The Diffiety Institute Preprint Series

Preprint DIPS 2/2009 May 28, 2009

The Lagrangian-Hamiltonian Formalism
for Higher Order Field Theories

by

L. Vitagliano

Available via INTERNET:
http://diffiety.ac.ru; http://diffiety.org

The Diffiety Institute



DIPS-2/2009
arXiv:0905.4580

The Lagrangian-Hamiltonian Formalism for Higher Order Field Theories
L. VITAGLIANO

ABSTRACT. We generalize the lagrangian-hamiltonian formalism of Skinner and Rusk
to higher order field theories on fiber bundles. As a byproduct we solve the long
standing problem of defining, in a coordinate free manner, a hamiltonian formalism
for higher order lagrangian field theories, which does only depend on the action func-
tional and, therefore, unlike previously proposed formalisms, is free from any relevant
ambiguity.

INTRODUCTION

First order lagrangian mechanics can be generalized to higher order lagrangian field
theory. Moreover, the latter has got a very elegant geometric (and homological) for-
mulation (see, for instance, [1]) on which there is general consensus. On the other
side, it seems that the generalization of hamiltonian mechanics of lagrangian systems
to higher order field theory presents some more problems. They have been proposed
several answers (see, for instance, [2, 3, 4, 5, 6, 7, 8, 9, 10] and references therein) to the
question: is there any reasonable, higher order, field theoretic analogue of hamiltonian
mechanics? To our opinion, non of them is satisfactorily natural, especially because of
the common emergence of ambiguities due to either the arbitrary choice of a coordinate
system [2] or the choice of a Legendre transform [7, & 10]. Namely, the latter seems
not to be uniquely definable, except in the case of first order lagrangian field theories
when a satisfactory hamiltonian formulation can be presented in terms of multisym-
plectic geometry (see, for instance, [11] - see also [12] for a recent review, and references
therein).

Nevertheless, it is still desirable to have a hamiltonian formulation of higher order
lagrangian field theories enjoying the same nice properties as hamiltonian mechanics,
which 1) is natural, i.e., is independent of the choice of any other structure than the
action functional, 2) gives rise to first order equations of motion, 3) takes advantage from
the (pre-)symplectic geometry of phase space, 4) is a natural starting point for gauge
reduction, 5) is a natural starting point for quantization. A special mention deserves the
relationship between the Euler-Lagrange equations and the Hamilton equations. The
Legendre transform maps injectively solutions of the former to solutions of the latter,
but, generically, Hamilton equations are not equivalent to Euler-Lagrange ones [11].
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However, the difference between the two is a pure gauge and, therefore, it is irrelevant
from a physical point of view.

In this paper we reach the goal of finding a natural (in the above mentioned sense),
geometric, higher order, field theoretic analogue of hamiltonian mechanics of lagrangian
systems in two steps: first, we find a higher order, field theoretic analogue of the Skinner
and Rusk “mixed lagrangian-hamiltonian” formalism [13, 14, 15] (see also [L6]), which
is rather straightforward, and, second, we show that the derived theory “projects to
a smaller space” which is naturally interpreted as phase space. Local expressions of
the field equations on the phase space are nothing but de Donder equations [2] and,
therefore, are naturally interpreted as the higher order, field theoretic, coordinate free
analogue of Hamilton equations. A central role is played in the paper by multisymplectic
geometry in the form of partial differential (PD, in the following) hamiltonian system
theory, which has been developed in [17].

The paper is divided into eight sections. The first four sections contain reviews of the
main aspects of the geometry underlying the paper. They have been included in order
to make the paper as self-consistent as possible. The next four sections contain most
of the original results.

The first section summarizes notations and conventions adopted throughout the pa-
per. It also contains references to some differential geometric facts which will be often
used in the subsequent sections. Finally, we briefly review, in Section 1, the Skinner-
Rusk formalism [14]. Section 2 is a short review of the geometric theory of partial
differential equations (PDEs) (see, for instance, [19]). Section 3 outlines properties of
the main geometric structure of jet spaces and PDEs, namely, the Cartan distribu-
tion, and reviews the geometric formulation of the calculus of variations [1]. Section 4
reviews the theory of PD-hamiltonian systems and their PD-Hamilton equations [17].
Moreover, it contains examples of morphisms of PDEs coming from such theory. These
examples are presented here for the first time.

In Section 5 we present the higher order, field theoretic analogue of Skinner-Rusk
mixed lagrangian-hamiltonian formalism for mechanics. In Section 5 we also discuss
the relationship between field equations in the lagrangian-hamiltonian formalism (now
on, ELH equations) and the Euler-Lagrange equations. In Section 6 we discuss some
natural transformations of the ELH equations. As a byproduct, we prove that they are
independent of the choice of a lagrangian density, in the class of those yielding the same
Euler-Lagrange equations, up to isomorphisms. ELH equations are, therefore, as natural
as possible. In Section 7 we present our proposal for a hamiltonian, higher order, field
theory. Since we don’t use any additional structure other than the ELH equations and
the order of a lagrangian density, we judge our theory satisfactorily natural. Moreover,
the associated field equations (HDW equations) are first order and, more specifically,
of the PD-Hamilton kind. In Section 8 we study the relationship between the HDW
equations and the Euler-Lagrange equations. As a byproduct, we derive a new (and,
in our opinion, satisfactorily natural) definition of Legendre transform for higher order,
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lagrangian field theories. It is a non-local morphism of the Euler-Lagrange equations
into the HDW equations.

1. NOTATIONS, CONVENTIONS AND THE SKINNER-RUSK FORMALISM

In this section we collect notations and conventions about some general constructions
in differential geometry that will be used in the following.

Let N be a smooth manifold. If L C N is a submanifold, we denote by iy, : L < N the
inclusion. We denote by C*°(N) the R algebra of smooth, R valued functions on N. We
will always understand a vector field X on N as a derivation X : C®°(N) — C*®(N).
We denote by D(N) the C*°(N) module of vector fields over N, by A(M) = @, A*(N)
the graded R algebra of differential forms over N and by d : A(N) — A(NV) the
de Rham differential. If F' : Ny — N is a smooth map of manifolds, we denote by
F*: A(N) — A(N,) its pull back. We will understand everywhere the wedge product
A of differential forms, i.e., for w,w; € A(N), instead of writing w A wy, we will simply
write wwy.

