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The Lagrangian-Hamiltonian Formalism for Higher Order Field Theories

L. VITAGLIANO

Abstract. We generalize the lagrangian-hamiltonian formalism of Skinner and Rusk
to higher order ¦eld theories on ¦ber bundles. As a byproduct we solve the long
standing problem of de¦ning, in a coordinate free manner, a hamiltonian formalism
for higher order lagrangian ¦eld theories, which does only depend on the action func-
tional and, therefore, unlike previously proposed formalisms, is free from any relevant
ambiguity.

Introduction

First order lagrangian mechanics can be generalized to higher order lagrangian ¦eld
theory. Moreover, the latter has got a very elegant geometric (and homological) for-
mulation (see, for instance, [1]) on which there is general consensus. On the other
side, it seems that the generalization of hamiltonian mechanics of lagrangian systems
to higher order ¦eld theory presents some more problems. They have been proposed
several answers (see, for instance, [2, 3, 4, 5, 6, 7, 8, 9, 10] and references therein) to the
question: is there any reasonable, higher order, ¦eld theoretic analogue of hamiltonian
mechanics? To our opinion, non of them is satisfactorily natural, especially because of
the common emergence of ambiguities due to either the arbitrary choice of a coordinate
system [2] or the choice of a Legendre transform [7, 8, 10]. Namely, the latter seems
not to be uniquely de¦nable, except in the case of ¦rst order lagrangian ¦eld theories
when a satisfactory hamiltonian formulation can be presented in terms of multisym-
plectic geometry (see, for instance, [11] - see also [12] for a recent review, and references
therein).
Nevertheless, it is still desirable to have a hamiltonian formulation of higher order
lagrangian ¦eld theories enjoying the same nice properties as hamiltonian mechanics,
which 1) is natural, i.e., is independent of the choice of any other structure than the
action functional, 2) gives rise to ¦rst order equations of motion, 3) takes advantage from
the (pre-)symplectic geometry of phase space, 4) is a natural starting point for gauge
reduction, 5) is a natural starting point for quantization. A special mention deserves the
relationship between the Euler-Lagrange equations and the Hamilton equations. The
Legendre transform maps injectively solutions of the former to solutions of the latter,
but, generically, Hamilton equations are not equivalent to Euler-Lagrange ones [11].
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However, the di¨erence between the two is a pure gauge and, therefore, it is irrelevant
from a physical point of view.
In this paper we reach the goal of ¦nding a natural (in the above mentioned sense),
geometric, higher order, ¦eld theoretic analogue of hamiltonian mechanics of lagrangian
systems in two steps: ¦rst, we ¦nd a higher order, ¦eld theoretic analogue of the Skinner
and Rusk ¤mixed lagrangian-hamiltonian¥ formalism [13, 14, 15] (see also [16]), which
is rather straightforward, and, second, we show that the derived theory ¤projects to
a smaller space¥ which is naturally interpreted as phase space. Local expressions of
the ¦eld equations on the phase space are nothing but de Donder equations [2] and,
therefore, are naturally interpreted as the higher order, ¦eld theoretic, coordinate free
analogue of Hamilton equations. A central role is played in the paper by multisymplectic
geometry in the form of partial di¨erential (PD, in the following) hamiltonian system
theory, which has been developed in [17].
The paper is divided into eight sections. The ¦rst four sections contain reviews of the
main aspects of the geometry underlying the paper. They have been included in order
to make the paper as self-consistent as possible. The next four sections contain most
of the original results.
The ¦rst section summarizes notations and conventions adopted throughout the pa-
per. It also contains references to some di¨erential geometric facts which will be often
used in the subsequent sections. Finally, we brie§y review, in Section 1, the Skinner-
Rusk formalism [14]. Section 2 is a short review of the geometric theory of partial
di¨erential equations (PDEs) (see, for instance, [19]). Section 3 outlines properties of
the main geometric structure of jet spaces and PDEs, namely, the Cartan distribu-
tion, and reviews the geometric formulation of the calculus of variations [1]. Section 4
reviews the theory of PD-hamiltonian systems and their PD-Hamilton equations [17].
Moreover, it contains examples of morphisms of PDEs coming from such theory. These
examples are presented here for the ¦rst time.
In Section 5 we present the higher order, ¦eld theoretic analogue of Skinner-Rusk
mixed lagrangian-hamiltonian formalism for mechanics. In Section 5 we also discuss
the relationship between ¦eld equations in the lagrangian-hamiltonian formalism (now
on, ELH equations) and the Euler-Lagrange equations. In Section 6 we discuss some
natural transformations of the ELH equations. As a byproduct, we prove that they are
independent of the choice of a lagrangian density, in the class of those yielding the same
Euler-Lagrange equations, up to isomorphisms. ELH equations are, therefore, as natural
as possible. In Section 7 we present our proposal for a hamiltonian, higher order, ¦eld
theory. Since we don£t use any additional structure other than the ELH equations and
the order of a lagrangian density, we judge our theory satisfactorily natural. Moreover,
the associated ¦eld equations (HDW equations) are ¦rst order and, more speci¦cally,
of the PD-Hamilton kind. In Section 8 we study the relationship between the HDW
equations and the Euler-Lagrange equations. As a byproduct, we derive a new (and,
in our opinion, satisfactorily natural) de¦nition of Legendre transform for higher order,
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lagrangian ¦eld theories. It is a non-local morphism of the Euler-Lagrange equations
into the HDW equations.

1. Notations, Conventions and the Skinner-Rusk Formalism

In this section we collect notations and conventions about some general constructions
in di¨erential geometry that will be used in the following.
Let N be a smooth manifold. If L ⊂ N is a submanifold, we denote by iL : L →֒ N the
inclusion. We denote by C∞(N) the R�algebra of smooth, R�valued functions onN . We
will always understand a vector ¦eld X on N as a derivation X : C∞(N) −→ C∞(N).
We denote by D(N) the C∞(N)�module of vector ¦elds over N , by ˜(M) =

⊕
k ˜

k(N)
the graded R�algebra of di¨erential forms over N and by d : ˜(N) −→ ˜(N) the
de Rham di¨erential. If F : N1 −→ N is a smooth map of manifolds, we denote by
F ∗ : ˜(N) −→ ˜(N1) its pull�back. We will understand everywhere the wedge product
∧ of di¨erential forms, i.e., for ω, ω1 ∈ ˜(N), instead of writing ω ∧ ω1, we will simply
write ωω1.
Let α : A −→ N be an a©ne bundle (for instance, a vector bundle) and F : N1 −→ N
a smooth map of manifolds. Let A be the a©ne space of smooth sections of α. For
a ∈ A and x ∈ N we put, sometimes, ax := a(x). The a©ne bundle on N1 induced by
α via F will be denoted by F ◦(α) : F ◦(A) −→ N :

F ◦(A) //

F ◦(α)
��

A

α

��

N1
F // N

,

and the space of its section by F ◦(A ). For any section a ∈ A there exists a unique
section, which we denote by F ◦(a) ∈ F ◦(A ), such that the diagram

F ◦(A) // A

N1
F //

F ◦(a)

OO

N

a

OO

commutes. If F : N1 −→ N is the embedding of a submanifold, we also write • |F
(or, simply, • |N1) for F

◦( • ), and refer to it as the restriction of ¤ • ¥ to N1 (via F ),
whatever the object ¤ • ¥ is (an a©ne bundle, its total space, its space of sections or a
section of it).
Denote by N the set of natural numbers. We will always understand the sum
over repeated upper-lower (multi-)indexes. Our notations about multiindexes are
the following. Let n ∈ N, In = {1, . . . , n} and Mn be the free abelian monoid
generated by In. Even if Mn is abelian, we keep for it the multiplicative nota-
tion. Thus if I = i1 · · · il, J = j1 · · · jm ∈ Mn are (equivalence classes of) words,
i1, . . . , il, j1, . . . , jm ∈ In, we denote by IJ := i1 · · · ilj1 · · · jm their composition. If
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I = i1 · · · il ∈ Mn is a word, i1, . . . , il ∈ In, denote by |I| := l its length. We denote by O
the (equivalence class of the) empty word. An element I ∈ Mn is called an n-multiindex
(or, simply, a multiindex ). For I ∈ Mn and i ∈ In, we denote by I[i] the number of
times the ¤letter¥ i occurs in the (equivalence class of) word(s) I. In other words I[i] is
the greatest positive integer r such that ir divides I. We stress that our notation about
multiindexes is di¨erent from more popular ones (see, for instance, [18]).
We conclude this section by brie§y reviewing those aspects of the Skinner-Rusk for-
malism for mechanics [13, 14, 15] that survive in our generalization to higher order ¦eld
theory.
Let Q be a smooth manifold and q1, . . . , qm coordinates on it, m = dimQ. Let

L ∈ C∞(TQ) be a lagrangian function. Consider the induced bundle τ †0 := τ ◦Q(τ
∗
Q) :

T † := τ ◦Q(T
∗Q) −→ TQ from the cotangent bundle τ ∗Q : T

∗Q −→ Q to Q, via the

tangent bundle τQ : TQ −→ Q. Let q0 : T
† −→ T ∗Q be the canonical projection (see

Diagram (1))

T †

τ†0
��

q0 // T ∗Q

τ∗Q
��

TQ
τQ

// Q

. (1)

On T † there is a canonical function h ∈ C∞(T †) de¦ned by h(v, p) := p(v), v ∈ TqQ,

p ∈ T ∗
qQ, q ∈ Q. Consider also the function EL := h− τ †0 (L) ∈ C∞(T †). EL is locally

given by EL := pi ‘q
i − L, where . . . , qi, . . . , ‘qi, . . . , pi, . . . are standard coordinates on

T †. Finally, put ω := q∗0(ω0) ∈ ˜
2(T †), ω0 ∈ ˜

2(T ∗Q) being the canonical symplectic
form on T ∗Q, which is locally given by ω0 = dpidq

i. ω is a presymplectic form on T †

whose kernel is made of vector ¦elds over T † which are vertical with respect to the
projection q0. In the following, denote by I ⊂ R a generic open interval. For a curve
γ : I ∋ t 7−→ γ(t) ∈ T †, consider equations

i ‘γω|γ − (dEL)|γ = 0, (2)

where ‘γ ∈ γ◦(D(T †)) is the tangent ¦eld to γ. Equations (2) read locally





d
dt
qi = ‘qi

pi =
∂L
∂ ‘qi

d
dt
pi =

∂L
∂qi

.

