” of basic
operations of multi-linear algebra, like Hom,⊗, etc. This is seen especially trans-
parent in the context of natural modules. Indeed, if Pi is an F(O)-module with
a flat C-connection ∇i, i = 1, 2, then P1 ⊗F(O) P2 and HomF(O)(P1, P2) acquire
naturally flat connections ∇1 ⊗ ∇2 and ∇Hom(∇1,∇2), respectively. This allows
to define ⊗ and Hom operations for corresponding S-modules and, therefore, for
secondary modules they represent.

In conclusion we note that the construction presented in this section seemingly
responds the question posed by J. Stasheff at the end of his paper in this volume:
“Again we see an analog of the Maurer – Cartan equation or of a flat connection,
but why?”

10. ∇-C-spectral sequence

The central problem in the theory of secondary modules is to describe in a
reasonable way the corresponding cohomologies. Below it is shown that the C-
spectral sequence techniques allows to approach this problem for natural secondary
modules in a rather efficient way.

Let ∇ be a flat connection in a F(O)-module P . Put ΛP = Λ∗(O) ⊗F(O)

P, ΛiP = Λ∗(O) ⊗F(O) P and denote by d∇ the standard differential in ΛP as-
sociated with ∇, d∇ : ΛiP → Λi+1P . Further put CkΛP = CkΛ∗(O) ⊗F(O) P
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and CkΛiP = CkΛi(O) ⊗F(O) P . It is easy to see that CkΛP is a subcomplex of
{ΛP, d∇}. So, the filtration

ΛP ⊃ CΛP ⊃ · · · ⊃ CkΛP ⊃ . . .

generates a spectral sequence. Let us call it ∇-C-spectral sequence and denote by
{C∇Ep,q

r , d∇r }. Note that

C∇Ep,q
0 = CEp,q

0 (O) ⊗F(O) P (14)

and that ∇-C-spectral sequence is a “module” over the C-spectral one:

CEp,q
r (O) × C∇Es,t

r → C∇Ep+s,q+t
r .

Moreover, C∇Er is a DG-module over the DG-algebra CEr(O). By virtue of (14)
all eventually nontrivial terms C∆Ep,q

r are located in the region p > 0, 0 6 q 6 n.
The connection ∇ defines canonically a flat C-connection ∇̄ on P : ∇̄X =

∇X , X ∈ CD(O). Then the covariant differential d̄∇̄ : P → Λ̄1P is just the
quotient of d∇ : P → Λ1P by CΛ1P since Λ̄1P = Λ1P/CΛ1P . This shows also that
the complex {C∇E0,∗

0 , d∇0 } is identified with {Λ̄P, d̄∇̄}. So, the cohomology H∗(d̄∇̄)
is identified with C∇E0,∗

1 and we see that H∗(d̄∇̄) is related with the cohomology
H∗(d∇) to which the ∇-C-spectral sequence converges essentially by the same way
as the C-spectral one does with respect to the de Rham cohomology H∗(O).

Observe then that diffieties of the most interest, for instance E∞, have homotopy
types of finite-dimensional manifolds (E(k) for a sufficiently big k, if O = E∞.) In
such a situation computations of the cohomology of the complex {ΛP, d∇} can
be reduced to a finite-dimensional model to which standard methods of algebraic
topology can be applied.

Let P and ∇ be as before. Then the complex {CDiff(Q, Λ̄P ), SQ
∇}, SQ

∇(�) =
d̄∇ ◦�, is associated with a given F(O)-module Q.

Theorem 10.1. If P and Q are projective, then Hi(SQ
∇) = 0 for i 6= n, and

Hn(SQ
∇) = Q̂⊗F(O) P .

If � ∈ CDiff(Q, R), then ∆ 7→ ∆ ◦�, ∆ ∈ CDiff(R, Λ̄P ), is a cochain map

{CDiff(R, Λ̄P ), SR
∇} → {CDiff(Q, Λ̄P ), SQ

∇}.
As such it generates a map in cohomology �∗∇ which for projective P, Q and R
looks in view of Theorem 10.1 as

�∗∇ : R̂⊗F(O) P → Q̂⊗F(O) P. (15)

Call this operator the ∇-adjoint to �. Obviously,

(�1 ◦�2)∗∇ = �∗∇2 ◦�∗∇1 .

Note that the standard adjoint operator �∗ is ∇-adjoint to �, if ∇ is the canonical
flat connection in P = F(O). The operator

�∗∗∇ = (�∗)∗∇ : Q⊗F(O) P → R⊗F(O) P

is the extension �P of � to Q⊗F(O) P mentioned in Sec. 6. Denote by

∗(Q, R) : CDiffk(Q, R)→ CDiffk(R̂, Q̂), � 7→ �∗,
the conjugation operation. This is a k-th order C-differential operator. So, the
operator

∗(Q, R)∗∗∇ : CDiff(Q, R)⊗F(O) P → CDiff(R̂, Q̂)⊗F(O) P

is well defined. Under the natural isomorphism it can be viewed as

∗(Q, R)∗∗∇ : CDiff(Q, R⊗F(O) P )→ CDiff(R̂, Q̂⊗F(O) P ).
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In other words, it associates with any operator ∆ ∈ CDiff(Q, R⊗F(O) P ) another
operator ∆∇∗ ∈ CDiff(R̂, Q̂⊗F(O) P ) which we also call ∇-adjoint to ∆. It is easy
to see that

(∆∇∗)∇∗ = ∆.