Let @ : A — N be an affine bundle (for instance, a vector bundle) and F': Ny — N
a smooth map of manifolds. Let ./ be the affine space of smooth sections of . For
a € o and v € N we put, sometimes, a, := a(z). The affine bundle on N; induced by
a via F' will be denoted by F°(«) : F°(A) — N:

F°(A)— A

Fe (oa)l \La ,

N, —E s N

and the space of its section by F°(</). For any section a € &/ there exists a unique
section, which we denote by F°(a) € F°(</), such that the diagram

F°(A)— A

FO(G)T T

N, —E N

commutes. If ' : Ny — N is the embedding of a submanifold, we also write e |g
(or, simply, e |y,) for F°( e ), and refer to it as the restriction of “e” to Ny (via F'),
whatever the object “e” is (an affine bundle, its total space, its space of sections or a
section of it).

Denote by N the set of natural numbers. We will always understand the sum
over repeated upper-lower (multi-)indexes. Our notations about multiindexes are
the following. Let n € N, I, = {1,...,n} and M, be the free abelian monoid
generated by I,,. Even if M, is abelian, we keep for it the multiplicative nota-
tion. Thus if [ = 4;---4;,J = j1--Jm € M, are (equivalence classes of) words,
syl J1y -5 Jm € L,, we denote by IJ := 21---4;J1 - Jm their composition. If
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I =iy--+i, € M, is aword, iy, ...,4 € [,, denote by |I| := [ its length. We denote by O
the (equivalence class of the) empty word. An element I € M, is called an n-multiindex
(or, simply, a multiindez). For I € M,, and i € I,,, we denote by I[i] the number of
times the “letter” ¢ occurs in the (equivalence class of) word(s) /. In other words /7] is
the greatest positive integer r such that " divides I. We stress that our notation about
multiindexes is different from more popular ones (see, for instance, [18]).

We conclude this section by briefly reviewing those aspects of the Skinner-Rusk for-
malism for mechanics [13, 14, 15] that survive in our generalization to higher order field
theory.

Let  be a smooth manifold and ¢,...,¢™ coordinates on it, m = dim@Q. Let
L € C(TQ) be a lagrangian function. Consider the induced bundle Tg = 75(75)
Tt = 5(1"Q) — TQ from the cotangent bundle 75 : T°Q — @ to @, via the
tangent bundle 7o : TQ — Q. Let qo : TT — T*Q be the canonical projection (see
Diagram (1))

Tt L5 T*Q

4| | (1)

TQ —=Q

On T there is a canonical function h € C*°(T"") defined by h(v,p) := p(v), v € T,Q,
p € T;Q, q € Q. Consider also the function E := h — TOT(L) € C=(T"). Ey is locally
given by E; := p;¢* — L, where ...,q¢",...,¢" ...,p;,... are standard coordinates on
TT. Finally, put w = qi(wo) € A2(TT), wo € A*(T*Q) being the canonical symplectic
form on 7%, which is locally given by wy = dp;dq’. w is a presymplectic form on T
whose kernel is made of vector fields over T which are vertical with respect to the
projection qo. In the following, denote by I C R a generic open interval. For a curve
v: 1>t y(t) € T, consider equations

iswly — (dEL)|, =0, (2)
where 4 € v°(D(T)) is the tangent field to . Equations (2) read locally

d g
w1 =1q
. oL

pl_aqi
d, — 9L
dtpl_aqi

In particular, for any solution v of Equations (2) as above, 7 o Tg oy : I — Qis
a solution of the Euler-Lagrange equations determined by L. Notice that solutions of
Equations (2) can only take values in the submanifold & C T defined as

P .={P¢€ T' : there exists = € TpT" such that izwp — (dEL)p = 0},

and that & is nothing but the graph of the Legendre transform FL : T'QQ — T*Q.
Finally, consider &, = (<) C T*Q. If &, C T*Q is a submanifold and ¢y :
P — Py a submersion with connected fibers, then there exists a (unique) function
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H € C™(Z,) such that ¢i(H) = EL. Therefore, for a curve 0 : [ 3t — o(t) € P,
we can consider equations

Z><'7WO|cr - (dH)|cr =0, (3)
where ¢ € 0°(D(T")) is the tangent field to o. For any solution v : I — @ of the Euler-
Lagrange equations, F'L o : I — 2, is a solution of Equations (3). If #y C T*Q is
an open submanifold (which, under the above mentioned regularity conditions, happens
iff the matrix ||0?L/0¢'0¢’||] has maximum rank, i.e., F'L is a local diffeomorphism),
then H is a local function on 7*(Q) and Equations (3) read locally

d i __ OH
{dtq T Op;

d _ OH >

wli = ~oq

which are Hamilton equations. In this case, for any solution o : I — T™(Q) of Equations
(3), 7H oo : I — (@ is a solution of the Euler-Lagrange equations.

2. GEOMETRY OF DIFFERENTIAL EQUATIONS

In this section we recall basic facts about the geometric theory of partial differential
equations (PDEs). For more details see [19].

Let 7 : E — M be a fiber bundle, dim M =n, dim E =m +n. For 0 <[ < k < o0,
we denote by 7, : J*m —— M the bundle of k-jets of local sections of 7, and by
Tt o Jm — J'm the canonical projection. For any local section s : U — E of T,
U C M being an open subset, we denote by js : U — J¥r its kth jet prolongation. For
x € U, put [s]* := (jrs)(x). Any system of adapted to 7 coordinates (..., 2%, ... ,u®,...)
on an open subset U of E gives rise to a system of jet coordinates on 71‘,;(1)([] )y C Jkr
which we denote by (..., 2% ... ,u%y,...) or simply (... 2" ..., uf,...) if this does not
lead to confusion, I € M, || < k, where we put ug :==u*, a=1,...,m.

Now, let k& < oo, 79 : Ty — J*7 be a vector bundle, and

(ooat o ug, v )

adapted to 79, local coordinates on Ty. A (possibly non-linear) differential operator of
order < k ‘acting on local sections of m, with values in 7y’ (in short ‘from w to 10’) is
a section ® : J¥7 — Tj of 7. For any local section s : U — E of 7w, ® determines an
‘image’ section Ags := ® o jis : U — T} of the bundle 7 := m, o7 : Ty — M.