In particular, for any solution γ of Equations (2) as above, τQ ◦ τ †0 ◦ γ : I −→ Q is
a solution of the Euler-Lagrange equations determined by L. Notice that solutions of
Equations (2) can only take values in the submanifold P ⊂ T † de¦ned as

P := {P ∈ T † : there exists ™ ∈ TPT
† such that i™ωP − (dEL)P = 0},

and that P is nothing but the graph of the Legendre transform FL : TQ −→ T ∗Q.
Finally, consider P0 := q0(P) ⊂ T ∗Q. If P0 ⊂ T ∗Q is a submanifold and q0 :
P −→ P0 a submersion with connected ¦bers, then there exists a (unique) function
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H ∈ C∞(P0) such that q
∗
0(H) = EL. Therefore, for a curve σ : I ∋ t 7−→ σ(t) ∈ P0,

we can consider equations

i ‘σω0|σ − (dH)|σ = 0, (3)

where ‘σ ∈ σ◦(D(T †)) is the tangent ¦eld to σ. For any solution γ : I −→ Q of the Euler-
Lagrange equations, FL ◦ ‘γ : I −→ P0 is a solution of Equations (3). If P0 ⊂ T ∗Q is
an open submanifold (which, under the above mentioned regularity conditions, happens

i¨ the matrix ‖∂2L/∂ ‘qi∂ ‘qj‖
j
i has maximum rank, i.e., FL is a local di¨eomorphism),

then H is a local function on T ∗Q and Equations (3) read locally
{ d

dt
qi = ∂H

∂pi
d
dt
pi = −∂H

∂qi

,

which are Hamilton equations. In this case, for any solution σ : I −→ T ∗Q of Equations
(3), τ ∗Q ◦ σ : I −→ Q is a solution of the Euler-Lagrange equations.

2. Geometry of Differential Equations

In this section we recall basic facts about the geometric theory of partial di¨erential
equations (PDEs). For more details see [19].
Let π : E −→M be a ¦ber bundle, dimM = n, dimE = m+ n. For 0 ≤ l ≤ k ≤ ∞,
we denote by πk : J

kπ −→ M the bundle of k-jets of local sections of π, and by
πk,l : J

kπ −→ J lπ the canonical projection. For any local section s : U −→ E of π,
U ⊂M being an open subset, we denote by jks : U −→ Jkπ its kth jet prolongation. For
x ∈ U , put [s]kx := (jks)(x). Any system of adapted to π coordinates (. . . , x

i, . . . , uα, . . .)
on an open subset U of E gives rise to a system of jet coordinates on π−1

k,0(U) ⊂ Jkπ

which we denote by (. . . , xi, . . . , uα|I , . . .) or simply (. . . , x
i, . . . , uαI , . . .) if this does not

lead to confusion, I ∈ Mn, |I| ≤ k, where we put uα
O
:= uα, α = 1, . . . , m.

Now, let k <∞, τ0 : T0 −→ Jkπ be a vector bundle, and

(. . . , xi, . . . , uαI , . . . , v
a, . . .)

adapted to τ0, local coordinates on T0. A (possibly non-linear) di¨erential operator of
order ≤ k ¢acting on local sections of π, with values in τ0£ (in short ¢from π to τ0£ ) is
a section � : Jkπ −→ T0 of τ0. For any local section s : U −→ E of π, � determines an
¢image£ section –�s := � ◦ jks : U −→ T0 of the bundle τ 0 := πk ◦ τ0 : T0 −→M .
Let π′ : E ′ −→ M be another ¦ber bundle and ϕ : E −→ E ′ a morphism of bundles.
For any local section s : U −→ E of π, U ⊂M an open subset, ϕ◦s : U −→ E ′ is a local
section of π′. Therefore, for all 0 ≤ k ≤ ∞, ϕk induces a morphism jkϕ : J

kπ −→ Jkπ′

of the bundles πk and π
′
k de¦ned by (jkϕ)[s]

k
x := [ϕ ◦ s]kx, x ∈ U . Diagram

J lπ
jlϕ //

πl,k

��

J lπ′

π′
l,k

��

Jkπ
jkϕ // Jkπ′
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commutes for all 0 ≤ k ≤ l ≤ ∞. jkϕ is called the kth prolongation of ϕ.
The above construction generalizes to di¨erential operators as follows. Let � be a
di¨erential operator of order ≤ k from π to τ0 : T0 −→ Jkπ and 0 ≤ l ≤ ∞. Consider

the space J lτ 0 of l-jets of local sections of τ 0. In J
lτ 0 consider the submanifold T

(l)
0

made of jets of local sections of the form –ās, where ā is any di¨erential operator of

order ≤ k from π to τ0 and s is a local section of π. T
(l)
0 is locally de¦ned by

uαI|J = u
α
I′|J ′, whenever IJ = I ′J ′,

α = 1, . . . , m, |I| = |I ′| = k, |J | = |J ′| = l. Thus, (. . . , xi, . . . , uαK , . . . , v
a
J , . . .),

|K| = k + l, |J | = l, are local coordinates on T
(l)
0 , where

. . . , uαK := u
α
K1|K2

|
T
(l)
0
, . . . ,

K1, K2 being any pair of multiindexes such that K1K2 = K, |K1| = k, |K2| = l. T
(l)
0

projects canonically onto Jk+lπ and the projection τ
(l)
0 : T

(l)
0 −→ Jk+lπ is a vector

bundle. Moreover, the uαK £s identify with the corresponding coordinates on J
k+lπ via

τ
(l)
0 . De¦ne the lth prolongation �

(l) : Jk+lπ −→ T
(l)
0 of � by putting �

(l)([s]k+lx ) :=

[–�s]
l
x ∈ T

(l)
0 , for all local sections s of π and x ∈M . Then �(l) is a di¨erential operator

of order ≤ k + l from π to τ
(l)
0 .

For � as above, put E� := {θ ∈ Jkπ : �(θ) = 0}. E� is called the (system of)

PDE(s) determined by �. For 0 ≤ l ≤ ∞ put also E
(l)
� := E�(l) ⊂ Jk+lπ. E

(l)
� is locally

determined by equations

(DJ�
a)(. . . , xi, . . . , uαI , . . .) = 0, a = 1, . . . , p, |J ′| = l, (4)

where . . . ,�a := �∗(va), . . . are local functions on Jkπ, Dj1···jl := Dj1 ◦ · · · ◦ Djl, and

Dj := ∂/∂x
j+uαIj∂/∂u

α
I is the jth total derivative, j, j1, . . . , jl = 1, . . . , m. E

(l)
� is called

the lth prolongation of the PDE E�. In the following we put ∂
I
α := ∂/∂u

α
I , α = 1, . . . , m,

I ∈ Mn.
A local section s of π is a (local) solution of E� i¨, by de¦nition, im jks ⊂ E� or,

which is the same, im jk+ls ⊂ E
(l)
� for some l ≤ ∞. Notice that the ∞th prolongation

of E�, E
(∞)
� ⊂ J∞π, is an inverse limit of the sequence of maps

M E�
πkoo · · ·oo E

(l)
�

πk+l,k+l−1
oo E

(l+1)
�

πk+l+1,k+l
oo · · ·oo (5)

and consists of ¤formal solutions¥ of E�, i.e., possibly non-converging Taylor series
ful¦lling (4) for every l.
J∞π is not a ¦nite dimensional smooth manifold. However, it is a pro-¦nite dimen-
sional smooth manifold. For an introduction to the geometry of pro-¦nite dimensional
smooth manifolds see [20] (see also [21], and [22, 23] for di¨erent approaches). In the

following we will only consider regular PDEs, i.e., PDEs E� such that E
(∞)
� ⊂ J∞π is a
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smooth pro-¦nite dimensional submanifold in J∞π, i.e., π∞,l(E
(∞)
� ) ⊂ J lπ is a smooth

submanifold and πl+1,l : π∞,l+1(E
(∞)
� ) −→ π∞,l(E

(∞)
� ) is a smooth bundle.

There is a dual concept to the one of a pro-¦nite dimensional manifold, i.e., the
concept of a ¦ltered smooth manifold which will be used in the following. We do not
give here a complete de¦nition of a ¦ltered manifold, which would take too much space.
Rather, we will just outline it. Basically, a ¦ltered smooth manifold is a(n equivalence
class of) set(s) O together with a sequence of embeddings of closed submanifolds

O0
� �

i0,1
// O1

� �
i0,1

// · · · � � // Ok−1
� �
ik−1,k

// Ok
� �
ik,k+1

// · · · (6)

and inclusions ik : Ok →֒ O , k ≥ 0, such that O (together with the ik£s) is a direct limit
of (6). It is associated to the sequence (6) a tower of epimorphisms of algebras

C∞(O0) · · ·oo C∞(Ok)
i∗
k−1,k

oo C∞(Ok+1)
i∗
k,k+1

oo · · ·oo . (7)

We de¦ne C∞(O) to be the inverse limit of the tower (7). Every element in C∞(O) is
naturally a function on O . Thus, we interpret C∞(O) as the algebra of smooth functions
on O . Clearly, there are canonical ¤restriction homomorphisms¥ i∗k : C

∞(O) −→
C∞(Ok), k ≥ 0. Di¨erential calculus over O may then be introduced as di¨erential
calculus over C∞(O) [20] respecting the sequence (7). Since the main constructions
(smooth maps, vector ¦elds, di¨erential forms, jets and di¨erential operators, etc.) of
such calculus and their properties do not look very di¨erent from the analogous ones in
¦nite-dimensional di¨erential geometry we will not insist on this. Just as an instance,
we report here the de¦nition of a di¨erential form ω on O : it is just a sequence of
di¨erential forms ωk ∈ ˜(Ok), k ≥ 0, such that i∗k−1,k(ωk) = ωk−1 for all k.
Finally, notice that, allowing for the Ok£s in (6) to be pro-¦nite dimensional manifolds
we obtain a more general object then both a pro-¦nite dimensional or a ¦ltered manifold
which we will refer to generically as in¦nite dimensional smooth manifold or even just
smooth manifold if this does not lead to confusion. Our main example of such a kind
of in¦nite dimensional manifold will be presented in the beginning of Section 5.

