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Abstract For differential equations containing a small parameter ε symme-
tries are found in a form of series in powers of ε. The recurrent relation on
summands of the series is obtained; the first summand is just a symmetry of the
unperturbed equation (i.e., for an equation with ε = 0). Conservation laws of the
unperturbed equation are not conserved in case ε 6= 0 and the rate of their decay
is explicitly determined. Illustrative examples include the Burgers equation and
a system of magnetohydrodynamics equations.

1 Introduction

Most well known model equations of mathematical physics, such as Korteweg-
de Vries, Burgers, etc. are distinguished by their not-so-usual differential and
algebraic properties. They have rich symmetry algebras and/or numerous con-
servation laws and so on. These properties are, however, regrettably unstable:
few survive any perturbations of the equation. It is quite a disappointing situa-
tion from the point of view of physical applications: in physics, there is no such
thing as an individual equation. Rather, the thing of prime interest is an un-
derlying phenomenon, so there are ’clasters’ of equation describing it in varying
assumptions concerning physically meaningful quantifiers; small perturbations of
the ideal state equation is a universal way to take into account different changing
characteristics.

This paper is an attempt to use symmetries and conservation laws of the
ideal (non-perturbed) equation when the latter is perturbed. In the first section
the recurrent relations for an expansion of a symmetry by a small parameter
is obtained for an evolution equation with one spatial variable. Its truncated
solution is used to construct approximate solutions of the perturbed equation
starting with a solution of the unperturbed one. The Burgers equation is used
for various examples.

In the second section we estimate the rate of ’decay’ of an ideal state conser-
vation law in presence of a dissipative-like perturbations. Different rates of such a
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decay for different conservation laws produce quasistable solutions. The general
argument is illustrated by a system of third order nonlinear magnetohydrody-
namics equations with two dependent and three independent variables describing
incompressible magnetofluids; this example may be found in [2] in more detail.

2 Symmetries

Consider an equation

ut = F (x, t, u, ux, . . .) + εG(x, t, u, ux, . . .), (1)

where ε is a small parameter. Its symmetry may be chosen in the form

S = S(ε, x, t, ux, uxx, . . .).

Then it must satisfy the symmetry equation

∂tS + {F, S}+ ε{G, S}, (2)

where
{F, S} = (?F − `F )S = (`S−?S)F.

Here, by definition,

`F =
∞∑
n=0

∂F

∂un
Dn

?F =
∞∑
n=0

Dn(F )
∂

∂un

and the total derivative D with respect to x is given by

D =
∞∑
i=0

un+1
∂

∂un
;

un stands for uxxx...x︸ ︷︷ ︸
n

If we expand

S(ε, x, t, u, . . .) =
∞∑
k=0

Si(x, t, u, . . .)εi

and substitute this expansion into (2), we obtain ε-less system of recurrent rela-
tions for Si:

∂tSi + {F, Si}+ {G, Si−1}. (3)
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Here Si = 0 is assumed for i < 0. Thus S0 is a usual symmetry of the
unperturbed equation ut = F :

∂S0

∂t
+ {F, S0} = 0.

Even in case when the unperturbed equation possesses a rich nontrivial symmetry
algebra, the perturbed equation (1) may has no symmetries. But if we calculate
Si, say, up to i = k, then we can obtain a certain k-approximation to a solution
of the equation (1) in the following way.

Let u = f(x, t) be a solution of the unperturbed equation ut = F . Consider
a problem

uτ =
k∑
i=0

Si(x, t, u, ux . . .)εi,

u|τ=0 = f(x, t). (4)

If v(τ, ε, x, t) is a solution of this problem, then

∂

∂τ
|τ=0 (vt − F − εG) =

∂

∂t

k∑
i=0

Si(x, t, u, ux . . .)εi + {F,
k∑
i=0

Si(x, t, u, ux . . .)εi}+ {G,
k∑
i=0

Si(x, t, u, ux . . .)εi} =

εk+1{G, Sk}. (5)

If, moreover, {G, Sk} is bounded, then (5) means that v is a solution of (1) up to
O(εk+1).