Let ' : E' — M be another fiber bundle and ¢ : £ — E’ a morphism of bundles.
For any local section s : U — E of m, U C M an open subset, pos: U — E’is alocal
section of 7. Therefore, for all 0 < k < oo, ¢, induces a morphism j,p : J¥7 — Jh7/
of the bundles 7, and 7}, defined by (jre)[s]* := [p o s]¥, # € U. Diagram

%
i =5 Ji

Jk®

Jhmw —— Jkr!
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commutes for all 0 < k <1 < oc0. jip is called the kth prolongation of .
The above construction generalizes to differential operators as follows. Let ® be a
differential operator of order < k from 7 to 15 : Ty — J*7 and 0 < [ < co. Consider

the space J'r( of I-jets of local sections of 7¢. In J'ry consider the submanifold 7; 0(1)
made of jets of local sections of the form Ags, where U is any differential operator of
order < k from 7 to 79 and s is a local section of . Tél) is locally defined by

a _ .« 7
ug; = up ., whenever IJ =1IJ,

a=1....m |I| ="'l =k |J| = |J] =1 Thus, (...,2° ..., uf ..., 0%...),
|K| =Fk+1,|J| =1, are local coordinates on To(l), where

a . o«
..,uK — uK1|K2|Tél)7...’

K, K5 being any pair of multiindexes such that K1 Ky = K, |K;| = k, |Ks| = . To(l)
projects canonically onto J**'7 and the projection Tél) - T, 0(1) — Jk*r is a vector
bundle. Moreover, the u$’s identify with the corresponding coordinates on J*™'7 via
7V Define the Ith prolongation ®O : J*+x — TV of ® by putting &0 ([s]k+!) =
[Ags], € T, 0(1)’ for all local sections s of 7 and 2 € M. Then ®U is a differential operator
of order < k + [ from 7 to Tél).

For ® as above, put & = {0 € J*r : ®(0) = 0}. & is called the (system of)
PDE(s) determined by ®. For 0 <[ < oo put also é"qgl) = Epy C S éil(f) is locally
determined by equations

(D;®)(....2" ... uf,...)=0, a=1,....p, |J| =1, (4)

where ..., ®% ;= ®*(v?), ... are local functions on J*m, Dj,..; = D; o---0 Dj,, and
D; :=0/0x +ug;0/0uf is the jth total derivative, j,jy, ..., 1 =1,...,m. éaq()l) is called
the Ith prolongation of the PDE &. In the following we put . := d/0u$, a = 1,...,m,
I € Mi,.

A local section s of 7 is a (local) solution of &% iff, by definition, im jis C &% or,
which is the same, im j; ;s C @@q(f) for some | < co. Notice that the ooth prolongation
of &, éaq()oo) C J°m, is an inverse limit of the sequence of maps

Th Thtlk+l—1 T 41, k+1
M < (gaq) < cee g @@q()l) Y, gqgl‘f‘l) A (5)

and consists of “formal solutions” of &%, i.e., possibly non-converging Taylor series
fulfilling (4) for every I.

Jm is not a finite dimensional smooth manifold. However, it is a pro-finite dimen-
stonal smooth manifold. For an introduction to the geometry of pro-finite dimensional
smooth manifolds see [20] (see also [21], and [22, 23] for different approaches). In the

following we will only consider reqular PDEs; i.e., PDEs &% such that éf’qﬁ"") C J®risa
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smooth pro-finite dimensional submanifold in J7, i.e., Ww7l(£]qgoo)) C J'm is a smooth
submanifold and 741 Woo,lﬂ(éaq()oo)) — Woo,l(é}(,oo)) is a smooth bundle.

There is a dual concept to the one of a pro-finite dimensional manifold, i.e., the
concept of a filtered smooth manifold which will be used in the following. We do not
give here a complete definition of a filtered manifold, which would take too much space.
Rather, we will just outline it. Basically, a filtered smooth manifold is a(n equivalence
class of) set(s) & together with a sequence of embeddings of closed submanifolds

O, © 0.1 N 0,1 s ... C s Op_ C -1,k s O C Rt N (6)
and inclusions iy : O — O, k > 0, such that & (together with the i;’s) is a direct limit
of (6). It is associated to the sequence (6) a tower of epimorphisms of algebras

0 (6)) < o () T 0% (G e (T)
We define C*(0) to be the inverse limit of the tower (7). Every element in C*(0) is
naturally a function on &'. Thus, we interpret C'° (&) as the algebra of smooth functions
on O. Clearly, there are canonical “restriction homomorphisms” i} : C>*(0) —
C>*(0y), k > 0. Differential calculus over ¢ may then be introduced as differential
calculus over C°(0) [20] respecting the sequence (7). Since the main constructions
(smooth maps, vector fields, differential forms, jets and differential operators, etc.) of
such calculus and their properties do not look very different from the analogous ones in
finite-dimensional differential geometry we will not insist on this. Just as an instance,
we report here the definition of a differential form w on &: it is just a sequence of
differential forms wy, € A(0%), k > 0, such that iZ—l,k(Wk) = wy,_1 for all k.

Finally, notice that, allowing for the &}’s in (6) to be pro-finite dimensional manifolds
we obtain a more general object then both a pro-finite dimensional or a filtered manifold
which we will refer to generically as infinite dimensional smooth manifold or even just
smooth manifold if this does not lead to confusion. Our main example of such a kind
of infinite dimensional manifold will be presented in the beginning of Section 5.

3. THE CARTAN DISTRIBUTION AND THE LAGRANGIAN FORMALISM

Let 7 : £ — M and ® be as in the previous section. In the following we will simply
write J* for J*m and & for éf’qﬁ“’). & will be referred to simply as a PDE (imposed on

sections of ) if this does not lead to confusion. Notice that for =0, & = éaq(fo) = J>.
Recall that J*° is canonically endowed with the Cartan distribution

C I D0 — Gy CTyJ™

which is locally spanned by total derivatives, D;, i = 1,...,n. % is a flat connection in
Too Which we call the Cartan connection. Moreover, it restricts to & in the sense that
6y C Tp& for any 0 € &. Therefore, the (infinite prolongation of) any PDE is naturally
endowed with an involutive distribution whose n-dimensional integral submanifolds are
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of the form js, with s : U — FE a (local) solution of &, U C M an open subset.
In the following we will identify the space of n-dimensional integral submanifolds of &
and the space of local solutions of &.