3. The Cartan Distribution and the Lagrangian Formalism

Let π : E −→M and � be as in the previous section. In the following we will simply

write J∞ for J∞π and E for E
(∞)
� . E will be referred to simply as a PDE (imposed on

sections of π) if this does not lead to confusion. Notice that for � = 0, E = E
(∞)
� = J∞.

Recall that J∞ is canonically endowed with the Cartan distribution

C : J∞ ∋ θ 7−→ Cθ ⊂ TθJ
∞

which is locally spanned by total derivatives, Di, i = 1, . . . , n. C is a §at connection in
π∞ which we call the Cartan connection. Moreover, it restricts to E in the sense that
Cθ ⊂ TθE for any θ ∈ E . Therefore, the (in¦nite prolongation of) any PDE is naturally
endowed with an involutive distribution whose n-dimensional integral submanifolds are
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of the form j∞s, with s : U −→ E a (local) solution of E�, U ⊂ M an open subset.
In the following we will identify the space of n-dimensional integral submanifolds of C
and the space of local solutions of E�.
Let π′ : E ′ −→ M be another bundle and E ′ ⊂ J∞π′ (the in¦nite prolongation of) a
PDE imposed on sections of π′. A smooth map F : E ′ −→ E is called a morphism of
PDEs i¨ it respects the Cartan distributions, i.e., (dθ′F )(Cθ′) ⊂ CF (θ′) for any θ

′ ∈ E ′.
The idea of non-local variables in the theory of PDEs can be formalized geometrically
by special morphisms of PDEs called coverings [24] (see also [25]). A covering is a

morphism ψ : Ê −→ E of PDEs which is a surjective and submersive. A covering

ψ : Ê −→ E clearly sends local solution of Ê to local solutions of E . If there exists

a covering ψ : Ê −→ E of PDEs we also say that the PDE Ê covers the PDE E (via

ψ). Fiber coordinates in the total space Ê of a covering ψ : Ê −→ E are naturally
interpreted as non-local variables on E . Also notice that given a solution s of the PDE

E , a covering ψ : Ê −→ E determines a whole family of solutions of Ê ¤projecting onto
s via ψ¥, so that ψ may be interpreted, to some extent, as a ¦bration over the space of
solutions of E .
Many relevant constructions in the theory of PDEs (including Lax pairs, B�acklund
transformations, etc.) are duly formalized in geometrical terms by using coverings. As
an instance which will be relevant in the following we report the following

De¦nition 1. Let E , E ′ be PDEs. A B�acklund transformation between E and E ′ is a
diagram

Ê
ψ

����
��

��
�� ψ′

��?
??

??
??

?

E E ′

, (8)

where both ψ and ψ′ are coverings.

According to the above interpretation of a covering, a B�acklund transformation (8)
is naturally interpreted as a non-local transformation of the PDE E into the PDE E ′

(and vice versa). Given a solution s of E , the B�acklund transformation (8) allows one,

generically, to obtain a whole family of solutions of E ′ by ¦rst lifting to Ê via ψ (see
above) and then projecting to E ′ via ψ′.
The Cartan distribution and the ¦bered structure π∞ : J

∞ −→ M of J∞ determine a
splitting of the tangent bundle TJ∞ −→ J∞ into the Cartan or horizontal part C and
the vertical (with respect to π∞) part. Accordingly, ˜

1(J∞) splits into a direct sum

˜1(J∞) = C˜1 ⊕ ˜1, (9)

where C˜1 ⊂ ˜1(J∞) is locally generated by Cartan forms . . . , duαI − uαIidx
i, . . ., while

˜1 is canonically isomorphic to C∞(J∞)⊗C∞(M) ˜
1(M) and it is locally generated by

forms . . . , dxi, . . .. In view of splitting (9), ˜(J∞) factorizes as ˜(J∞) ≃ C •˜ ⊗ ˜
(here and in what follows tensor products will be always over C∞(J∞) if not otherwise
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speci¦ed), where C •˜ :=
⊕

p C p˜p and C p˜p ⊂ ˜(J∞) is the C∞(J∞)-submodule

generated by elements in the form ω1 · · ·ωp, ω1, . . . , ωp ∈ C˜1, p ≥ 0, moreover, ˜ :=⊕
q ˜

q and ˜q is the C∞(J∞)-submodule generated by elements in the form σ1 · · ·σq,

σ1, . . . , σq ∈ ˜
1, q ≥ 0. In particular, there are projections pp,q : ˜(J

∞) −→ C p˜p ⊗ ˜q

for any p, q ≥ 0. Correspondingly, the de Rham complex of J∞, (˜(J∞), d), splits in a
bi-complex (C •˜⊗ ˜, d, dV ), de¦ned by

d(ω ⊗ σ) := (pp,q+1 ◦ d)(ω ∧ σ) and dV (ω ⊗ σ) := (pp+1,q ◦ d)(ω ∧ σ),

where ω ∈ C p˜p and σ ∈ ˜q, p, q ≥ 0, called the variational bi-complex , which allows
a cohomological formulation of the calculus of variations [1, 19, 18]. In the second part
of this section we brie§y review it. d and dV are called the horizontal and the vertical
de Rham di¨erential, respectively.
In the following we will understand isomorphism ˜(J∞) ≃ C •˜⊗ ˜. The complex

0 // C∞(J∞)
d // ˜1

d // · · · // ˜q
d // ˜q+1

d // · · ·

is called the horizontal de Rham complex. An element L ∈ ˜n is naturally interpreted
as a lagrangian density and its cohomology class [L ] ∈ Hn := Hn(˜, d) as an action
functional on sections of π. The associated Euler-Lagrange equations can then be
obtained as follows.
Consider the complex

0 //
C˜1

d //
C˜1 ⊗ ˜1

d // · · · //
C˜1 ⊗ ˜q

d // · · · , (10)

and the C∞(J∞)-submodule κ
† ⊂ C˜1 ⊗ ˜n generated by elements in C˜1 ⊗ ˜n ∩

˜n+1(J1π). κ
† is locally spanned by elements (duα − uαi dx

i) ⊗ dnx, where we put
dnx := dx1 · · · dxn.

Theorem 1. [1] Complex (10) is acyclic in the qth term, for q 6= n. Moreover, for any
ω ∈ C˜1⊗˜n there exists a unique element Eω ∈ κ

† ⊂ C˜1⊗˜q such that Eω−ω = dϑ
for some ϑ ∈ C˜1 ⊗ ˜n−1 and the correspondence Hn(C˜1 ⊗ ˜, d) ∋ [ω] 7−→ Eω ∈ κ

†

is a vector space isomorphism. In particular, for ω = dV L , L ∈ ˜n being a lagrangian
density locally given by L = Ldnx, L a local function on C∞(J∞), E(L ) := Eω is
locally given by E(L ) = δL

δuα (du
α − uαi dx

i) ⊗ dnx where δL
δuα := (−)

|I|DI∂
I
αL are the

Euler-Lagrange derivatives of L.

In view of the above theorem, E(L ) does not depend on the choice of L in a
cohomology class [L ] ∈ Hn and it is naturally interpreted as the left hand side of the
Euler-Lagrange (EL) equations determined by L . In the following we will denote by
EEL ⊂ J∞ the (in¦nite prolongation of the) EL equations determined by a lagrangian
density. Any ϑ ∈ C˜1 ⊗ ˜n−1 such that

E(L )− dVL = dϑ (11)
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will be called a Legendre form [10]. Equation (11) may be interpreted as the ¦rst
variation formula for the lagrangian density L . In this respect, the existence of a
global Legendre form was ¦rst discussed in [26].

Remark 1. Notice that, if ϑ ∈ C˜1⊗˜n−1 is a Legendre form for a lagrangian density
L ∈ ˜n, then ϑ + dV ̺ is a Legendre form for the cohomologous lagrangian density
L + d̺, ̺ ∈ ˜n−1, which determines the same EL equations as L . Moreover, any two
Legendre forms ϑ, ϑ′ for the same lagrangian density di¨er by a d-closed, and, therefore,
d-exact form, i.e., ϑ− ϑ′ = dλ, for some λ ∈ C˜1 ⊗ ˜n−2.

Remark 2. Finally, notice that complex (10) restricts to holonomic sections j∞s of
π∞, s being a local sections of π, in the sense that for any such s, there is a (unique)
complex

0 // C˜1|j
d|j

// C˜1 ⊗ ˜1|j
d|j

// · · · // C˜1 ⊗ ˜q|j
d|j

// · · · , (12)

where j := j∞s, such that the restriction map C˜1⊗˜ −→ C˜1⊗˜|j = C˜1|j⊗C∞(M)

˜(M) is a morphism of complexes. Moreover, complex (12) is acyclic in the qth term
and the correspondence de¦ned by Hn(C˜1 ⊗ ˜n|j, d|j) ∋ [ω|j] 7−→ Eω|j ∈ κ

†|j, ω ∈
C˜1 ⊗ ˜n, is a vector space isomorphism.