Note that if S is a genuine symmetry of (1), then for any solution of the
problem uτ = S, u|τ=0 = f and for any τ0 the function u|τ=τ0 is a solution of (1)
as well as f . This procedure is known as a solution generating method. Hence,
the solution of the problem (4) leads to a method of generating of approximate
solutions.

Remark 1 If the addend G commutes with all symmetries from sym E, then the
symmetry algebra of the perturbed equation includes the symmetry algebra of the
unperturbed one:

{G, sym E} = 0 =⇒ sym E ⊂ sym Eε

2.1 Examples

2.1.1 ut symmetry

The chain of symmetry equations (3) has few chances to have a solution. Here is
one trivial example when it do has a solution (and not as a series, but as a finite
sum).
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Suppose both F and G do not depend on t explicitly, ∂tF = 0 and ∂t = 0G.
Then (3) comes to the system

{F, S0} = 0, {F, Si} = {Si−1, G}, i > 0.

One can take S0 = F in the first equation of the system, S1 = G in the second
one and Si = 0 for i > 1. The resulting symmetry is S = F +εG, which coincides
with an obvious symmetry ut restricted to the equation ut = F + εG.

2.1.2 Burgers equation.

Burgers equation has a form

ut = uxx + εuux.

In this case F = uxx, G = uux and the symmetry equation is of the form

∂Si
∂t

+

 ∞∑
j=0

uj+2
∂

∂un
−D2

Si =

uD + u1 −
∞∑
j=0

Dj(uu1)
∂

∂uj

Si−1 (6)

The unperturbed equation in this case is simply the heat equation ut = uxx. It
has a lot of symmetries. For instance, take S0 = u ≡ u0. (This is a common
symmetry for all linear equations.) Then we have the following equation on S1:

∂S1

∂t
+

 ∞∑
j=0

uj+2
∂

∂uj
−D2

S1 =

uD + u1 −
∞∑
j=0

Dj(uu1)
∂

∂uj

u ≡ uu1 (7)

Suppose S1 = S1(x, t, u0). Then (7) comes to

∂S1

∂t
+ u2

∂S1

∂u
−D2S1 = uu1

or
(S1)t − (S1)xx − 2u1(S1)xu − u2(S1)uu = uu1.

This equation has no solutions, but the structure of the previous one prompts to
take

S1 = S1(x, t, u, w), where Dw = u or w =
∫

u dx.

It follows then that

wt =
∂

∂t

∫
u dx =

∫
ut dx =

∫
(u2 + εuu1) dx = u1 +

1

2
u2

In other words we choose the covering over Burgers equation (see [1]), so that

Dx = D + u
∂

∂w
, Dt =

∞∑
i=0

Di(u2 + εuu1) + (u1 +
ε

2
u2)

∂

∂w
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Denote w = u−1 for convenience. The symmetry equation for such an S is of
the form

∂S1

∂t
+

 ∞∑
j=−1

uj+2
∂

∂uj
−D2

S1 =

uD + u1 −
∞∑

j=−1

Dj(uu1)
∂

∂uj

S0. (8)

For S0 = u it has a solution S1 = −1
2
uw. Moreover, if Si = Auwi, then Si+1 may

be chosen as − A
2(i+1)

uwi+1. Starting with S0 = u we obtain

S = u(1− εw

2
+

1

2

(
εw

2

)2

− 1

6

(
εw

2

)3

. . .) = ue−
εw
2

Of course, this result may be obtained in a more straightforward way, i.e.,
without expansion in series, see [1].