Let 7' : E' — M be another bundle and &’ C J*7’ (the infinite prolongation of) a
PDE imposed on sections of 7’. A smooth map F': & — & is called a morphism of
PDFEs iff it respects the Cartan distributions, i.e., (do/F)(p) C Cp(ory for any ¢ € &".
The idea of non-local variables in the theory of PDEs can be formalized geometrically
by special morphisms of PDEs called coverings [24] (see also [25]). A covering is a
morphism ¢ : & — & of PDEs which is a y surjective and submersive. A covering
(PN E— & clearly sends local solution of & to local solutions of &. If there exists
a covering 1 : & — & of PDEs we also say that the PDE & covers the PDE & (via

Y). Fiber coordinates in the total space & of a covering 1) : & — & are naturally
interpreted as non-local variables on &. Also notice that given a solution s of the PDE
&, a covering 1 : & — & determines a whole family of solutions of & ‘projecting onto
s via ¥”, so that ¢ may be interpreted, to some extent, as a fibration over the space of
solutions of &.

Many relevant constructions in the theory of PDEs (including Lax pairs, Béacklund
transformations, etc.) are duly formalized in geometrical terms by using coverings. As
an instance which will be relevant in the following we report the following

Definition 1. Let &, & be PDEs. A Backlund transformation between & and &' is a

diagram
&
& &'

where both v and v’ are coverings.

According to the above interpretation of a covering, a Bécklund transformation (8)
is naturally interpreted as a non-local transformation of the PDE & into the PDE &’
(and vice versa). Given a solution s of &, the Bécklund transformation (8) allows one,
generically, to obtain a whole family of solutions of &’ by first lifting to & via Y (see
above) and then projecting to & via 1'.

The Cartan distribution and the fibered structure n, : J*° — M of J*° determine a
splitting of the tangent bundle 7'J>* — J* into the Cartan or horizontal part ¢ and
the vertical (with respect to m.,) part. Accordingly, A*(J>) splits into a direct sum

AY(JT®) = €A @ AL, (9)
where @A' C A'(J*) is locally generated by Cartan forms ..., du§ — u$.dz’, . . ., while
A' is canonically isomorphic to C*°(J*) ®@cw(ary A (M) and it is locally generated by

forms ...,dz%, .... In view of splitting (9), A(J*) factorizes as A(J>) ~ €°A ® A
(here and in what follows tensor products will be always over C*°(J*) if not otherwise
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specified), where €*A = @, ¢PA? and €PAP C A(J>) is the C°°(J>)-submodule
generated by elements in the form w; - - w,, wy,...,w, € €A, p > 0, moreover, A :=
D, A7 and A7 is the C°°(.J>)-submodule generated by elements in the form 7, - - -7,
G1,...,0, € A, ¢ > 0. In particular, there are projections p,,, : A(J>) — GPAP @ A4
for any p,q > 0. Correspondingly, the de Rham complex of J>°, (A(J>),d), splits in a
bi-complex (¢°A ® A, d,d"), defined by

dw®7) = (ppgr10d)(wAT) and d"(w®F) := (pps140d)(wAT),

where w € €PAP and & € AY, p,q > 0, called the variational bi-complex, which allows
a cohomological formulation of the calculus of variations [1, 19, 18]. In the second part
of this section we briefly review it. d and d" are called the horizontal and the vertical
de Rham differential, respectively.

In the following we will understand isomorphism A(J>) ~ ¢*A ® A. The complex

0— () s W1 - s R L Rert L

is called the horizontal de Rham complez. An element . € A" is naturally interpreted
as a lagrangian density and its cohomology class [.£] € H" := H"(A,d) as an action
functional on sections of w. The associated Euler-Lagrange equations can then be
obtained as follows.

Consider the complex

0—— GNP @A —s - —— A @ R — - (10)

and the C°(J*)-submodule »' C ¥A! ® A" generated by elements in €A ® A" N
AL JIm). 3T is locally spanned by elements (du® — ufdz’) @ d"z, where we put
d'x ;= dxt- .- da™.

Theorem 1. [I] Complex (10) is acyclic in the qth term, for ¢ # n. Moreover, for any
w € EA'QA" there exists a unique element E,, € »t € €A'@A? such that E,—w = dV
for some ¥ € €A* @ A" and the correspondence H"(€A* @ A, d) > [w] — E, €
is a vector space isomorphism. In particular, for w = dV.¥, £ € A" being a lagrangian
density locally given by £ = Ld"z, L a local function on C*(J®), E(Z) = E, is
locally given by E(Z) = £&(du® — ufda’) @ dz where 2£ = (=)IID;9LL are the
Fuler-Lagrange derivatives of L.

In view of the above theorem, E(Z) does not depend on the choice of £ in a
cohomology class [.£] € H" and it is naturally interpreted as the left hand side of the
Euler-Lagrange (EL) equations determined by .Z. In the following we will denote by
&rr, C J* the (infinite prolongation of the) EL equations determined by a lagrangian
density. Any ¥ € €A' ® A"~! such that

E(¥)-d" ¥ =dV (11)
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will be called a Legendre form [10]. Equation (11) may be interpreted as the first
variation formula for the lagrangian density .Z. In this respect, the existence of a
global Legendre form was first discussed in [26].

Remark 1. Notice that, if 9 € €A*@ A" ! is a Legendre form for a lagrangian density
L € A", then ¥ + d¥ o is a Legendre form for the cohomologous lagrangian density
L +do, o € A", which determines the same EL equations as £. Moreover, any two
Legendre forms 0,9’ for the same lagrangian density differ by a d-closed, and, therefore,
d-exact form, i.e., 9 — ' = d\, for some A € €A' @ A"2.

Remark 2. Finally, notice that complex (10) restricts to holonomic sections joos of
Too, S being a local sections of m, in the sense that for any such s, there is a (unique)
complex

1l 1wy A 1 owar i
0—— CA|; —=>CAN @R, —= ——= CAN @A, ——--, (12
where j := joos, such that the restriction map €A' @ A — CA' @ A|; = €AY @cean
A(M) is a morphism of complezes. Moreover, complex (12) is acyclic in the qth term
and the correspondence defined by H"(€A' @ A™|;,d|;) 2 [w|;] — E.|; € »|;, w €

EA' @ A", is a vector space isomorphism.