4. Partial Differential Hamiltonian Systems

In [17] we de¦ned a partial di¨erential (PD in the following) analogue of the con-
cept of hamiltonian system on an abstract symplectic manifold which we called a PD-
hamiltonian system. In this section we brie§y review those de¦nitions and results in
[17] which we will need in the following.
Let α : P −→ M be a ¦ber bundle, A := C∞(P ), x1, . . . , xn coordinates on M ,
dimM = n, and y1, . . . , ym ¦ber coordinates on P , dimP = n+m. Denote by C(P, α)
the space of (Ehresmann) connections in α. C(P, α) identi¦es canonically with the space
of sections of the ¦rst jet bundle α1,0 : J

1α −→ P and in the following we will understand
such identi¦cation. In particular, for ∇ ∈ C(P, α), we put . . . ,∇a

i := ∇∗(yai ), . . .,
. . . , yai , . . . being jet coordinates in J

1α.
Denote by ˜1 =

⊕
k ˜

k
1 ⊂ ˜(P ) the di¨erential (graded) ideal in ˜(P ) made of

di¨erential forms on P vanishing when pulled-back to ¦bers of α, by ˜p =
⊕

k ˜
k
p its

p-th exterior power, p ≥ 0, and by V˜(P, α) =
⊕

k V˜
k(P, α) the quotient di¨erential

algebra ˜(P )/˜1, d
V : V˜(P, α) −→ V˜(P, α) being its (quotient) di¨erential.

Remark 3. For instance, if α = π∞ : P = J∞ −→ M , then, using the Car-
tan connection C ∈ C(J∞, π∞), one can canonically identify V˜

1(J∞, π∞) with C˜1

and dV with the vertical de Rham di¨erential. More generally, for any k ≥ 0,
V˜1(Jk, πk) ⊗C∞(Jkπ) C

∞(Jk+1π) identi¦es canonically with the C∞(Jk+1π)-module

C˜1 ∩ ˜(Jk+1π) of (k + 1)th order Cartan forms.
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For any k ≥ 0, denote by ′Ÿk+1(P, α) the C∞(P )-module of a©ne maps C(P, α) −→
V˜k(P, α) ⊗A ˜

n
n. The linear part of an element in

′Ÿk+1(P, α) can be naturally un-
derstood as an element in ′Ÿk+1(P, α) := V ˜1(P, α) ⊗A V ˜

k(P, α) ⊗A ˜
n−1
n−1. Denote

by Ÿk+1(P, α) the subspace V˜k+1(P, α) ⊗A ˜
n−1
n−1 in

′Ÿk+1(P, α) and by Ÿk+1(P, α)

the subspace in ′Ÿk+1(P, α) made of elements whose linear parts lie in Ÿk+1(P, α).
Finally, put Ÿ0(P, α) := Ÿ0(P, α) := ˜n−1n−1. Clearly, there are canonical projections

Ÿk+1(P, α) −→ Ÿk+1(P, α), k ≥ 0.

Theorem 2. There are canonical isomorphisms of A-modules ιk : ˜
k+n−1
n−1 −→ Ÿk(P, α),

and ιk : ˜
k+n−1
n−1 /˜k+n−1n −→ Ÿk(P, α) such that diagrams

˜k+n−1n−1

ιk
��

// ˜k+n−1n−1 /˜k+n−1n

ιk
��

Ÿk(P, α) // Ÿk(P, α)

, (13)

commute, k ≥ 0.

In particular, isomorphism ιk is de¦ned by putting ιk(ω)(∇) := p
k−1,n
∇ (ω) ∈

V˜k−1(P, α)⊗A ˜
n−1
n−1, ω ∈ ˜k+n−1n−1 , ∇ ∈ C(P, α),

p
k−1,n
∇ : ˜(P ) −→ V˜k−1(P, α)⊗A ˜

n−1
n−1

being the canonical projection determined by the connection ∇, k ≥ 0. Notice that we
can ¤transfer structures¥ from the ˜k+n−1n−1 £s to the Ÿ

k(P, α)£s via the ιk£s. For instance,
it is well de¦ned a complex

Ÿ0(P, α)
δ // Ÿ1(P, α)

δ // · · · // Ÿk(P, α)
δ // Ÿk+1(P, α)

δ // · · ·

by putting δω := (ιk+1 ◦ d ◦ ι
−1
k )(ω) ∈ Ÿ

k+1(P, α), ω ∈ Ÿk(P, α). In the following we
will understand the isomorphisms ιk£s and put i∇ω := ω(∇) for any ω ∈ Ÿk+1(P, α),
∇ ∈ C(P, α), k ≥ 0. Notice that the action of ω on ∇ as above is actually point-wise
and, therefore, can be restricted to maps. Namely, if F : P1 −→ P is a smooth map,
� ∈ F ◦(C(P, α)), then it is well de¦ned an element i�F

◦(ω) ∈ F ◦(V˜k−1(P, α)⊗A˜
n−1
n−1).

De¦nition 2. A PD-hamiltonian system on the ¦ber bundle α : P −→M is a δ-closed
element ω ∈ Ÿ2(P, α). The ¦rst order PDEs

ij1σω|σ = 0

on (local) sections σ of α are called the PD-Hamilton equations determined by ω.
Geometrically, they correspond to the submanifold

E
(0)
ω := {θ ∈ J1α : iθωp = 0, p = α1,0(θ)} ⊂ J1α.
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Let ω ∈ Ÿ2(P, α) be a PD-hamiltonian system on the bundle α : P −→ M and

consider the subset P1 := α1,0(E
(0)
ω ) ⊂ P . In the following we will assume P1 ⊂ P to be

a submanifold and α1 := α|P1 : P1 −→ M to be a subbundle of α. α1 is called the ¦rst
constraint subbundle of ω.
As an example, consider the following canonical constructions. Let π : E −→ M be
a ¦ber bundle and . . . , uα, . . . ¦ber coordinates on E. Ÿ1(E, π) (resp. Ÿ1(E, π)) is the

C∞(E)-module of sections of a vector bundle µ0π :Mπ −→ E (resp. τ †0π : J
†π −→ E),

called the multimomentum bundle of π (resp. the reduced multimomentum bun-
dle of π). Recall that there is a distinguished element —π in Ÿ

1(Mπ, µπ) (resp.

—π ∈ Ÿ1(J†π, τ †π)), where µπ := π ◦ µ0π (resp. τ †π := π ◦ τ †0π), the tautologi-
cal one [27], which in standard coordinates . . . , xi, . . . , uα, . . . , piα, . . . , p on Mπ (resp.
. . . , xi, . . . , uα, . . . , piα, . . . on J

†α) is given by

—π = p
i
αdu

αdn−1xi − pdnx (resp.—π = p
i
αd

Vuα ⊗ dn−1xi).

where dn−1xi := i∂/∂xidnx. δ—π ∈ Ÿ2(Mπ, µπ) is then a PD-hamiltonian system on µπ
locally given by

δ—π = dp
i
αdq

αdn−1xi − dpdnx.

Notice that the corresponding PD-Hamilton equations E
(0)
δ—π
are empty and, in this sense,

δ—π is a trivial PD-hamiltonian system. Nevertheless at least two (generically non-
trivial) PD-hamiltonian systems are canonically determined by a ¦rst order lagrangian

density in π, L ∈ ˜n∩˜(J1π), one on τ †π and one on π1 ◦FL ◦(τ †0π) : FL ◦(J†π) −→
M , FL : J1π −→ J†π being the (reduced) Legendre transform (see, for instance, [12]
and [16]). In the next sections we show that a similar result occurs for a lagrangian
density of any order.

Example 1. A PD-hamiltonian system is canonically determined on a ¦ber bun-
dle α : P −→ M as above, by the following data: a connection ∇ ∈ C(P, α) in
α and a di¨erential form L ∈ ˜nn. Let . . . , q

A, . . . be ¦ber coordinates in P and
. . . , xi, . . . , qA, . . . , piA, . . . , p (resp. . . . , x

i, . . . , qA, . . . , piA, . . .) standard coordinates in
Mα (resp. J†α). Let L be locally given by L = Ldnx, L a local function on P . De-
note by λα : ˜(P, α) −→ P the kernel bundle of the projectionMα −→ J†α. Obviously,
∇ induces a splitting of the exact sequence of vector bundles

0 // ˜α // Mα // J†α //

›∇

ff 0 ,

which in local standard coordinates reads ›∗
∇(p) = piA∇

A
i . Put —∇ := ›

∗
∇(—α) ∈

Ÿ1(J†α, τ †α). In local standard coordinates, —∇ = p
i
Adq

Adn−1xi − piA∇
A
i d

nx. Put also,

—L ,∇ := —∇ + (τ
†
0π)

∗(L ) ∈ Ÿ1(J†α, τ †α).
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Locally, —L ,∇ = p
i
Adq

Adn−1xi −EL ,∇d
nx, where EL ,∇ := p

i
A∇

A
i − L. Finally, consider

ωL ,∇ := δ—L ,∇ ∈ Ÿ2(J†α, τ †α). Locally,

ωL ,∇ = dp
i
Adq

Adn−1xi − dEL ,∇d
nx.

ωL ,∇ is the PD-hamiltonian system on τ
†α determined by ∇ and L . The associated

PD-Hamilton equations read locally
{
piA,i= ∂AL− piB∂A∇

B
i

qA,i= ∇A
i

,

where with ¤ • ,i¥ we denoted the partial derivative of ¤ • ¥ with respect to the ith
independent variable xi, i = 1, . . . , n.

We conclude this section by discussing two examples of morphisms of PDEs coming
from the theory of PD-hamiltonian systems.

Example 2. Let α : P −→ M be a ¦ber bundle as above, ω ∈ Ÿ2(P, α) a PD-
hamiltonian system on it, α′ : P ′ −→ M another ¦ber bundle, β : P ′ −→ P a sur-
jective, submersive, ¦ber bundle morphism, and ω′ := β∗(ω) ∈ Ÿ2(P ′, α′). Then ω′ is
a PD-hamiltonian system on α′. Denote by E ⊂ J∞α (resp. E ′ ⊂ J∞α′) the ∞th
prolongation of the PD-Hamilton equations determined by ω (resp. ω′). We want to
compare E and E ′. In order to do this, notice, preliminarily, that J∞α′ covers J∞α via
j∞β : J

∞α′ −→ J∞α. Moreover, it can be easily checked that a local section σ′ of α′ is
a solution of E ′ i¨ the section β ◦ σ′ of α is a solution of E . We now prove the formal
version of this fact.