So, the notion of the adjoint operator splits into two parts when passing to its
∇-generalization. It plays a key role in describing the term C∇E1 due to Theorem
10.1 and the “∇-extension” of the fundamental isomorphism η (Proposition5.1 and
its consequence):

{C∇Ep,∗
1 , d∇1 } = {CDiffalt

(p)(κ; Λ̄P ), S(p)
∇ }, p > 1,

where S
(p)
∇ (�) = (−1)pd̄∇̄ ◦�.

For O = J∞ we have the following ∇-generalizations of the One Line Theorem
and the related formulae (Sec. 5 and 7). Define a useful “action” �χ(∆) as

�χ(∆)(χ1, . . . , χp) = �χ(∆(χ1, . . . , χp)) +
∑

i

∆(χ1, . . . , {χi, χ}, . . . , χp)

for χ, χi ∈ κ and ∆ ∈ CDiffalt
(p)(κ; Q).

Theorem 10.2. For p > 1 it holds:
(i) C∇Ep,q

1 = 0, if q 6= n,
(ii) C∇Ep,n

1 = L∇p (κ) with

L∇p (κ) = {� ∈ CDiffalt
(p−1)(κ; κ̂ ⊗F P ) |�∇∗χ1,...,χp−2

= −�χ1,...,χp−2},

(iii) The P -valued ∇-Euler operator d∇0,n
1 = E∇0 : Hn(d̄∇)→ κ̂ ⊗F P is given by

E∇0 ([ω]) = l∇∗ω (1), ω ∈ Λ̄n ⊗F P,

(iv) Operators d∇p,n
1 = E∇p for p > 1 are given by

E∇p (∆)(χ1, . . . , χp) =
∑p

i=1(−1)i�χi(∆)(χ1, . . . , χ̂i, . . . , χp)+

(
∑p−1

i=1 (−1)s−1l∗∇χs ◦∆χ1 , . . . , χ̂s, . . . , χp−1 + (−1)pl∇∗∆(χ1,...,χp−1)
)(χp),

In particular,
E∇1 (ϕ) = lϕ − l∇∗ϕ ,

(v) The ∇-Lie derivative along χ ∈ κ in C∇E1 is given by

L∇χ = �χ + l∗∇χ .

Formulae for E∇p = d∇p,n
1 and the ∇-Lie derivative are obtained from the corre-

sponding formulae for dp,n
1 and Lχ in Sec. 5,7 by means of substitutions l∗χ 7→ l∗∇χ

for χ ∈ κ, l∗ϕ 7→ l∇∗ϕ for ϕ ∈ E1,n
1 and Lχ 7→ L∇χ = [d∇1 , iχ].

Passing now to the case O = E∞ note that the operator (l∗[F ])Cp−1Λp−1 appearing

in the Two Line Theorem, Sec. 6, in the notation of this section looks as l
∗∇(p−1)

[F ] ,
where ∇(p−1) is the canonical connection (Example (9.1) in Cp−1Λp−1.

Theorem 10.3 (∇-Two Line Theorem). If ∇ is a flat connection in a projective
F(O)-module Q, then under the hypothesis of the Two Line Theorem C∇Ep,n

1 = 0
for p > 0, q 6= n − 1, n, and C∇Ep,n−1

1 (resp., C∇Ep,n
1 ) is isomorphic to the skew-

symmetric part of ker l
∗(∇(p−1)⊗∇̄)

[F ] (resp., coker l
∗(∇(p−1)⊗∇̄
[F ] ).

Theorem 10.4 (∇-k-Line Theorem). Let O = E∞ with E satisfying the hypothesis
of the k-Line Theorem, then C∇Ep,q

1 = 0 for p > 0, q 6 n− k.
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∇-analogue of the complex (11) is

0→ Q̂k−1 ⊗F(O) Q
∆∗∇̄k−1−−−→ . . .

∆∗∇̄1−−−→ Q̂1 ⊗F(O) Q
l∗∇̄[F ]−−→ Q̂⊗F(O) Q→ 0, (16)

where ∇ is a flat connection in Q. Then

C∇E1,n−i
1 = (i-th cohomology of complex (16))

and similarly for C∇Ep,n−i
1 with p > 1, 0 6 i 6 n.

11. Secondarization of multi-vector-valued differential forms

In this section we show how to secondarize multi-vector-valued differential forms.
The first step in such a procedure is to bring the concept in question to a “secon-
darizable form”. In our case this is as follow.

Denote Di(M) the C∞(M)-module of i-vector fields on a smooth manifold M
and put

ΛiDj(M) = Λi(M)⊗C∞(M) Dj(M).