4. PARTIAL DIFFERENTIAL HAMILTONIAN SYSTEMS

In [17] we defined a partial differential (PD in the following) analogue of the con-
cept of hamiltonian system on an abstract symplectic manifold which we called a PD-
hamiltonian system. In this section we briefly review those definitions and results in
[17] which we will need in the following.

Let a : P — M be a fiber bundle, A := C>(P), x',..., 2" coordinates on M,
dim M = n, and y', ..., y™ fiber coordinates on P, dim P = n + m. Denote by C(P, o)
the space of (Ehresmann) connections in ar. C'(P, o) identifies canonically with the space
of sections of the first jet bundle oy g : J'a — P and in the following we will understand
such identification. In particular, for V € C(P,«), we put ..., V? = V*(y9),...,
..., Y%, ... being jet coordinates in J'a.

Denote by A; = @, A} € A(P) the differential (graded) ideal in A(P) made of
differential forms on P vanishing when pulled-back to fibers of «, by A, = €, A’; its
p-th exterior power, p > 0, and by VA(P, o) = @, VA¥(P, a) the quotient differential
algebra A(P)/Ay, dV : VA(P, o) — VA(P, «) being its (quotient) differential.

Remark 3. For instance, if « = n, : P = J*® — M, then, using the Car-
tan connection ¢ € C(J*®, 7)), one can canonically identify VA'(J* ) with €A
and dv with the vertical de Rham differential. More generally, for any k > 0,
VAN (J¥, k) ®@coo(giny C(JFH ) identifies canonically with the C*°(J**'m)-module
CA N A(JM7) of (k+ 1)th order Cartan forms.
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For any k > 0, denote by 'Q*"1(P, ) the C*°(P)-module of affine maps C(P,a) —
VAK(P,a) ®4 A". The linear part of an element in ‘Q*"*(P, a) can be naturally un-
derstood as an element in 'Q"™(P,a) := VAY(P,a) ®4 VA*(P,a) ®4 A"~1. Denote
by Q1P a) the subspace VA* (P, a) @4 A"~} in 'Q"™(P,a) and by Q1(P,a)
the subspace in ‘Q*t'(P, ) made of elements whose linear parts lie in Q"' (P, ).
Finally, put Q°(P,a) := Q°(P,a) := A""1. Clearly, there are canonical projections
Q1(P, o) — Q" (P, a), k > 0.

Theorem 2. There are canonical isomorphisms of A-modules v, : AFT7™1 — QF(P, ),
and v, - ANFFL/NR=L L OF(PLa) such that diagrams

k+n—1 s k4+n—1 k4+n—1
An—l An— 1 /An

{0l

QF(P,a) —— Q¥ (P, )

commute, k > 0.

In particular, isomorphism ¢ is defined by putting u(w)(V) = p& " (w) €

VAk_l(P, a) ®a AZ:%, w E Aﬁi”f_l, Ve C(P,a),
pet A(P) — VAR Y(P o) @4 A1

being the canonical projection determined by the connection V, k > 0. Notice that we
can “transfer structures” from the A*T"~’s to the Q*(P, a)’s via the 1;’s. For instance,
it is well defined a complex

QO(P, ) —2 QY P, 0) —> - - —— QF(P,a) —25 Q¥ (P, a) —— - --
by putting dw = (111 0 do ;') (w) € QFYPa), w € Q¥(P,a). In the following we
will understand the isomorphisms ¢;’s and put ivw := w(V) for any w € Q¥1(P, a),
V € C(P,a), k > 0. Notice that the action of w on V as above is actually point-wise

and, therefore, can be restricted to maps. Namely, if F': P, — P is a smooth map,
O € F°(C(P,a)), then it is well defined an element inF°(w) € F°(VAF (P, a)®@4A""1).

Definition 2. A PD-hamiltonian system on the fiber bundle oo : P — M s a d-closed
element w € Q%(P, ). The first order PDEs

ileW|J =0

on (local) sections o of o are called the PD-Hamilton equations determined by w.
Geometrically, they correspond to the submanifold

EQ = {0 e Jaiw,=0,p=ad)} C Ja
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Let w € Q*(P,a) be a PD-hamiltonian system on the bundle o : P — M and

consider the subset P, := oq,o(éigo)) C P. In the following we will assume P; C P to be
a submanifold and a; := a|p, : P, — M to be a subbundle of a. o is called the first
constraint subbundle of w.

As an example, consider the following canonical constructions. Let w : E — M be
a fiber bundle and ..., u®, ... fiber coordinates on E. Q'(E,7) (resp. Q'(E, 7)) is the
C(E)-module of sections of a vector bundle ji7 : .41 — E (resp. 747 : Jix — E),
called the multimomentum bundle of m (resp. the reduced multimomentum bun-
dle of 7). Recall that there is a distinguished element ©, in Q'(.# 7, ur) (resp.
0, € Q'(Jir, rin)), where um := 7o pomw (resp. 7i7 := 7 o 7im), the tautologi-
cal one [27], which in standard coordinates ...,z ..., u%, ... p’,...,p on A7 (resp.

cort o u® L ph, . on JTa) is given by

O, = p.du®d"z; — pd"x (resp.O, = p.d"u* @ d" " 'z;).

where d" 'z := igg,id"x. 00, € Q*(Mm, ) is then a PD-hamiltonian system on pr
locally given by

50, = dpi.dg®d"'z; — dpd".

Notice that the corresponding PD-Hamilton equations éa 5o, are empty and, in this sense,
00, is a trivial PD-hamiltonian system. Nevertheless at least two (generlcally non-
trivial) PD-hamiltonian systems are canonically determined by a first order lagrangian
density in 7, £ € A"NA(J'7), one on 777 and one on 7 0 F.Z°(rin) : F£°(Jin) —
M, F.¥ : J'r — J'7 being the (reduced) Legendre transform (see, for instance, [12]
and [16]). In the next sections we show that a similar result occurs for a lagrangian
density of any order.