Proposition 3. (j∞β)(E
′) ⊂ E and j∞β : E

′ −→ E is a covering.

Proof. Consider j1β : J
1α′ −→ J1α. It is easy to check that E

(0)
ω′ := (j1β)

−1(E
(0)
ω ) ⊂

J1α′. Similarly, E ′ := (j∞β)
−1(E ) ⊂ J∞α′. In particular, j∞β : E ′ −→ E is the

¤restriction¥ of j∞β : J
∞α′ −→ J∞α to E ⊂ J∞α and, therefore, is a covering. �

Example 3. Let α : P −→M , ω ∈ Ÿ2(P, α) and E ⊂ J∞α be as in the above example,
and α1 : P1 −→ M the ¦rst constraint subbundle of ω. Assume that P1 ⊂ P is a
submanifold and α1 is a subbundle, and put ω1 := i∗P1(ω) ∈ Ÿ

2(P1, α1). Then ω1 and it
is a PD-hamiltonian system on α1. Denote by E1 ⊂ J∞α1 the ∞th prolongation of the
PD-Hamilton equations determined by ω1. We want to compare E and E1. In order to
do this, notice, preliminarily, that J∞α1 may be understood as a submanifold in J

∞α
via j∞iP1 : J

∞α1 →֒ J∞α. Moreover, it can be easily checked that any solution of E

is also a solution of E1 (while the vice-versa is generically untrue). We now prove the
formal version of this fact.

Proposition 4. E ⊂ E1.

Proof. Recall that the projection α1,0 : J
1α −→ P sends E

(0)
ω to P1. As a consequence,

E ⊂ J∞α1. Moreover, by de¦nition of ∞th prolongation of a PDE, it is easy to check
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that

E = E ∩ J∞α1

= {θ = [σ]∞x ∈ J∞α : im σ ⊂ P1 and [ij1σω|σ]
∞
x = 0, x ∈M}

= {θ = [σ]∞x ∈ J∞α1 : [ij1σω|σ]
∞
x = 0, x ∈M}

⊂ {θ = [σ]∞x ∈ J∞α1 : [ij1σω1|σ]
∞
x = 0, x ∈M}

= E1.

�

5. Lagrangian-Hamiltonian Formalism

We show in this section that the Skinner-Rusk mixed lagrangian-hamiltonian formal-
ism for ¦rst order mechanics [13, 14, 15] (see Section 1) is straightforwardly generalized
to higher order lagrangian ¦eld theories.
First of all, let us present our main example of a ¦ltered manifold. Let π : E −→ M
be a ¦ber bundle as above. Consider the in¦nite jet bundle π∞ : J

∞ −→ M for
which ˜qq = ˜

q, q ≥ 0. Moreover, the C∞(J∞)-module Ÿ1(J∞, π∞) = C˜1 ⊗ ˜n−1 is

canonically ¦ltered by vector subspaces Wk := C˜1 ⊗ ˜n−1 ∩ ˜(Jk+1π), k ≥ 0. Denote
by Ÿ1k ⊂ Ÿ

1(J∞, π∞) the C
∞(J∞)-submodule generated by Wk, k ≥ 0. Then, for all k,

Ÿ1k is canonically isomorphic to C
∞(J∞)⊗C∞(Jk+1)Wk and

Ÿ10 ⊂ Ÿ
1
1 ⊂ · · · ⊂ Ÿ1k ⊂ Ÿ

1
k+1 ⊂ · · · ⊂ Ÿ1(J∞, π∞), (14)

is a sequence of C∞(J∞)-submodules. Notice that, for any k, Ÿ1k is the module of

sections of a ¦nite-dimensional vector bundle τ †0,k : J
†
k −→ J∞. Moreover, the inclusions

(14) determine inclusions

J†
0 ⊂ J†

1 ⊂ · · · ⊂ J†
k ⊂ J†

k+1 ⊂ · · ·

of vector bundles. J† :=
⋃
k J

†
k is then an in¦nite dimensional (¦ltered) manifold and

the canonical projection τ †0 : J
† −→ J∞ an in¦nite dimensional vector bundle over

J∞ whose module of sections identi¦es naturally with Ÿ1(J∞, π∞). We conclude that

τ †0 : J
† −→ J∞ is naturally interpreted as the reduced multimomentum bundle of

π∞. Denote by . . . , x
i, . . . , uαI , . . . , p

I.i
α , . . . standard coordinates in J

†. Notice that any
(local) element ϑ ∈ C˜1 ⊗ ˜n−1 = Ÿ1(J∞, π∞), in particular a (local) Legendre form,
is naturally interpreted as a section ϑ : U ′ −→ J†, U ′ ⊂ J∞ an open subset. Put
then . . . , ϑI.iα := ϑ∗(pI.iα ), . . . which are local functions on J

∞ such that ϑ = ϑI.iα (du
α
I −

uαIidx
i)⊗ dn−1xi. It follows that, locally,

dϑ = −(Diϑ
I.i
α + δ

I
Jiϑ

J.i
α )(du

α
I − uαIidx

i)⊗ dnx ∈ C˜1 ⊗ ˜n,

where δIK = 0 if I 6= K, while δIK = 1 if I = K, I,K ∈ Mn. In the following we

will also consider the bundle structures τ †k := π∞ ◦ τ †0,k : J
†
k −→ M , k ≥ 0, and

τ † := π∞ ◦ τ †0 : J
† −→ M .
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Now, in Example 1, put α = π∞ : P = J
∞ −→M and ∇ = C , the Cartan connection

in π∞. L ∈ ˜nn = ˜
n is then a lagrangian density in π. Put › := ›C , —L := —L ,C and

ωL := ωL ,C . ωL is a PD-hamiltonian system in τ
† : J† −→M canonically determined

by L . Locally,

ωL = dp
I.i
α du

α
I d

n−1xi − dEL d
nx,

where EL := pI.iα u
α
Ii − L. Let σ : U −→ J† be a local section of τ †, U ⊂ M an

open subset, and j := τ †0 ◦ σ : U −→ M . Put . . . , σαI := σ∗(uαI ) = j∗(uαI ), . . . , σ
I.i
α :=

σ∗(pI.iα ), . . . which are local functions on M . Then, locally,

i ‘σωL |σ = [(−σ
I.i
α ,i−δ

I
Jiσ

J.i
α + ∂

I
αL ◦ j)dV uIα|σ + (σ

α
I ,i−σ

α
Ii)d

V pI.iα |σ]d
nx,

and the PD-Hamilton equations determined by ωL read locally
{
pI.iα ,i= ∂

I
αL− δIJi p

J.i
α

uαI ,i= u
α
Ii

.

We call such equations the Euler-Lagrange-Hamilton (ELH) equations determined by
the lagrangian density L . Notice that they are ¦rst order PDEs (with an in¦nite
number of dependent variables). Denote by EELH ⊂ J∞τ † their in¦nite prolongation.
In the following theorem we characterize solutions of EELH . As a byproduct, we derive
the relationship between the ELH equations and the EL equations.

Theorem 5. A local section σ : U −→ J† of τ †, U ⊂ M an open subset, is a solution
of the ELH equations determined by the lagrangian density L i¨ it is locally of the
form σ = ϑ ◦ j∞s where 1) s : U −→ E is a solution of the EL equations EEL and 2)
ϑ : U ′ −→ J† is a Legendre form for L , U ′ ⊂ J∞ an open subset.

Proof. Let σ : U −→ J† be a local section of τ †, U ⊂ M an open subset. First of all,
let σ be in the form σ = ϑ ◦ j where 1) j : U −→ J∞ is a local section of π∞ and 2)

ϑ : U ′ −→ J† is a local section of τ †0 : J
† −→ J∞, U ′ ⊂ J∞ an open subset. Then,

σI.iα ,i= Diϑ
I.i
α ◦ j.

Therefore, locally,

i ‘σωL |σ = [[(−Diϑ
I.i
α − δIJiϑ

J.i
α + ∂

I
αL) ◦ j]d

V uIα|j + (j
α
I ,i−j

α
Ii)d

V pI.iα |σ]⊗ dnx

= (dϑ+ dV L )|j + (j
α
I ,i−j

α
Ii)d

V pI.iα |σ ⊗ dnx,

where . . . , jαI := j
∗(uαI ), . . . and they are local functions on M . Thus, if ϑ is a Legendre

form and j = j∞s for some local solution s : U −→ E of the EL equations then, in
particular, jαI ,i= j

α
Ii, I ∈ Mn, α = 1, . . . , m, i = 1, . . . , n, and

i ‘σωL |σ = (dϑ+ d
V
L )|j + (j

α
I ,i−j

α
Ii)d

V pI.iα |σ ⊗ dnx = E(L )|j = 0.

On the other hand, let σ : U −→ J† be a local section of τ † and j := τ †0 ◦σ : U −→ J∞.

Locally, there always exists a section ϑ : U ′ −→ J† of τ †0 , such that σ = ϑ ◦ j. Notice,
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preliminarily, that ϑ is not uniquely determined by σ except for its restriction to im j.
If σ is a solution of the ELH equations then, locally,

0 = i ‘σωL |σ = (dϑ+ d
V
L )|j + (j

α
I ,i−j

α
Ii)d

V pI.iα |σ ⊗ dnx.

Since (dV pI.iα )|σ ⊗ dnx and (dϑ+ dV L )|j are linearly independent, it follows that
{
(dϑ+ dV L )|j = 0
jαI ,i= j

α
Ii.

.

In particular, j = j∞s, where s is the local section of π de¦ned as s = π∞,0 ◦ j.