Similar meaning have Λ∗Dj , ΛiD∗ and Λ∗D∗. So, elements of ΛiDj(M) are j-
vector-valued differential i-forms on M .

Proposition 11.1. The C∞(M)-module of C∞(M)-linear graded differential op-
erators of order i acting on the graded algebra Λ∗(M) coincides with Λ∗Di(M).

Recall that ω ⊗ V ∈ Λ∗D∗(M) acts on Λ∗(M) as % 7→ ω ∧ iV (%). Below multi-
vector-valued differential forms are secondarized as differential operators of this
type.

The second step is to consider on an arbitrary diffiety O operators of the same
kind by paying attention to the Cartan distribution C(O) which must be “re-
spected”. With this purpose we put

CrDi(O) = {V ∈ Di(O)|iV (CpΛ∗(O)) ⊂ Cp−i+rΛ∗(O)}
and get the filtration

0 ⊂ CiDi ⊂ · · · ⊂ CrDi ⊂ Cr−1Di ⊂ · · · ⊂ C0Di = Di (17)

dual to the C-filtration in Λ∗(O). So, the graded algebra associated with the filtra-
tion (17) acts naturally on that associated with the C-filtration, i.e., on CE0(O).
More exactly, put

Dr,s(O) = CsDr+s(O)/Cs+1Dr+s(O).

Then any V̄ ∈ Dr,s(O) sends CEp,∗
0 (O) to CEp−r,∗

0 (O).
Elements of Dr,s(J∞) in terms of jet coordinates are represented by formal series

of the form ∑
ai1...ir

σ1...σr ,j1...js

∂

∂ui1
σ1

∧ · · · ∧ ∂

∂uir
σr

∧Dj1 ∧ · · · ∧Djs .

The following assertion is an analogue of Proposition 11.1.

Proposition 11.2. F(O)-module of F(O)-linear differential operators acting on
CE0(O) coincides with CE0(O)⊗F(O) D∗,∗(O), D∗,∗ =

∑
p,q

Dp,q.

According to the concept of a secondary module, any kind of secondary operators
should be homotopy classes of (graded) cochain maps. A graded operator ∆ :
CE0(O) → CE0(O) is a cochain map of the complex {CE0(O), d0} into itself iff
L0(δ) := [d0, ∆] = 0.

Proposition 11.3. If ∆ ∈ CE0(O) ⊗F(O) D∗,q(O) with q > 0, then L0(∆) 6= 0.
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On the other hand, it is easy to see that L0 sends Λs,t ⊗Dp,0 to Λs,t+1 ⊗Dp,0

and L2
0 = 0. So, we obtain the complex:

0 → Λs,0 ⊗F(O) Dp,0(O) L0−→ . . .
L0−→ Λs,t ⊗F(O) Dp,0(O) L0−→ . . .

L0−→ Λs,n ⊗F(O) Dp,0(O)→ 0
(18)

with Λs,t = CEs,t
0 (O).

Definition 11.1. Secondary p-vector-valued differential s-forms on O are coho-
mologies of complex (18), i.e., of {CEs,∗

0 (O) ⊗F(O) Dp,0(O), L0}.
In particular, secondary p-vector fields on O are cohomologies of the complex

{Λ̄∗(O)⊗F(O) Dp,0(O), L0}. Similarly, secondary vector-valued differential s-forms
on O are cohomologies of {CEs,∗

0 (O)⊗F(O) D1,0(O)}.
Denote by H∗ΛsDp

(O) the cohomology of (18). Similar meaning have H∗Λ∗D, H∗D∗ ,
etc.

In the classical situation various types of tensors from Λ∗D∗(M) are subject of a
number of natural operations like insertions, multiplications, brackets, etc. Without
going to exact definitions we state the following general result.

Proposition 11.4. All natural operations with tensors of the type Λ∗D∗ are sec-
ondarizable.

The next problem is how to compute the cohomology H∗ΛsDp
(O)? The method

used with this purpose for the C-spectral sequence which is the subcase p = 0 of the
above problem works as well in the general case (see Sec. 5 and 6). Its key point is
the fundamental isomorphism η which should be extended properly. A reasonable
description of this extension requires more space than we have at our disposal here.
So, we shall limit ourself further on with the case p = 1 only and refer the reader
to the forthcoming systematic exposition in [66].

Let now O = J∞ and consider the F(J∞)-module J̄ (κ) of infinite horizontal
jets of κ (see Sec. 3). Recall the horizontal Spencer jet-complex (see [59, 31]):

0→ J̄ (κ) S−→ Λ̄1(J∞)⊗F J̄ (κ) S−→ . . .
S−→ Λ̄n(J∞)⊗F J̄ (κ)→ 0

with S : ω ⊗ ̄∞(χ) 7→ d̄ω ⊗ ̄∞(χ), ω ∈ Λ̄∗(J∞), χ ∈ κ.