2.1.3 Solution generated symmetries

Here is one more example for Burgers equation. Since the heat equation is a
linear one, any of its solutions u = f(x, t) is a symmetry. Take S0 = x which is
an obvious solution. Assume S1 = S1(x, t, u). Then

S1 =
α

4
(2t− x2)u + βxu + δu + g(x, t),

where α, β, δ are arbitrary constants and g(x, t) is an arbitrary solution of the heat
equation. No S2 of the form S2(x, t, u) exists here. But the solution generating
process (4) with the help of

S = S0 + εS1 = x + ε(
α

4
(2t− x2)u + βxu + δu + g(x, t))

is a success up to O(ε2).

3 Conservation laws

First we introduce notions and notations which are necessary to formulate results.
Let E = (E1, . . . , El) = 0 be a N-th order system of l nonlinear differential

equations on m-vector function (f1, . . . , fm) of n+1 independent variables (x0 =
t, x1, . . . , xn).

We interpret the equation as a submanyfold in a jet space JN (π), where
π : IRm × IRn+1 −→ IRn+1 is a trivial bundle. If xi and uj are base and fiber
coordinates of π, then uj = f j(x0, x1, . . . , xn), j = 1, . . . , m are sections of π
denoted by j0(f). The bundle πN : JN(π) −→ IRn+1 has x for base coordinates
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and ujσ, j = 1, . . . , m, σ = (io, . . . , in), |σ| ≤ N for its fiber coordinates. The
sections jN (f) of πN are given by the formula

ujσ =
∂ |σ|

∂xσ
f j(x) =

∂ |σ|

∂x
i0
0 · · · ∂xin

n

f j(x)

Now {E(x, u, . . . , uσ) = 0} ⊂ JN(π) defines a submanyfold in the jet space
and we denote this submanyfold by E. Solutions of E = 0 are such f(x) that
jN (f)(IRn+1) ⊂ E. Introduce the total differentiations Di with respect to xi:

Di =
∂

∂xi
+
∑
j, σ

ujσ+1i

∂

∂ujσ
where 1k = (0, . . . , 0︸ ︷︷ ︸

k−1

, 1, 0, . . . , 0)

All differential prolongations of E i.e., the differential ideal J generated by E
and the total differentiations Di, define the submanyfold E∞ ⊂ J∞(π).

Consider some l ×m matrix `E (l is the codimension of E) in JN(π)),
(`E)rs =

∑
σ

∂Es
∂urσ

Dσ,
or

`E =



∑
σ

∂E1

∂u1
σ
Dσ . . .

∑
σ

∂E1

∂urσ
Dσ . . .

∑
σ

∂E1

∂umσ
Dσ

...
...

...∑
σ

∂Es
∂u1

σ
Dσ . . .

∑
σ

∂Es
∂urσ

Dσ . . .
∑
σ

∂Es
∂umσ

Dσ

...
...

...∑
σ

∂El
∂u1

σ
Dσ . . .

∑
σ

∂El
∂urσ

Dσ . . .
∑
σ

∂El
∂umσ

Dσ


(9)

A conservation law for the equation E is a differential n– form ω =
n∑
i=0

ωid̂xi ,

such that dω = 0 on E∞ ; here d̂xi = dx0 ∧ . . .∧ dxi−1 ∧ dxi+1 ∧ . . .∧ dxn and ωi’s
are some functions on J∞(π). ( In physics terminology ω0 is called a conserved
density, while (−ω1, ω2, . . . , (−1)nωn) is called a flux.)

The method for finding of conservation laws is as follows. Let `∗E be a formal
conjugate of `E,

`∗E =



∑
σ
(−1)|σ|Dσ ◦ ∂E1

∂u1
σ

. . .
∑
σ

(−1)|σ|Dσ ◦ ∂Er∂u1
σ

. . .
∑
σ
(−1)|σ|Dσ ◦ ∂El

∂u1
σ

...
...

...∑
σ
(−1)|σ|Dσ ◦ ∂E1

∂usσ
. . .

∑
σ

(−1)|σ|Dσ ◦ ∂Er∂usσ
. . .

∑
σ
(−1)|σ|Dσ ◦ ∂El

∂usσ
...