Example 1. A PD-hamiltonian system is canonically determined on a fiber bun-
dle « : P — M as above, by the following data: a connection V. € C(P,«a) in
Q@ and a dzﬁerentml form & € Al. Let . ..,q ,... be fiber coordinates in P and

g Py, (resp. .. Tt g ,...,pA,...) standard coordinates in
///a (resp JTa) Let £ be locally given by £ = Ld"x, £ a local function on P. De-
note by Ao : A(P, o) — P the kernel bundle of the projection .# o — Jia. Obviously,
V induces a splitting of the exact sequence of vector bundles

0 fAOé r//oz fJTa >O,
N —

Xv
which in local standard coordinates reads X% (p) = V;“ Put Oy = ¥5(0,) €
Q' (JTa, 77). In local standard coordinates, Oy = p' d Adn=ty; — iy, VAd . Put also,

Oy = Oy + (1im)" (L) € Ql(JTCM,TTOz).
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Locally, © o v = piydqtd"'z; — By vd'x, where B¢y = p4, VA — L. Finally, consider
wev =00gy € Q*(Ja, ). Locally,
we v = dpyydg*d"z; — dE g vd"x.

we.v is the PD-hamiltonian system on 77a determined by V and .. The associated
PD-Hamilton equations read locally

Plyi = OaL — py04 VP
qAai - V? ’

where with “e ;7 we denoted the partial deriwative of “e
independent variable x*, 1 =1,... n.

» »

with respect to the ith

We conclude this section by discussing two examples of morphisms of PDEs coming
from the theory of PD-hamiltonian systems.

Example 2. Let « : P — M be a fiber bundle as above, w € Q*(P,a) a PD-
hamiltonian system on it, o/ : P’ — M another fiber bundle, 3 : P’ — P a sur-
jective, submersive, fiber bundle morphism, and o' := *(w) € Q*(P', ). Then ' is
a PD-hamiltonian system on o'. Denote by & C J®«a (resp. &' C J>®d') the ooth
prolongation of the PD-Hamilton equations determined by w (resp. w'). We want to
compare & and &'. In order to do this, notice, preliminarily, that J*a' covers J®«a via
Joof3 : J¥a! — J®a. Moreover, it can be easily checked that a local section o’ of o is
a solution of & iff the section o d’ of a is a solution of &. We now prove the formal
verston of this fact.

Proposition 3. (jo3)(&") C & and jf3: & — & is a covering.

Proof. Consider 7,3 : J'a/ — J'a. It is easy to check that é"ugf)) = (jlﬁ)_l(é‘igo)) C
J'o/. Similarly, & = (joo8) (&) C J®d/. In particular, j03 : & — & is the
“restriction” of j, 0 : J®a — J>®a to & C J®«a and, therefore, is a covering. O

Example 3. Leta: P — M, w € Q*(P,a) and & C J®« be as in the above example,
and oy : P, — M the first constraint subbundle of w. Assume that P, C P is a
submanifold and oy is a subbundle, and put w; := ip (w) € (P, ay). Then w, and it
is a PD-hamiltonian system on aq. Denote by & C J®aq the ocoth prolongation of the
PD-Hamilton equations determined by wi. We want to compare & and &,. In order to
do this, notice, preliminarily, that J*a; may be understood as a submanifold in J>®«
Via Joolp, : J¥a1 — J®a. Moreover, it can be easily checked that any solution of &
is also a solution of & (while the vice-versa is generically untrue). We now prove the
formal version of this fact.

Proposition 4. & C &.

Proof. Recall that the projection ay g : J'a — P sends &9 to Py;. As a consequence,
& C J®aq. Moreover, by definition of coth prolongation of a PDE, it is easy to check
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that
E=ENJ%0
={0=[o]; € J®a:imo C P, and [i;,w|,|5 =0, x € M}
={0=[o] € J®ay: [ij0w]o]F =0, € M}
C{l=[o]y € J®n : [ijowils]y =0, x € M}
= 4.

5. LAGRANGIAN-HAMILTONIAN FORMALISM

We show in this section that the Skinner-Rusk mixed lagrangian-hamiltonian formal-
ism for first order mechanics [13, 14, 15] (see Section 1) is straightforwardly generalized
to higher order lagrangian field theories.

First of all, let us present our main example of a filtered manifold. Let 7 : & — M
be a fiber bundle as above. Consider the infinite jet bundle 7., : J* — M for
which A? = A%, ¢ > 0. Moreover, the C*°(J*)-module Q'(J> 7o) = €A @ A"~ is
canonically filtered by vector subspaces Wy := €A @ A»1 N A(J*1x), k > 0. Denote
by Q; C Q'(J*®, ) the C*(J>®)-submodule generated by Wj, k > 0. Then, for all &,
Q} is canonically isomorphic to C*(J>) Qoo (grt1y Wy and

QcOlc-cQco,, c-- CcQJ ), (14)

is a sequence of C°(.J*°)-submodules. Notice that, for any k, Q; is the module of
sections of a finite-dimensional vector bundle 7'(; p J,i — J*°. Moreover, the inclusions
(14) determine inclusions

JcHdcccr,c-

of vector bundles. J' := Uk JI is then an infinite dimensional (filtered) manifold and
the canonical prOJeCtIOH 7'0 JT — J* an infinite dimensional vector bundle over
J > whose module of sections identifies naturally with Q'(J>, 7). We conclude that

. JI — J> is naturally 1nterpreted as the reduced multimomentum bundle of
7Too Denote by ..., 2%, ... ug, ..., pk o . standard coordinates in Jf. Notice that any
(local) element 9 e %Al ® A1 = QY (J*® 7)), in particular a (local) Legendre form,
is naturally interpreted as a section ¥ : U’ — JT, U’ C J* an open subset. Put
then ..., 057 ;= 9*(pL?),... which are local functions on J* such that ¥ = 92¢(du¢ —
u%.dz’) @ d"1x;. Tt follows that, locally,

49 = —(Dy0ht + 65,079 (du§ — ufida’) @ d"x € EA' @ A7,

where 0, = 0 if I # K, while 6, = 1if I = K, I, K € M,. In the following we

will also consider the bundle structures 7‘,1 ‘= s O TOk JT — M, k > 0, and

i=ngorl i Jt— M.
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Now, in Example 1, put @ = 7 : P = J* — M and V = ¢, the Cartan connection
in m. £ € Ay = A" is then a lagrangian density in 7. Put X := ¥y, O¢ 1= © & and
Wy i=Wwgy. Wy is a PD-hamiltonian system in 7t JI — M canonically determined
by .Z. Locally,

Wy = dpé’idu?d"_lxi —dEgd"x,
where Ey = pliug, — L. Let ¢ : U — J' be a local section of 7, U ¢ M an
open subset, and j := oo : U — M. Put...,0¢ = o*(u}) = j*(u}),..., okt =
o*(pLh), ... which are local functions on M. Then, locally,
lswelo = (=05 =05,05" + aL 0 j)d" ugle + (07 —0%)d" pg'|o]d",

a It

and the PD-Hamilton equations determined by w¢ read locally
{ P’y = OgL = 65, 93"

(7 S o
Uy, = Up;

We call such equations the Fuler-Lagrange-Hamilton (ELH) equations determined by
the lagrangian density . Notice that they are first order PDEs (with an infinite
number of dependent variables). Denote by &zry C J*7! their infinite prolongation.
In the following theorem we characterize solutions of &z 5. As a byproduct, we derive
the relationship between the ELH equations and the EL equations.