Proposition 11.5. There exists a natural isomorphism of F(J∞)-modules η :
D1,0(J∞)→ J̄ (κ) such that η(�χ) = ̄∞(χ). Moreover, this isomorphism together
with that of Sec. 5 gives rise to isomorphisms:

η : Λp,q(J∞)⊗F(O) D1,0(J∞)→ CDiffalt
(p)(κ; Λ̄q(J∞)⊗F J̄ (κ)).

Note that the Spencer differential S induces the differential � 7→ S ◦ � in the
module CDiffalt

(p)(κ; Λ̄∗(J∞) ⊗F J̄ (κ)). So, H∗Λ∗D(J∞) is isomorphic to the coho-
mology of the so-obtained complex. Its cohomology can be computed easily since,
the Spencer jet-complex is acyclic in positive dimensions and its 0-cocycles are of
the form ̄∞(χ). This way one gets the following result. Below Hp,q

Λ∗D(O) denotes
the q-th cohomology of the complex CEp,∗

0 (O) ⊗F(O) D1,0(O), L0}.
Theorem 11.1. It holds:

(i) Hp,0
Λ∗D(J∞) = CDiffalt

(p)(κ;κ),
(ii) Hp,q

Λ∗D(J∞) = 0 for q > 0.

So, secondary vector-valued differential p-forms on J∞ are identified with the
skew-symmetric p-differential operators on κ which take values also in κ.

Since HΛ∗D∗(O) consists of homotopy classes of co-chain maps of {CE0(O), d0}
into itself a natural action

H∗Λ∗D∗(O) × CE1(O)→ CE1(O)
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is defined. In particular, this action for secondary vector-valued forms looks as

Hr,s
Λ∗D(O) × CEp,q

1 (O)→ CEp+r−1,q+s
1 (O).

In view of Corollary 5.1 and Theorem 11.1 this action on J∞ is reduced to

CDiffalt
(r)(κ;κ)× Lp(κ)→ Lp+r−1(κ).

Denote the result of this action of ∆ ∈ CDiffalt
(r)(κ;κ) on � ∈ Lp(κ) by ∆c�. Then

the following formula holds:

(∆ c�)(χ1, . . . , χp+r−2) =∑
|I|=r

(−1)(I,J)�(∆(χI), χJ) +
∑

|I|=r−1

(−1)(I,J)∆∗χI (�(χJ )), (19)

where χI stands for χi1 , . . . , χir with I = (i1, . . . , ir), 1 6 i1 < · · ·< ir 6 p + r− 2,
etc. and (−1)(I,J) denotes the sign of the corresponding permutation. This one-
by-line action is illustrated on Fig. 5.
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Fig. 5

As an illustration of Proposition 11.4 we show now on what the secondary
Frölicher –Nijenhuis bracket on J∞ looks like. According to the identifications
made above this bracket can be considered as a pairing

CDiffalt
(p)(κ;κ)× CDiffalt

(r)(κ;κ)
[·,·]FN−−−−→ CDiffalt

(p+r)(κ;κ).

So, if ∆ ∈ CDiffalt
(p)(κ;κ) and ∇ ∈ CDiffalt

(r)(κ;κ), then

[∆,∇]FN(χ1, . . . , χp+r) =
∑

(−1)(I,J){∆(χI),∇(χJ)}+∑
(−1)(α,I,J)+p∇({χα, ∆(χI)}, χJ) −

∑
(−1)(α,I,J)∆({χα,∇(χI)}, χJ)+∑

(−1)(α,β,I,J)∇(∆({χα, χβ}, χI), χJ)) +
∑

(−1)(α,β,I,J)∆(∇({χα, χβ}, χI), χJ)

Here {·, ·} is the bracket (6) and α < β is assumed. Subsets I, J of {1, 2, . . ., p +
r} are supposed ordered and (−1)(α,β,I,J) means the sign of the corresponding
permutation, etc.

Computations of H∗Λ∗D∗ forO = E∞ proceed essentially along the same lines as in
sec.6 by taking into account a kind of duality between “operators” and “operated”.
This means that instead of the sequence (9) for ∆ = l[F ] one has to consider in the
notation of Sec. 6 the exact sequence

0→ J̄ (Q0)
lJ[F ]−−→ J̄ (Q1)

∆J1−−→ . . .
∆Jk−1−−−→ J̄ (Qk−1)→ 0 (20)

with Q0 = κ |E∞ , Q1 = P |E∞ .
Maps composing (20) are canonical jet-prolongations of operators l[F ] and ∆i (see

[31]). The operator lJ[F ] can be extended naturally to a cochain map of jet-Spencer
complexes:

J̄ (Q0)⊗ Λ̄∗(E∞)→ J̄ (Q1)⊗ Λ̄∗(E∞).

The kernel of this map is isomorphic in view of (20) to

Λ̄∗(E∞)⊗F(E∞) D1,0(E∞).
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This proves that H0,q
Λ∗D(E∞) = 0 for q > k. Similar considerations involving once

again appropriate flat C-connections prove the following result.

Theorem 11.2 (k-Line Theorem From the Bottom). If an equation E satisfies the
hypothesis of the k-Line Theorem (“from the top”), then Hr,s

Λ∗D(E∞) = 0 if s > k
(and, obviously, if s < 0).