...
...∑

σ
(−1)|σ|Dσ ◦ ∂E1

∂umσ
. . .

∑
σ

(−1)|σ|Dσ ◦ ∂Er
∂umσ

. . .
∑
σ
(−1)|σ|Dσ ◦ ∂El

∂umσ


(10)

Solutions ψ of the equation
`∗E(ψ)|E∞ = 0 (11)
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are so called generating functions of conservation laws. They are connected to
conservation laws themselves in a following way. By the definition of a con-
servation law, the equation dω|E∞ = 0 holds, which is equivalent to dω =
O(E)dx0 ∧ . . . ∧ dxn, where O(E) ∈ J O(E) =

∑
σ, rOσDσ(Er). Now O∗(1)

is the generating function of this conservation law or a solution of (11) (∗ stand
for formal conjugation). It remains however to find the conservation law itself
and to check whether it is trivial (trivial by definition are conservation laws ω
which are exact, i.e., ω = dw for some (n− 1)– differential form w).

The general procedure for finding the conservation law, starting with its gen-
erating function, is connected to C-spectral sequence of the equation; however,
for a low order operator O (as in example discussed here) it is usually not hard
to discover the conservation law corresponding to any given O∗(1).

The main theorem is as follows (see [2])

THEOREM 1 Consider an equation E(η) depending on a small parameter η in

such a way that E0 = E(0) is a non–dissipative system. Let ω =
n∑
0

ωid̂xi be the

conservation law of E0. Then the decay velocity of the conserved quantity 〈ω0〉 in
presence of dissipation is given by

d

dt
〈ω0〉

∣∣∣∣
E(η)

= −η〈O∗(1) · ∂E

∂η

∣∣∣∣
η=0
〉 up to O(η2)

3.1 Example: Conservation laws of MHD-equation

The 3-dimensional MHD–equation, describing incompressible magnetofluids in
dimensionless variables may be taken in the following form, [2]:{

∆ut + ux∆uy − uy∆ux + vy∆vx − vx∆vy = ν∆2u

vt + uxvy − uyvx = η∆v
(12)

Here subscripts mean partial differentiation: ux = ∂u
∂x

and so on. The (12) equa-
tion will be denoted E(ν, η) onward. The ideal state is described by E(0, 0) and
denoted by E0.

To obtain conservation laws of the ideal state one starts by solving

`∗E0
f |E∞0 = 0 (13)

Here f =

(
S
T

)
is a possible generating function of a would be conservation

law; components S and T are some functions on J∞(IR3, IR2). We remind that ∗

stands for formal conjugation. The universal linearization operator `E0 for (12)
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is given by the formula

`E0 =


Dt∆ + ux∆Dy + ∆uy ·Dx− vy∆Dx − vx∆Dy+

uy∆Dx −∆ux ·Dy ∆vx ·Dy −∆vy ·Dx

vyDx − vxDy Dt + uxDy − uyDx

 (14)

Now `∗E0
is of the form

`∗E0
=


−Dt∆− uxDy∆ + uyDx∆+ −vyDx + vxDy

2(uyy − uxx)DxDy + 2uxy(D2
x −D2

y)

vxDy∆− vyDx∆− −Dt − uxDy + uyDx

2(vyy − vxx)DxDy − 2vxy(D
2
x −D2

y)

 (15)

We restrict ourselves to low order conservation laws, that is to such a f =(
S
T

)
in (13) that S and T are functions on J0(IR3, IR2) and J2(IR3, IR2) re-

spectively. This choice may be understood by considering the structure of `∗E0

matrix: its second column is a first order operator while the first column is of
third order. Solving the equation (13), which depends polinomially on higher
derivatives uσ, vσ, is very tedious but straightforward job. We simply list the
results.