Theorem 5. A local section o : U — J' of 71, U C M an open subset, is a solution
of the ELH equations determined by the lagrangian density & iff it is locally of the
form o =10 j®s where 1) s : U — FE is a solution of the EL equations &gy, and 2)
V: U — J' is a Legendre form for £, U C J* an open subset.

Proof. Let o : U — J' be a local section of 7/, U C M an open subset. First of all,
let o be in the form ¢ = 9 o j where 1) j : U — J* is a local section of 7., and 2)
Y : U — J' is a local section of Tg : Jt — J*° U’ C J*> an open subset. Then,

olli= Dl o .

o It

Therefore, locally,
iswelo = [[(=Dig" — 03,05" + 95L) o jld" ug|; + (37 —jf)d" pg'ls] ® d"x

)

= (dV+d"2)|; + (§7 —ip)d" pLi|, ® d'a,

where ..., j¢ := j*(u}),... and they are local functions on M. Thus, if ¥ is a Legendre
form and j = j.s for some local solution s : U — FE of the EL equations then, in
particular, j¢,=j¢, I €M, a=1,...,m,i=1,...,n, and

i&wz|a = (319 + dviﬂ)b’ + (j?,i —j}‘;)dvpi'ﬂg ®@d"w = E($)|j = 0.

On the other hand, let o : U — J be a local section of 7 and j := 7] 00 : U — J*.
Locally, there always exists a section ¥ : U’ — J of Tg, such that ¢ = ¢ o j. Notice,
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preliminarily, that 9 is not uniquely determined by o except for its restriction to im j.
If o is a solution of the ELH equations then, locally,

0 =iswels = (dV + dvgﬂj + (47 _jtlxi)dvpgqa ®d"z.
Since (dVpl?)|, @ d"z and (dV + d.£)|; are linearly independent, it follows that
{ (d¥ +dV.Z)|; =0
In particular, j = j.s, where s is the local section of m defined as s = 7o 9 0 J.
Now, let ¥y be a Legendre form for . Then d".¢ = E(Z) — dvYy and, therefore,
(d¥ — dvy + E(Z))|; = 0. Recall that d restricts to j = joos (Remark 2). Thus,
dl;(9 = Yo)l; = E(ZL)|;.

In particular, E(.%)|; is d|;-exact. In view of Remark 2, this is only possible if E(.Z)|; =
0, i.e., s is a solution of the EL equations. We conclude that

d|;(9 = o)|; = 0,
i.e., (U — )|, is d|;-closed. Again in view of Remark 2, this shows that, locally,
(9 = o)|; = dljv|; = dvl;
for some v € €A' ® A"2. In particular, we can put ¥ = 9y + dv and, therefore, ¥ is a

Legendre form for .Z. O

We now prove a formal version of the above theorem. Put p := !

2.0 OTJ s Jort —
J*.

Theorem 6. p(&zry) C Epr and p : gLy — Ery 18 a covering of PDEs.

Proof. In J*7T consider the submanifold &, made of coth jets of (local) sections o :
U — JI, U C M an open subset, in the form ¢ = ¥ 0 jos, where s : U — E is a
local section of 7, and ¥ : U’ — JT is a local Legendre form, U’ C J> an open subset.
It can be easily checked that &7, is locally defined by

P + 05 pl ik = D (OLL) — 5{)DK£L—LQ
UT |k = Ul

(15)

Clearly, the Cartan distribution restricts to &7, and, therefore, &7, can be interpreted as
a PDE. Moreover, it is easily seen from (15) that &7, covers J* via p. Denote by

I _ 9. a 0 Ii 9
Dj = 8] + Ur|J; g, + Py 1Jj L7,

the jth total derivative on J®°71, j =1,...,n. &y is locally defined by

(3 _ (7 )
Ur|ki = Up|K
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which is clearly equivalent to
Py ki = Dr(0aL) — 05; |
uf|K = Uik

Moreover, on &rry

()Mh eri = Dicle = ()85 9 s = Dic e + (=)0 s

and, therefore, DKg—ﬁ =0, K € M,,, a =1,...,m. It then follows from (15), that
Epry = & N p Y (&Epr). In particular, p : &gy — &pp is the “restriction” of p :
&, — J* to &g, C J™ and, therefore, is a covering. O

6. NATURAL TRANSFORMATIONS OF EULER-LAGRANGE-HAMILTON EQUATIONS

Properties of Legendre forms discussed in Remark 1 correspond to specific properties
of the ELH equations which we discuss in this section.

First of all, notice that the ELH equations are canonically associated to a lagrangian
density. But, how do the ELH equations change when changing the lagrangian density
into a d-cohomology class? In particular, does an action functional uniquely determine
a system of ELH equations or not? In order to answer these questions consider v €
€ A" @ A", ¥ determines an automorphism Wy : JF — Jt of the fiber bundle 7] via

Uy(P):=P -1y, PelJ, 6 o=71(P)ecJ>
In particular, ’7‘(;[ oWy = TOT. Clearly, \Ilgl =U_y.
Lemma 7. U5(wy) = wy — 10*(dV).
Proof. Compute,
Uh(we) = Vy(60.¢)
= d¥5(0¢)
= d[(¥} 0 £)(8) + (¥} 0 79")(L)]
= d[(¥} 0 £)(8) + (1§ 0 ¥y)*(L)]
= d[(¥} 0 X%)(©) + 7" (L)].
Now, since, locally, ..., U5(pL?) = pLt — 9L ... we have
(T35 0 2)(py") = p' — 05",
(T30 =) (p) = (p" — V5" )ufi.
Thus,
(W5 0 3)(0) = (pht — L) dugd™a; — (pl — 9L Y
= ¥4(0) — 7 ().
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We conclude that
y(we) = d[(¥50E7)(0) + 797 (L]
= d[Z7(©) — 7" (V) + 70" (L)]
= wy — 70*(dV).
O

Theorem 8. Let ¥ = % + do, o0 € A"!, be another lagrangian density (thus, £’
determines the same EL equations as ). Then ¥y (wy) = wgr.