In the whole the situation is illustrated below.
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Fig. 6

Similar situation takes place for Hr,s
Λ∗Dp

(E∞) for p > 1 and, even more, for all
Functors of Differential Calculus over Commutative Algebras and their Representa-
tive Objects. See, for instance, [53, 31, 69] to get an idea of what such functors are.
To prove this general assertion one needs only a formalization of the Differential
Calculus Functors Algebra which will appear elsewhere.

Note, finally, that the cohomology H∗Λ∗D coincides essentially with Krasil’shchik’s
C-cohomology [27]. His approach is based on algebraic Frölicher– Nijenhuis machin-
ery and, so, is quite different from ours.

12. Secondarization versus quantization

As we already have seen, the objects of Secondary Calculus are formed by suitable
cohomology classes whose cohomological nature can not be forgotten. To express
this idea better, we need a more precise terminology. LetM be a secondary module
represented by an S-module {K, ∆}, i.e., M is the homotopy equivalence class of
{K, ∆}. Call H∗(∆) the body of M. Obviously, M is not reduced to its body
because an isomorphism of cohomology spaces does not, generally, guarantee a
homotopy equivalence of the corresponding complexes. A physicist could describe
such a situation by saying that a secondary module consists of a body surrounded
by an aura. While the quantities we are interested in take part of the body, the
aura is indispensable to put them in interaction. This is, obviously, parallel to the
idea of an particle together with the field it emanates.

Hence, in frames of Secondary Calculus cohomology classes of one kind are to be
“observed” by means of cohomologies of another kind. Moreover, this observability
mechanism becomes classical in the limit “Dim→ 0” and the substitution “Dim→
0” for “h → 0” is suggested when looking for principles of Quantum Physics. In
other words, Secondary Calculus seems to be as indispensable for Quantum Physics
as (Primary) Calculus is for the Classical. In this limit any body loses the proper
aura. Mathematically this means that d∇0 ≡ 0 for 0-Dimensional diffieties, while
physical meaning is that information costs nothing in the classical limit. So, from
mathematical point of view “quantum” means “cohomological” in the sense made
precise above.
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In other words, this “privilege principle” gives a status of universality to what
happened around the BRST.

In these proceedings (see [43]) Jim Stasheff writes that a decade ago “some people
thought that phrase (i.e., ‘cohomological physics’) was a bit much”. Alas.

13. Bibliography and comments

Elements of the geometry of infinite jet spaces and infinitely prolonged equations
adopted to the purposes of Secondary Calculus are summarized in review article
[58] and can be found in a developed form in books [68, 31] and [32], see also [1]
and [60]. A systematic use of the algebraic language of the differential calculus over
commutative algebras in these texts becomes almost indispensable in the Secondary
Calculus context. See [40, 38] and [44] for alternative approaches.

The concept of a diffiety emerges very naturally from a category-theoretic setting
for PDE’s given in [61]. See also [34].

Necessary results from formal theory of PDE’s can be found in H. Goldschmidt’s
works [17, 18] and Spencer’s review article [42]. See [31] for an adapted to our
purposes exposition and [38] for an alternative point of view.

We use the adjective “higher” for nonclassical (non-Lie) symmetries of PDE’s
whose fundamentals were elaborated for the first time in [56] and [54] (see also
[58, 60] and [31]). In subsequent books by N. Ibragimov [23] and P. Olver [37]
“Lie –Bäcklund transformations” and “generalized symmetries”, respectively, were
used for the same concept. In these books, however, not much attention is paid to
the fact that higher symmetries are, in fact, suitable cosets or, better, cohomology
classes of vector fields. This is why they are not very friendly to Secondary Calculus.

An updated exposition of higher symmetries inscribed into the context of Sec-
ondary Calculus is given in [32]. There nonlocal and integro-differential symmetries
and conservation laws are also treated. Graded (“super”) generalizations are stud-
ied in [27, 39, 28, 26] and [25].

The C-spectral sequence was introduced by the author in [54], where basic inter-
pretations of its terms were made and 1-, 2- and p-line theorems were announced.
Interrelations between higher symmetries and the first term of the C-spectral se-
quence which brought to light the idea of Secondary Calculus (see Sec. 7) were
observed a little later in [57] (see also [58]). It turned out impossible to publish in
USSR a detailed exposition of these and related results that time. It happened six
years later in USA thanks to the help of D. Spencer and G.-C. Rota. Meantime
an important paper by T. Tsujishita [46] appeared. In this paper, some author’s
results were reinterpreted in the local “environment” of the variational bi-complex
(see Sec. 4) and a natural interpretation of various kinds of characteristic classes
(foliations, vector fields, etc.) in its terms were proposed. Earlier in [47] W. Tul-
czijew interpreted his “Lagrange complex” in the form of “One Line Theorem” for
O = J∞π. An extensive work of divulgation and systematization concerning the
variational bi-complex made by I. Anderson is summarized in his recent book [2]
where the reader will find also an alternative version of the history of the problem.