Now, let ϑ0 be a Legendre form for L . Then dV L = E(L ) − dϑ0 and, therefore,
(dϑ− dϑ0 +E(L ))|j = 0. Recall that d restricts to j = j∞s (Remark 2). Thus,

d|j(ϑ− ϑ0)|j = E(L )|j.

In particular,E(L )|j is d|j-exact. In view of Remark 2, this is only possible ifE(L )|j =
0, i.e., s is a solution of the EL equations. We conclude that

d|j(ϑ− ϑ0)|j = 0,

i.e., (ϑ− ϑ0)|j is d|j-closed. Again in view of Remark 2, this shows that, locally,

(ϑ− ϑ0)|j = d|jν|j = dν|j

for some ν ∈ C˜1 ⊗ ˜n−2. In particular, we can put ϑ = ϑ0 + dν and, therefore, ϑ is a
Legendre form for L . �

We now prove a formal version of the above theorem. Put p := τ †∞,0 ◦ τ
†
0 : J

∞τ † −→
J∞.

Theorem 6. p(EELH) ⊂ EEL and p : EELH −→ EEL is a covering of PDEs.

Proof. In J∞τ † consider the submanifold EL made of ∞th jets of (local) sections σ :
U −→ J†, U ⊂ M an open subset, in the form σ = ϑ ◦ j∞s, where s : U −→ E is a
local section of π, and ϑ : U ′ −→ J† is a local Legendre form, U ′ ⊂ J∞ an open subset.
It can be easily checked that EL is locally de¦ned by

{
pI.iα |Ki + δ

I
Ji p

J.i
α |K = DK(∂

I
αL)− δI

O
DK

δL
δuα

uαI |K = u
α
IK

. (15)

Clearly, the Cartan distribution restricts to EL and, therefore, EL can be interpreted as
a PDE. Moreover, it is easily seen from (15) that EL covers J

∞ via p. Denote by

D′
j = ∂j + u

α
I |Jj

∂
∂uα

I |J
+ pI.iα |Jj

∂
∂pI.i

α |J

the jth total derivative on J∞τ †, j = 1, . . . , n. EELH is locally de¦ned by
{
pI.iα |Ki = D

′
K(∂

I
αL)− δIJi p

J.i
α |K

uαI |Ki = u
α
Ii|K

, (16)
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which is clearly equivalent to
{
pI.iα |Ki = DK(∂

I
αL)− δIJi p

J.i
α |K

uαI |K = u
α
IK

.

Moreover, on EELH

(−)|I|pI.iα |KIi = DK
δL
δuα − (−)|I|δIJi p

J.i
α |KI = DK

δL
δuα + (−)

|I|pI.iα |KIi,

and, therefore, DK
δL
δuα = 0, K ∈ Mn, α = 1, . . . , m. It then follows from (15), that

EELH = EL ∩ p−1(EEL). In particular, p : EELH −→ EEL is the ¤restriction¥ of p :
EL −→ J∞ to EEL ⊂ J∞ and, therefore, is a covering. �

6. Natural Transformations of Euler-Lagrange-Hamilton Equations

Properties of Legendre forms discussed in Remark 1 correspond to speci¦c properties
of the ELH equations which we discuss in this section.
First of all, notice that the ELH equations are canonically associated to a lagrangian
density. But, how do the ELH equations change when changing the lagrangian density
into a d-cohomology class? In particular, does an action functional uniquely determine
a system of ELH equations or not? In order to answer these questions consider ϑ ∈
C˜1 ⊗ ˜n−1. ϑ determines an automorphism āϑ : J

† −→ J† of the ¦ber bundle τ †0 via

āϑ(P ) := P − ϑθ, P ∈ J†, θ = τ †(P ) ∈ J∞.

In particular, τ †0 ◦āϑ = τ
†
0 . Clearly, ā

−1
ϑ = ā−ϑ.

Lemma 7. ā∗
ϑ(ωL ) = ωL − τ †0

∗(dϑ).

Proof. Compute,

ā∗
ϑ(ωL ) = ā

∗
ϑ(δ—L )

= dā∗
ϑ(—L )

= d[(ā∗
ϑ ◦ ›

∗)(—) + (ā∗
ϑ ◦ τ

†
0
∗)(L )]

= d[(ā∗
ϑ ◦ ›

∗)(—) + (τ †0 ◦āϑ)
∗(L )]

= d[(ā∗
ϑ ◦ ›

∗)(—) + τ †0
∗(L )].

Now, since, locally, . . . ,ā∗
ϑ(p

I.i
α ) = p

I.i
α − ϑI.iα , . . ., we have

(ā∗
ϑ ◦ ›

∗)(pI.iα ) = p
I.i
α − ϑI.iα ,

(ā∗
ϑ ◦ ›

∗)(p) = (pI.iα − ϑI.iα )u
α
Ii.

Thus,

(ā∗
ϑ ◦ ›

∗)(—) = (pI.iα − ϑI.iα )du
α
I d

n−1xi − (p
I.i
α − ϑI.iα )u

α
Iid

nx

= ›∗(—)− τ †0
∗(ϑ).
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We conclude that

ā∗
ϑ(ωL ) = d[(ā

∗
ϑ ◦ ›

∗)(—) + τ †0
∗(L )]

= d[›∗(—)− τ †0
∗(ϑ) + τ †0

∗(L )]

= ωL − τ †0
∗(dϑ).

�

Theorem 8. Let L ′ = L + d̺, ̺ ∈ ˜n−1, be another lagrangian density (thus, L ′

determines the same EL equations as L ). Then ā∗
dV̺(ωL ) = ωL ′.

Proof. Notice, preliminarily, that

τ †0
∗(ddV̺) = τ †0

∗(ddV̺)

= −τ †0
∗(dV d̺)

= −τ †0
∗(dd̺)

= −dτ †0
∗(d̺).

Therefore, in view of the above lemma,

ā∗
dV̺(ωL ) = ωL − τ †0

∗(ddV̺)

= d[›∗(—) + τ †0
∗(L )] + dτ †0

∗(d̺)

= d[›∗(—) + τ †0
∗(L + d̺)]

= δ—L ′

= ωL ′.

�

Corollary 9. An action [L ] ∈ Hn, L ∈ ˜n, uniquely determines a system of ELH
equations, modulo isomorphisms of PD-hamiltonian systems.

Therefore the ELH equations are basically determined by the sole action functional
and not a speci¦c lagrangian density.

Theorem 10. Let ϑ ∈ C˜1 ⊗ ˜n−1 be d-closed, hence d-exact. Then, for every la-
grangian density L ∈ ˜n, āϑ is a symmetry of the ELH equations determined by L in
the sense that j∞āϑ : J

∞τ † −→ J∞τ † preserves EELH.

Proof. By de¦nition of in¦nite prolongations of a PDE and in¦nite prolongation of
a morphism of bundles, it is enough to prove that j1āϑ : J

1τ † −→ J1τ † preserves

E
(0)
ELH := E

(0)
ωL

⊂ J1τ †. Notice, preliminarily, that, in view of the proof of Theorem 5,
we have

(j1τ
†
0 )(E

(0)
ELH) ⊂ imC ⊂ J1π∞.
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Now, let c ∈ E
(0)
ELH, P := τ

†
1,0(c) and ξ ∈ TPJ

† be a tangent vector, vertical with respect

to τ †. Consider also c′ := (j1ā−ϑ)(c), P
′ := ā−ϑ(P ) = τ †1,0(c

′) and ξ′ := dā−ϑ(ξ). In

particular, ξ′ ∈ TP ′J† is vertical with respect to τ † as well. Let us prove that c′ ∈ E
(0)
ELH.

In view of Lemma 7,

ā∗
ϑ(ωL ) = ωL − τ †0

∗(dϑ) = ωL − τ †0
∗(dVϑ),

so that ωL = ā
∗
ϑ(ωL ) + τ

†
0
∗(dVϑ). Compute

iξ′ic′(ωL )P ′ = iξ′ic′[ā
∗
ϑ(ωL )P ′ + τ †0

∗(dVϑ)P ′ ] = iξic(ωL )P + iξ′′iCθ
(dVϑ)θ = 0,

where θ = τ †0 (P ) ∈ J∞ and ξ′′ = dτ †0(ξ) ∈ TθJ
∞ is a tangent vector, vertical with

respect to π∞. It follows from the arbitrariness of ξ
′, that ic′(ωL )P ′ = 0. �

7. Hamiltonian Formalism

In this section we present our proposal of an hamiltonian formalism for higher order
lagrangian ¦eld theories. Such proposal is free from ambiguities in that it only depends
on the choice of a lagrangian density and its order. Moreover, cohomologous lagrangian
of the same order determine equivalent ¤hamiltonian theories¥.
First of all, we de¦ne a ¤¦nite dimensional version¥ of the ELH equations. In or-
der to do this, notice that, in view of Remark 3, Wk is canonically isomorphic to
the C∞(Jk+1π)-module of section of the induced bundle C †πk+1 := π◦

k+1,k(τ
†
0πk) :

C †Jk+1 := π◦
k+1,k(J

†πk) −→ Jk+1π from the vector bundle τ †πk : J
†πk −→ Jkπ via

πk+1,k : J
k+1π −→ Jkπ, k ≥ 0. We conclude that τ †0,k : J

†
k −→ J∞ is canonically

isomorphic to the pull-back bundle π◦
∞,k(τ

†
0πk) : π

◦
∞,k(J

†πk) −→ J∞, k ≥ 0. Denote by

ik : J
†
k →֒ J† the inclusion and by q′0,k : J

†
k −→ C †Jk+1 and q0,k : C

†Jk+1 −→ J†πk the

canonical projections, k ≥ 0. Notice that the pI.iα £s, |I| ≤ k, identify with the pull-back
via q′0,k (resp. q0,k) of the corresponding natural coordinates on C †Jk+1 (resp. J†πk)

which we still denote by . . . , pI.iα , . . ., k ≥ 0.
Now, let L ∈ ˜n be a lagrangian density of the order l + 1, i.e., L ∈ ˜n ∩ ˜(J l+1).