The kernel of `∗E0
|E∞0 is linearly generated by(

h(t)
0

)
,

(
x2 + y2

0

)
,

(
p(t)x
0

)
,

(
q(t)y
0

)
, (16)

(
u
∆u

)
,

(
f(v)
f ′(v)∆v

)
,

(
0
Φ′(v)

)
(17)

where h, p, q, f and Φ are arbitrary functions. Most of them produce trivial
conservation laws. There are three non–trivial conserved densities (two of them
depending on arbitrary functions): the total energy E (magnetic plus kinetic
energy), generalized ’cross helicity’ Hc and mean magnetic potential A,

E = 1
2
〈u2

x + u2
y + v2

x + v2
y〉

Hc = 〈f ′(v) · (uxvx + uyvy)〉
A = 〈Φ(v)〉

(18)

Their generating functions are placed on the second line of (17) in respective
order. Recall that f and Φ are arbitrary functions of v.

Let us calculate the decay rates of these conservation laws
Once dissipation coefficients ν or η are allowed to have small but finite values,

quantities (17) are conserved no more. In accordance with general formulas of
section 2 their decay rates are
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dE
dt

= −ν
∫
S

u∆2u dxdy − η
∫
S
(∆v)2 dxdy = − ∫

S
[ν(∆u)2 + η(∆v)2] dxdy ;

dHc
dt

= 1
2

∫
S
[νf(v)∆2u + ηf ′(v)∆u∆v] dxdy =

= −1
2
(ν + η)

∫
S

f ′(v)∆u∆v dxdy − 1
2
ν
∫
S

f ′′(v)∆u(v2
x + v2

y) dxdy ;

dA
dt

= −η
∫
S

Φ′(v)∆v dxdy = η
∫
S

Φ′′(v)(v2
x + v2

y) dxdy

(19)
One can see that the decay of E is monotonic but those of Hc and A are

not necessarily so. Such an inequality in decay rates leads to a distinct physical
phenomenon of ’self–organization’ or quasi–stable states of plasma. Depending
on initial conditions competing processes called ’selective decay’ or ’dynamic
alignment’ occur: in selective decay energy decays relatively to mean potential,
and in dynamic alignment energy decays relatively to cross helicity (velocity and
magnetic field being aligned). There are also some more delicate possibilities of
self–organization.

There exist a very simple procedure for finding solutions of the above described
behavior. It was suggested in [3], and is known as ’Taylor trick’; it allows us to
predict and calculate quasistable states. The procedure is as follows.

Taking into consideration their comparative decay rates let us minimize E
with Hc and A as constrains. We put δ(E +λHc + µA) = 0, A and Hc presumed
constant, λ and µ being Lagrange multipliers. The Euler–Lagrange equations are{

∆[u− F (v)] = 0
∆v = f(v)∆u + g(v) ,

(20)

where F ′ = f and g = ±Φ′.
The system (20) generally is not compatible with (12). But it is compatible

if η = ν which is in particular true in the ideal case η = ν = 0. In this case,
combining (12) and (20) we get

∆[u− F (v)] = 0

∆v = ff ′

1−f2 (v
2
x + v2

y) + g
1−f2

vt = uyvx − uxvy

(uxy − fvxy)(v2
x − v2

y) + [(uyy − fvyy)− (uxx − fvxx)]vxvy = 0

(21)

Solutions of (21) describe the quasistationary states with remarkable accuracy
as it was demonstrated numerically for special types of f and Φ in [4].

Remark 2 The first and the last equations of ((21) form the closed system{
∆w = 0
zt + wxzy − wyzx = 0 ,

where w = u− F (v) and z = v2
x + v2

y.
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Remark 3 The second equation in ((21) may be written in a closed form ∆R =
Ψ(R) where R = R(v), R′ =

√
1− f2

Remark 4 The case of u = F (v) in (21) is a generalization of dynamic alignment
studied in [3] (aligned are gradients of u and v). It implies stationary solutions

u = F (v)
vt = 0
∆R = Ψ(R) ,

where R′(v) =
√

1− f2(v) as in previous remark.
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