Recently R. Bryant and Ph. Griffiths introduced the notion of the characteristic
cohomology of an exterior differential system and developed an analogue of the
C-spectral method in this context. See [11, 12, 14]. We note that characteristic
cohomologies become horizontal ones when converting the original exterior system
into the corresponding PDE’s.

A disadvantage of the variational complex interpretation of the C-spectral se-
quence method is that it requires from the very beginning a fixation of independent
variables. This creates various inconveniences in treating global and singular prob-
lems and impedes the use of the natural algebraic language of (Primary) Calculus.
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Perhaps, this is why not all ingredients, for instance, of [59] were reinterpreted till
now in terms of variational bi-complex. To respect, however, the “general relativity
principle” we report also Tsujishita’s point of view ([44, Footnote 17]) on the sub-
ject: “such (i.e., algebraic) formalism however obscure the point of our framework,
which is very simple in essence.”

The method of computing the first term of the C- and ∇-C-spectral sequences ex-
posed in Sec. 5, 6 and 10 is an important improvement of original author’s method
[54, 59] due to works by M. Marvan [35], T. Tsujishita [45], D. Guessler [15] and
A. Verbovetsky [51]. It turns out much simpler to deal directly with the compati-
bility complex than with the corresponding δ-Spencer cohomologies which controls
its length. See the contribution by A. Verbovetsky to these proceedings for further
details, examples and references.

Alternative approaches were proposed by G. Barnich, F. Brandt and M. Hen-
neaux [8] and by R. Bryant and Ph. Griffiths [11]. While the former method makes
use of the Tate – Koszul complex, the latter deals with infinitely prolonged exterior
systems. It seems rather clear what are relationships between these two approaches
and the presented in our notes. This, however, is to be made more precise. In this
connections we send the reader to contributions by M.‘Henneaux [22] and F. Brandt
[10] in these proceedings where these constructions are presented “in action”.

Literature dedicated to applications of the C-spectral sequence (variational bi-
complex) method is growing rapidly now. Computations of symmetries and con-
servation laws take a significant part of it. We mention collection [64], the first in
which this method was applied successfully to nonintegrable equations. It should
be stressed that the use of basic formulae of Secondary Calculus makes such com-
putations much more efficient (see, for instance, [50, 41]). Further references see in
[32] and [2].

There are not so much works dealing with the C-spectral sequence in the whole,
i.e., with a description of all its terms. Works [24, 3, 15], [12], [14, 13] as well as
the paper by A. Verbovetsky in this volume give an idea of what is happening in
that direction.

Aspects of the C-spectral sequence in connection with PDE’s quotiening proce-
dure, group action, invariance properties and characteristic classes were considered
in [46, 47, 4, 52, 65].

The list of publications dedicated consciously to Secondary Calculus apart of the
C-spectral sequence (variational bi-complex) matters is rather short. Hamiltonian
formalism in field theory from this point of view is considered in [55, 5, 6, 26].
Works [27, 28, 39, 29, 30] initiate the study of graded or super generalizations.
Secondary higher order differential operators were introduced in [67] and [19]. A
general secondarization algorithm will be presented in [66]. One of its key points
is computation of various kinds of horizontal cohomologies as it was sketched in
Sec. 5, 6, 9, 10. The state of art in this problem can be found in Verbovetsky’s
paper [51].

Finally, it should be stressed that efficient concrete computations in Secondary
Calculus require a solid computer support to overcome as a rule very tedious sym-
bolic computations. A number of personal experiences and, first of all, that of
P.Kersten is all what we have at our disposal now.

14. Acknowledgments

The authors is obliged to D.M. Gessler, I.S. Krasil’shchik and A.M. Verbovetsky
for numerous open and friendly discussions accelerated his understanding of what
Secondary Calculus is. Some of ideas presented in these notes matured during few
author’s visits to the E. Schrödinger Institute in Vienna in years 1993– 95.



28 Alexandre VINOGRADOV

References

[1] D. V. Alekseevski, V. V. Lychagin, A. M. Vinogradov, Basic ideas and concepts of differential

geometry, Encyclopedia of Math. Sciences, 28 (1991), Springer-Verlag, Berlin.
[2] I. M. Anderson, The variational bicomplex, Academic Press, Boston, to appear.

[3] I. M. Anderson, sec. Kamran, Conservation laws and the variational bicomplex for second
order scalar hyperbolic equations in the plane. in: P. H. M. Kersten and I. S. Krasil’shchik,

eds., “Geometric and Algebraic Structures in Differential Equations”, Kluwer Acad. Publ.,
Dordrecht, 1995, 135-144.

[4] I. M. Anderson, J. Pohjanpelto, The Cohomology of Invariant Variational Bicomplexes
Kluwer Acad. Publ., Dordrecht, 1995, 3–20.

[5] A. M. Astashov, Normal forms for Hamiltonian operators in the field theory. Dokl. AN SSSR
270 (1983) 1033–1037 (in Russian).