Put ω′
l := i∗l (ωL ) ∈ Ÿ

2(J†
l , τ

†
l ). ω

′
l is a PD-hamiltonian system on τ

†
l , and it is locally

given by

ω′
l =

∑

|I|≤l

dpI.iα du
α
I d

n−1xi − dEld
nx,

where El := i∗l (EL ) =
∑

|I|≤l p
I.i
α u

α
Ii − L. Notice that ω′

l = q′0,l
∗(ωl) for a (unique)

PD-hamiltonian system ωl ∈ Ÿ
2(C †J l+1, ql+1) on the bundle ql+1 := πl+1 ◦ C †πl+1 :

C †J l+1 −→ M , locally given by the same formula as ω′
l. ωl is a constrained PD-

hamiltonian system, i.e., its ¦rst constraint bundle q :P −→ M is a proper subbundle
of ql+1. Let us compute it. Let P ∈ C †J l+1 and θ := C †πl+1(P ) ∈ J l+1. Then
P ∈ P i¨ there exists c ∈ J1ql+1 such that ic(ωl)P = 0, i.e., i¨ there exist real numbers
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. . . , caJ ,j , . . . , c
I.i
α ,j , . . ., |I| ≤ l, such that

{
cI.iα ,i= (∂

I
αL)(θ)− δIJi P

J.i
α , |I| ≤ l + 1

cαJ ,i= P
α
Ji, |J | ≤ l + 1

where we put cI.iα ,i= 0 for |I| = l + 1, and . . . , P α
Ji := pαJi(P ), . . ., |J | ≤ l + 1, α =

1, . . . , m. Thus, for |I| = l + 1, P should be a solution of the system

∂IαL− δIJi p
J.i
α = 0, |I| = l + 1. (17)

Equations (17) de¦ne P locally.

Assumption 1. We will always assume P to be a submanifold in C †J l+1 and q =
ql+1|P : P −→ M a smooth subbundle of ql. Similarly, we assume P0 := q0,l(P) to
be a submanifold in J†πl and τ

†πl|P0 : P0 −→ M to be a smooth subbundle of τ †πl.
Finally, we assume q0,l|P :P −→ P0 to be a smooth bundle with connected ¦bers.

Notice that, as usual, all the above regularity conditions are true if we restrict all the
involved maps to suitable open subsets.
The following commutative diagram summarizes the above described picture:

J†

τ†0

��

J†
l

? _
iloo

τ†0,l

zzuuuuuuuuuuuuuuuu

��

J∞

π∞,l+1

��

C †J l+1

C †πl+1

zzttttttttttttttt

q0,l

��

P? _
iPoo

��

J l+1

πl+1,l

��

J†πl

τ†πl

����
��

��
��

��
��

��
��

��
��

��
�
��

τ†0πl

zztttttttttttttttt
P0

? _
iP0oo

yyttttttttttttttttttttttttttttttttttttt

J l

πl

��

M

.

Theorem 11. Under the regularity Assumption 1, there exists a unique PD-hamiltonian
system ω0 in τ

†πl|P0 :P0 −→M , such that i∗
P
(ωl) = q0,l|

∗
P
(ω0).

Proof. Since q0,l|P : P −→ P0 has connected ¦bers, it is enough to prove that
iY i

∗
P
(ωl) = LY i

∗
P
(ωl) = 0 for all vector ¦elds Y ∈ D(P) vertical with respect to



THE LAGRANGIAN-HAMILTONIAN FORMALISM FOR HIGHER ORDER FIELD THEORIES 21

q0,l. Let Y ∈ D(C †J l+1) be a vector ¦eld on C †J l+1, vertical with respect to q0,l, and
Y := Y |P its restriction to P. Then Y is locally of the form

Y =
∑

|K|=l+1

Y β
K∂

K
β |P ,

for some . . . , Y β
K , . . . local functions on P. Now Y ∈ D(P) i¨, locally,

∑

|I|=l+1

Y β
K∂

K
β ∂

I
αL|P = 0.

Compute

Y (El|P) =
∑

|K|=l+1

Y β
K∂

K
β El|P =

∑

|I|=l+1

Y α
I (δ

I
Ji p

J
α
.i − ∂IαL)|P = 0.

Therefore

iY i
∗
P(ωl) = −Y (El|P)d

nx = 0.

Similarly,

LY i
∗
P(ωl) = −dY (El|P)d

nx = 0.

It follows from the arbitrariness of Y that i∗
P
(ωl) = q0,l|

∗
P
(ω0), where, locally

ω0 =
∑

|I|≤l

i∗P0(dp
I.i
α du

α
I )d

n−1xi − dHdnx,

and H is the local function on P0 uniquely de¦ned by putting q0,l|
∗
P
(H) = El|P . �

De¦nition 3. ω0 is called the PD-hamiltonian system determined by the (l+1)th order
lagrangian density L and the corresponding PD-Hamilton equations are the Hamilton-
de Donder-Weyl (HDW) equations determined by L .

De¦nition 4. A lagrangian density of order l+1 L is regular at the order l+1 if P0

is an open submanifold of J†πl.

Clearly, under the regularity assumptions 1, the lagrangian density of order l+1, L ,
is regular at the order l + 1 i¨ the matrix

∥∥(∂Kβ ∂IαL)(θ)
∥∥ (α,I)
(β,K), |I|, |K| = l + 1,

where the pairs (α, I) and (β,K) are understood as single indexes, is of maximal rank at
every point θ ∈ J∞. In this case, ω0 is a PD-hamiltonian system on an open subbundle
of τ †πl, and it is locally given by

ω0 =
∑

|I|≤l

dpI.iα du
α
I d

n−1xi − dHdnx,
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where, now, H is a local function on J†πl. Then, as expected, the HDW equations read
locally {

pI.iα ,i= − ∂H
∂uα

I

uαI ,i=
∂H
∂pI.i

α

.

Notice that the HDW equations are canonically associated to a lagrangian density and
its order and no additional structure is required to de¦ne them. Moreover, in view of
Theorem 8, two lagrangian densities of the same order determining the same system of
EL equations, determine equivalent HDW equations. Finally, to write down the HDW
equations there is no need of any distinguished Legendre transform. Actually, the
emergence of ambiguities in all proposed Hamiltonian formalism for higher order ¦eld
theories in literature seems to rely on the common attempt to ¦rst de¦ne a higher order
analogue of the Legendre transform and, only thereafter, to de¦ne the ¤hamiltonian
theory¥. In the next section we present our own point of view about the Legendre
transform in higher order lagrangian ¦eld theories.

8. The Legendre Transform

Keeping the same notations as in the previous section, denote by lEELH ⊂ J∞ql+1 the
in¦nite prolongation of the PD-Hamilton equations of ωl and by p

′ : C †πl+1 −→ E the
natural projection.

Proposition 12. (j∞p
′)(lEELH) ⊂ EEL and j∞p

′ : lEELH −→ EEL is a covering.

Proof. The proof is the ¦nite dimensional version of the proof of Theorem 6 and will
be omitted. �

Denote also by E P
H ⊂ J∞q ⊂ J∞ql the in¦nite prolongation of the PD-Hamilton equa-

tions of i∗
P
(ωl) and EH ⊂ J∞τ †πl|P0 the in¦nite prolongation of the HDW equations.

Proposition 13. (j∞q0,l)(E
P
H ) ⊂ EH and j∞q0,l : E

P
H −→ EH is a covering.

Proof. It immediately follows from Theorem 11 and Proposition 3. �

Notice that, in view of Propositions 4, 12 and 13, there is a diagram of morphisms of
PDEs,

lEELH
� � //

j∞p′

��

E P
H

j∞q0,l

��

EEL EH

, (18)

whose vertical arrows are coverings. Therefore the inclusion lEELH ⊂ E P
H may be

understood as a non local morphism of EEL into EH . We interpret such morphism as
Legendre transform according to the following

De¦nition 5. We call diagram (18) the Legendre transform determined by the la-
grangian density L .
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Any Legendre form of order l, ϑ : J∞ −→ J†
l −→ C †πl+1, determines a section

j∞ϑ|EEL
: EEL −→ lEELH of the covering j∞p

′ : lEELH −→ EEL and, therefore, via
composition with j∞q0,l, a concrete map EEL −→ EH . Nevertheless, among these maps,
there is no distinguished one.
We now prove that, if L is regular at the order l+1, then EH itself covers EEL. This
result should be interpreted as the higher order analogue of the theorem stating the
equivalence of EL equations and HDW equations for ¦rst order theories with regular
lagrangian (see, for instance, [11]). Let us ¦rst prove the following

Lemma 14. If L is regular at the order l + 1, then lEELH = E P
H .

Proof. The proof is in local coordinates. Let σ : U −→ C †πl+1 be a local section of
ql+1, U ⊂M an open subset. Suppose im σ ⊂ P. Then, locally,

∂IαL ◦ σ − δIJjσ
J.j
α = 0, |I| = l + 1.

Now, i ‘σωl|σ is locally given by

i ‘σωl|σ

=
[∑

|I|≤l+1(−σ
I.i
α ,i−δ

I
Jjσ

J.j
σ + ∂

I
αL ◦ σ)duαI +

∑
|I|≤l(σ

α
I ,i−σ

α
Ii)dp

I.i
α

]
|σd

nx.

As already outlined, the annihilator of D(P) in ˜1(C †πl+1)|P is locally spanned by
1-forms

λIα := d(∂
I
αL− δIJjp

J.j
α )|P =

(∑
|K|≤l+1∂

K
β ∂

I
βLdu

β
K − δIJjdp

Jj
α

)
|P , |I| = l + 1.