[6] A. M. Astashov, On generalization of the Darboux theorem for the Hamiltonian field theory,
Mat. zametki 36 (1984) 537–547 (in Russian).

[7] A. M. Astashov, A. M. Vinogradov, On the structure of Hamiltonian operator in field theory,
J. Geom. and Phys., 3 (1986), no. 2, 263-287.

[8] G. Barnich, F. Brandt, and M. Henneaux, Local BRST cohomology in the antifield formalism:

I. General theorems, Comm. Math. Phys. 174 (1995), 57–92, E-print hep-th/9405109.
[9] G. W. Bluman, S.Kumei, Symmetries and Differential Equations, Appl. Math. Sci., 81,

Springer-Verlag, New York, 1989.
[10] F. Brandt, Gauge covariant algebra and local BRST cohomology., This volume

[11] R. L. Bryant, Ph. A. Griffiths, Characteristic cohomology of differential systems, I: General
theory, J. Amer. Math. Soc. 8 (1995), 507–596, URL: http://www.math.duke.edu/˜bryant.

[12] R. L. Bryant, Ph. A. Griffiths, Characteristic cohomology of differential systems, II: Con-
servation laws for a class of parabolic equations, Duke Mathematical Journal 78 (1995),

531–676. MR 96d:58158.
[13] R. L. Bryant, Ph. A. Griffiths, L.Hsu Hyperbolic exterior differential systems and their con-

servation laws, Part II, Mathematica Selecta, 1 (1995). CMP 1 354 599.
[14] R. L. Bryant, Ph. A. Griffiths, L. Hsu Hyperbolic exterior differential systems and their

conservation laws, Part I, Mathematica Selecta, 1 (1995), 21–112. CMP 1 327 228
[15] D. M. Gessler, On the Vinogradov C-spectral sequence for determined systems of differential

equations, Differential Geom. Appl. 7 (1997), no. 4.
[16] D. M. Gessler, The “three-line” theorem for the Vinogradov C-spectral sequence of the Yang-

Mills equation, Preprint SISSA 71/95/FM, 1995.
[17] H. Goldschmidt, Existence theorems for analytic linear partial differential equations. Ann.

Math. 86 (1967), 246-270.
[18] H. Goldschmidt, Integrability criteria for systems of non-linear partial differential equations.

J.Differential Geometry bf 1 (1967), 269-307.
[19] V. N. Gusyatnikova ,A .M. Vinogradov, V. A. Yumaguzhin V. A., Secondary differential

operators, J. Geom. and Phys., v. 2, No 2, (1985), 23-65.
[20] M. Henneaux, B. Knaepen, and C. Schomblond, Characteristic cohomology of p-form gauge

theories, Comm. Math. Phys. 186 (1997), 137–165, E-print hep-th/9606181.
[21] M. Henneaux, C. Teitelboim,Quantization of Gauge Systems, Princeton University Press,

1992.
[22] M. Henneaux, Consistent interactions between gauge fields: the cohomological approach.,

This volume
[23] N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics. Riedel, Boston,

1985.
[24] N. G. Khorkova, On the C-spectral sequence of differential equations Diff. Geom. Appl. 3

(1993), 219–243.
[25] I. S. Krasil’shchik, Cohomology background in the geometry of PDE, Proc. Conf. Secondary

Calculus and Cohomology Physics (M. Henneaux, I. S. Krasil’shchik, and A. M. Vinogradov,
eds.), Contemporary Mathematics, Amer. Math. Soc., Providence, RI, 1998, this volume.

[26] I. S. Krasil’shchik, Hamiltonian formalism and supersymmetry for nonlinear differential
equations. Erwin Schrödinger International Inst. for Math. Physics, Wien. Preprint no. 257,

1995.
[27] I. S. Krasil’shchik, Some new cohomological invariants for nonlinear differential equations,

Differential Geom. Appl. 2 1992), 307–350.
[28] I. S. Krasil’shchik, P. H. M. Kersten, Deformations and recursion operators for evolution

equations, Geometry in Partial Differential Equations (A. Prastaro and Th. M. Rassias, eds.),
World Scientific, Singapore, 1994, pp. 114–154.



Introduction to Secondary Calculus 29

[29] I. S. Krasil’shchik, P. H. M. Kersten, Graded differential equations and their deformations:
A computational theory for recursion operators, Acta Appl. Math. 41 (1994), 167–191.

[30] I. S. Krasil’shchik, P. H. M. Kersten, Graded Frölicher-Nijenhuis brackets and the theory
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tions: Symmetries, conservation laws, and Bäcklund transformations, Acta Appl. Math. 15

(1989), 161–209.
[34] M. Marvan, A note on the category of partial differential equations. in:“DifferentialGeometry

and its Applications”, Proc.Conf.Brno Czechoslovakia, Aug. 24-30, 1986.
[35] M. Marvan, On the C-spectral sequence with “general” coefficients, Differential Geometry and

its Application, Proc. Conf. Brno, 1989, World Scientific, Singapore, 1990, pp. 361–371.
[36] J. McCleary, A user’s guide to spectral sequences Wilmington (USA, Delaware): Publish or

Perish, 1986.
[37] P. J. Olver, Applications of Lie groups to differential equations, 2nd ed., Graduate Texts in

Mathematics, n.107, Springer-Verlag, New York, 1993.
[38] J.-F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups. Gordon

and Breach, New York, 1978.
[39] G. H. M. Roelofs, Prolongation structures of supersymmetric systems, Dept. of Appl.Math.