Therefore, i ‘σi
∗
P
(ωl)|σ = 0 i¨, locally,

i ‘σωl|σ =
∑

|I|=l+1

faI λ
I
α|σ, (19)

for some local functions . . . , fαI , . . . on im σ. Equations (19) read
∑

|I|≤l+1(−σ
I.i
α ,i+∂

I
αL ◦ σ − δIJjσ

J.j
σ −

∑
|K|=l+1 f

β
K∂

K
β ∂

I
αL ◦ σ)duαI |σ

+
∑

|I|<l(σ
α
I,i − σαIi)dp

I.i
α |σ +

∑
|I|=l(σ

α
I ,i−σ

α
Ii +

I[i]+i
l+1

fαIi)dp
I.i
α |σ = 0

.

Since the forms . . . , duαI |σ, . . . , dp
I.i
α |σ, . . . are linearly independent, i ‘σi

∗
P
(ωl)|σ = 0 i¨,

locally,





−σI.iα ,i+∂
I
αL ◦ σ − δIJjσ

J.j
σ −

∑
|K|=l+1 f

β
K∂

K
β ∂

I
αL ◦ σ = 0, |I| ≤ l + 1

σαI,i − σαIi = 0, |I| < l

σαI ,i−σ
α
Ii +

I[i]+i
l+1

fαIi = 0, |I| = l

, (20)

for some . . . , fαI , . . .. It follows from the third of Equations (20) that

fαIi = − l+1
I[i]+1
(σαI ,i−σ

α
Ii), |I| = l. (21)



24 L. VITAGLIANO

Moreover, since im σ ⊂ P, the ¦rst equation, for |I| = l + 1, gives

0 =
∑

|K|=l+1

fβK∂
K
β ∂

I
αL ◦ σ =

∑

|J |=l

J [j]+1
l+1

fβJj∂
Jj
β ∂

I
αL ◦ σ = −

∑

|J |=l

(σβJ ,j −σ
β
Jj)∂

Jj
β ∂

I
αL ◦ σ,

and, in view of the regularity of L and Equations (21),

σαI ,i−σ
α
Ii = f

α
Ii = 0, |I| = l.

Substituting again into (20), we ¦nally ¦nd that the PD-Hamilton equations
i ‘σi

∗
P
(ωl)|σ = 0 are locally equivalent to equations

{
pI.iα ,i= ∂

I
αL− δIJjp

J.j
σ , |I| ≤ l + 1

uαI ,i= u
α
Ii, |I| ≤ l

,

which are the PD-Hamilton equations of ωl. �

Now, notice that, in view of the above lemma, if L is regular at the order l + 1, the
Legendre transform (18) reduces to a B�acklund transformation

lEELH

j∞p′

��

E P
H

j∞q0,l

��

EEL EH

.

Finally, J†πl maps to E via πl,0 ◦ τ
†
0πl and such map is a morphisms of bundles (over

M). Therefore, it induces a morphism J∞τ †0πl −→ J∞ and, by restriction, a morphism
of PDEs κ : EH −→ J∞, locally de¦ned as κ∗(uαK) = uα

O|K, |K| ≥ 0. It is easy to show
that diagram

lEELH

j∞p′

��

E P
H

j∞q0,l

��

EEL
� � // J∞ EH

κoo

,

commutes, so that κ(EH) ⊂ EEL and κ : EH −→ EEL is a covering. We have thus proved
the following

Theorem 15. If L is regular at the order l + 1, then EH covers EEL.

Conclusions

In this paper, using the geometric theory of PDEs, we solved the long standing prob-
lem of ¦nding a reasonably natural, higher order, ¦eld theoretic analogue of hamiltonian
mechanics of lagrangian systems. By naturality we mean dependence on no other struc-
ture than the action functional. we achieved our goal in two steps. First we found a
higher order, ¦eld theoretic analogue of the Skinner-Rusk mixed lagrangian-hamiltonian
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formalism [13, 14, 15] and, second, we shew that such theory projects naturally to a PD-
hamiltonian system on a smaller space. The obtained hamiltonian ¦eld equations enjoy
the following nice properties: 1) they are ¦rst order, 2) there is a canonical, non-local
embedding of the Euler-Lagrange equations into them, and 3) for regular lagrangian
theories, they cover the Euler-Lagrange equations. Moreover, for regular lagrangian
theories, the coordinate expressions of the obtained ¦eld equations are nothing but
the de Donder higher order ¦eld equations. This proves that our theory is truly the
coordinate-free formulation of de Donder one [2].

References

[1] A. M. Vinogradov, The C �Spectral Sequence, Lagrangian Formalism and Conservation Laws I,
II, J. Math. Anal. Appl. 100 (1984) 1�129.

[2] Th. de Donder, Th‚eorie Invariantive du Calcul des Variations, Gauthier Villars, Paris, 1935, pp.
95�108.

[3] P. Dedecker, On the Generalization of Symplectic Geometry to Multiple Integrals in the Calculus
of Variations, in Lect. Not. in Math. 570, Springer, Berlin, 1977, pp. 395�456.

[4] V. Aldaya, and J. de Azc‚arraga, Higher Order Hamiltonian Formalism in Field Theory, J. Phys.
A: Math. Gen. 13 (1982) 2545�2551.

[5] W. F. Shadwick, The Hamiltonian Formulation of Regular rth Order Lagrangian Field Theories,
Lett. Math. Phys. 6 (1982) 409�416.

[6] I. Kol‚a�r, A Geometric Version of the Higher Order Hamilton Formalism in Fibered Manifolds, J.
Geom. Phys. 1 (1984) 127�137.

[7] D. J. Saunders, and M. Crampin, On the Legendre Map in Higher-Order Field Theories, J. Phys.
A: Math. Gen. 23 (1990) 3169�3182.

[8] D. J. Saunders, A Note on Legendre Transformations, Di¨. Geom. Appl. 1 (1991) 109�122.
[9] O. Krupkova, Hamiltonian Field Theory, J. Geom. Phys. 43 (2002) 93�132.
[10] R. J. Alonso-Blanco, and A. M. Vinogradov, Green Formula and Legendre Transformation, Acta

Appl. Math. 83, n◦ 1�2 (2004) 149�166.
[11] H. Goldshmidt, and S. Sternberg, The Hamilton-Cartan Formalism in the Calculus of Variations,

Ann. Inst. Fourier 23 n◦ 1 (1973) 203�267.
[12] N. Rom‚an-Roy, Multisymplectic Lagrangian and Hamiltonian Formalism of First-Order Classical

Field Theories; e-print: arXiv:math-ph/0506022.
[13] R. Skinner, First-Order Equations of Motion for Classical Mechanics, J. Math. Phys. 24 (1983)

2581�2588.
[14] R. Skinner, and R. Rusk, Generalized Hamiltonian Mechanics. I. Formulation on T ∗Q ⊕ TQ, J.

Math. Phys. 24 (1983) 2589�2594.
[15] R. Skinner, and R. Rusk, Generalized Hamiltonian Mechanics. II. Gauge Transformations, J.

Math. Phys. 24 (1983) 2595�2601.
[16] A. Echeverr‚Ša-Enr‚Šquez et al., Lagrangian-Hamiltonian Uni¦ed Formalism for Field Theory, J.

Math. Phys. 45 (2004) 360�380; e-print: arXiv:math-ph/0212002.
[17] L. Vitagliano, Partial Di¨erential Hamiltonian Systems, submitted for publication (2009), e-print:

arXiv:0903.4528.
[18] I. M. Anderson, Introduction to the Variational Bicomplex, in Math. Aspects of Classical Field

Theory, M. Gotay, J. E. Marsden, and V. E. Moncrief (Eds.), Contemp. Math. 132, Amer. Math.
Soc., Providence, 1992, pp. 51�73.

[19] A. V. Bocharov et al., Symmetries and Conservation Laws for Di¨erential Equations of Mathe-
matical Physics, Transl. Math. Mon. 182, Amer. Math. Soc., Providence, 1999.



26 L. VITAGLIANO

[20] A. M. Vinogradov, Cohomological Analysis of Partial Di¨erential Equations and Secondary Cal-
culus, Transl. Math. Mon. 204, Amer. Math. Soc., Providence, 2001.

[21] L. Vitagliano, Secondary Calculus and the Covariant Phase Space, J. Geom. Phys. 59 (2009)
426�447; e-print: arXiv:0809.4164.

[22] D. J. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge, 1989.
[23] T. Tsujishita, Homological Method of Computing Invariants of Systems of Di¨erential Equations,

Di¨. Geom. Appl. 1 (1991) 3�34.
[24] I. S. Krasil£shchik, and A. M. Vinogradov, Non-Local Trends in the Geometry of Di¨erential

Equations: Symmetries, Conservation Laws, and B�acklund Transformations, Acta Appl. Math.
15 (1989) 161�209.

[25] S. Igonin, Coverings and Fundamental Algebras for Partial Di¨erential Equations, J. Geom. Phys.
56 (2006) 939�998; e-print: arXiv:nlin/0301042.

[26] B. A. Kupershmidt, Geometry of Jet Bundles and the Structure of Lagrangian and Hamiltonian
Formalisms, in Geometric Methods in Mathematical Physics, G. Kaiser, and J. .E. Marsden (Eds.),
Lect. Notes Math. 775, Springer�Verlag, Berlin, Heidelberg, New York, 1980, pp. 162�218.

[27] M. J. Gotay, J. Isenberg, and J. E. Marsden, Momentum Maps and Classical Relativistic Fields.
I: Covariant Field Theory, e-print: arXiv:physics/9801019.

Luca Vitagliano, DMI, Università degli Studi di Salerno, and Istituto Nazionale di
Fisica Nucleare, GC Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy
E-mail address : lvitagliano@unisa.it


	Introduction
	1. Notations, Conventions and the Skinner-Rusk Formalism
	2. Geometry of Differential Equations
	3. The Cartan Distribution and the Lagrangian Formalism
	4. Partial Differential Hamiltonian Systems
	5. Lagrangian-Hamiltonian Formalism
	6. Natural Transformations of Euler-Lagrange-Hamilton Equations
	7. Hamiltonian Formalism
	8. The Legendre Transform
	Conclusions
	References