Univ. of Twente, Enschede (1993).
[40] D. J. Saunders, The Geometry of Jet Bundles. Cambridge Univ. Press, Cambridge, 1989.

[41] S. I. Senashov, A. M. Vinogradov, Symmetries and conservation laws of 2-dimensional ideal
plasticity, Proc. Edinburgh Math.Soc., 31 (1988), 415–439.

[42] D. C. Spencer, Over determined systems of linear partial differential equations. Bull. Amer.
Math. Soc. 75 (1969), 179-239.

[43] J. D. Stasheff, The (secret?) homological algebra of the Batalin – Vilkovisky approach This
volume.

[44] T. Tsujishita, Formal geometry of systems of differential equations, Sugaku Expositions 2
(1989), 1–40.

[45] T. Tsujishita, Homological method of computing invariants of systems of differential equa-
tions, Differential Geom. Appl. 1 (1991), 3–34.

[46] T. Tsujishita, On variation bicomplexes associated to differential equations, Osaka J. Math.
19 (1982), 311–363.

[47] W. M. Tulczyjew, Cohomology of the Lagrange complex. Ann. Scuola Norm. Sup. Pisa (1988),
217-227.

[48] W. M. Tulczyjew, The Euler-Lagrange resolution. Lecture Notes in Math. 836, Springer-
Verlag, New-York (1980), 22-48.

[49] W. M. Tulczyjew, The Lagrange complex. Bull. Soc. Math. France 105 (1977), 419-431.
[50] A. M. Verbovetsky, Local non-integrability of long-short wave interaction equations. Acta

Appl. Math. 15 (1989), 121-136.
[51] A. M. Verbovetsky, Notes on the horizontal cohomology. This volume.

[52] A. M. Verbovetsky, A. M. Vinogradov, D. M. Gessler, Scalar differential invariants and
characteristic classes of homogeneous geometric structures, Math. Notes 51 (1992), 543–549.

[53] A. M. Vinogradov, The logic algebra for the theory of linear differential operators, Soviet
Math. Dokl., 13 (1972), 1058–1062.

[54] A. M. Vinogradov, A spectral sequence associated with a nonlinear differential equation and
algebro-geometric foundations of Lagrangian field theory with constraints, Soviet Math. Dokl.

19 (1978), 144–148.

[55] A. M. Vinogradov, Hamiltonian structures in field theory, Soviet. Math. Dokl. 19 (1978),
790–794.

[56] A. M. Vinogradov, The theory of higher infinitesimal symmetries of nonlinear partial
differential equations, Soviet Math. Dokl.,20 (1979), 985-990.

[57] A. M. Vinogradov, Some homological systems associated with differential calculus over com-
mutative algebras, Russian Math. Surveys, 34 (1979), n.6, pp.250–255.

[58] A. M. Vinogradov, Geometry of nonlinear differential equations, J., Sov. Math., 17 (1981)),
1624–1649.



30 Alexandre VINOGRADOV

[59] A. M. Vinogradov, The C-spectral sequence, Lagrangian formalism, and conservation laws.
I. The linear theory. II. The nonlinear theory, J. Math. Anal. Appl. 100 (1984), 1–129.

[60] A. M. Vinogradov, Local symmetries and conservation laws, Acta Appl. Math.,3, (1984),
21-78.

[61] A. M. Vinogradov, Category of partial differential equations, Lecture Notes in Math., 1108
(1984), Springer-Verlag, Berlin, 77-102.

[62] A. M. Vinogradov, The category of differential equations and its significance for physics , In:
Krupka D. (Ed.), Proc. Conf. Diff. Geom. Appl. (Brno, 1984), (1984), J.E. Purkynĕ Univ.,
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di Salerno — Italia.,
2

Istituto Nazionale di Fisica Nucleare, sez. Napoli – Salerno,

Italia,
3

The Diffiety Institute, Pereslavl-Zalessky, Russia

E-mail address : vinograd@ponza.dia.unisa.it


	Infinite jets
	Infinite prolongations of PDE's and diffieties
	Higher symmetries of PDE's
	The $@mathcal C$-spectral sequence
	The structure of the term ${@mathcal C}E_1$ for ${@mathcal O}=J^infty $
	The structure of the term ${@mathcal C}E_1$ for ${@mathcal O}= {@mathcal E}_infty $
	The conception of Secondary Calculus: vectors and differential forms
	Secondary modules
	Secondary modules and flat connections
	$nabla $-${@mathcal C}$-spectral sequence
	Secondarization of multi-vector-valued differential forms
	Secondarization versus quantization
	Bibliography and comments
	Acknowledgments