Proof. Notice, preliminarily, that
73" (dd"0) = 73" (dd"0)
= —74"(d"do)
= —7)"(ddo)
= —d7)*(do).
Therefore, in view of the above lemma,
Vv, (we) =we — Tg*(ddvg)
= d[X"(0) + 75"(L)] + dry*(do)
= d[Z*(O) + 7% (L + do)]
= 00.g
= Wyr.
O

Corollary 9. An action [£] € H", ¥ € A", uniquely determines a system of ELH
equations, modulo isomorphisms of PD-hamiltonian systems.

Therefore the ELH equations are basically determined by the sole action functional
and not a specific lagrangian density.

Theorem 10. Let 9 € EAN' @ A"t be d-closed, hence d-exact. Then, for every la-
grangian density £ € A", Uy is a symmetry of the ELH equations determined by £ in
the sense that joo Wy : J®TT — J®°7T preserves &xrm.

Proof. By definition of infinite prolongations of a PDE and infinite prolongation of
a morphism of bundles, it is enough to prove that j; ¥y : J'7T — J'7T preserves
@@E("L) = &52 C J'rt. Notice, preliminarily, that, in view of the proof of Theorem 5,
we have

(A (EW,) CimE C T,
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Now, let ¢ € éiéOL)H, P = 7'1T70(C) and ¢ € TpJ' be a tangent vector, vertical with respect
to 71. Consider also ¢ := (j1¥_y)(c), P’ :== ¥_y(P) = 7{0(0’) and &' = dVU_y4(¢§). In
particular, & € TpJ1 is vertical with respect to 71 as well. Let us prove that ¢’ € é"gBH
In view of Lemma 7,

Uh(wy) = wy — 105(dY) = wy — 10*(d"V),
so that we = Uh(wy) + 170*(d"9). Compute
ié‘/icl (wg)p, = iﬁ’ic’ [\I/;;(wcg)p/ —+ Tg*(dv’l?)})/] = Zg@c(wg)P —+ /if”i((aﬁe (dvﬁ)e = O’

where § = 70 (P) € J® and " = dr}(£) € TyJ™ is a tangent vector, vertical with
respect to m. It follows from the arbitrariness of £, that i (wy)p = 0. O

7. HAMILTONIAN FORMALISM

In this section we present our proposal of an hamiltonian formalism for higher order
lagrangian field theories. Such proposal is free from ambiguities in that it only depends
on the choice of a lagrangian density and its order. Moreover, cohomologous lagrangian
of the same order determine equivalent “hamiltonian theories”.

First of all, we define a “finite dimensional version” of the ELH equations. In or-
der to do this, notice that, in view of Remark 3, W) is canonically isomorphic to
the C°°(J*1r)-module of section of the induced bundle €T, = 7r,‘3+17k(7'g7rk) :
LI =k (JIm) — J*r from the vector bundle 7w, : Jim, — J*7 via
Tht1k JHr — JFx, k > 0. We conclude that T&k : J,I — J* is canonically
isomorphic to the pull-back bundle wgovk(TOTm) : oy (Jimy) — J>, k > 0. Denote by
ix + J{ — J' the inclusion and by ¢p, : J} — €T and qoy, : €1 — Jimy, the
canonical projections, k > 0. Notice that the p.¥’s, |I| < k, identify with the pull-back
via ¢y, (resp. qox) of the corresponding natural coordinates on E1IL (resp. Jimy)
which we still denote by ..., pL% ... k> 0.

Now, let .2 € A" be a lagrangian density of the order [ + 1, i.e., £ € A" N A(J™FY).
Put W == if(wy) € Q2(J,7)). ] is a PD-hamiltonian system on 7,, and it is locally
given by

Wy = Z dp-idutd™ ' a; — dEd" x,
X
where E; = ij(Ey) = nglpgiu?i — L. Notice that w; = ¢j,*(w;) for a (unique)
PD-hamiltonian system w; € Q*(¢7.J'* ¢41) on the bundle ¢, = my1 0 €Tmy, -
¢1J* — M, locally given by the same formula as w]. w; is a constrained PD-
hamiltonian system, i.e., its first constraint bundle ¢ : & — M is a proper subbundle
of ¢ir1. Let us compute it. Let P € €7J! and 0 := ¢Tm(P) € J''. Then
P € 2 iff there exists ¢ € J'q41 such that i.(w;)p = 0, i.e., iff there exist real numbers
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ey gy cht oo [T) < 1, such that
Co'i= (0o L)(0) = 03, P, || <1+1
c5,i= P, |lJ| <1+1
where we put ¢/, =0 for |[I| =1+ 1, and ..., P% = p%(P),..., |J| <1+ 1, a =

1,...,m. Thus, for |I| =1+ 1, P should be a solution of the system

oL —&hpli=0, |I|=1+1. (17)
Equations (17) define & locally.
Assumption 1. We will always assume & to be a submanifold in €7J"! and q =
Q+1lz + P — M a smooth subbundle of q;. Similarly, we assume Py = qo,(Z) to

be a submanifold in Jim and TTm\% : Py — M to be a smooth subbundle of Tim;.
Finally, we assume qo|2 : & — Py to be a smooth bundle with connected fibers.

Notice that, as usual, all the above regularity conditions are true if we restrict all the
involved maps to suitable open subsets.
The following commutative diagram summarizes the above described picture:

i
<« > T
Jt J]
1
To,1
7
~- N Z’g
J® chJl—i-l « - > P
(AR AR
Too,l+1 qo0,1
~N- ~ 2'92,0
Jl+1 Tﬂ'l (—) (@0
T
41,1 o™
TTm
~N-
Jl
U
~N-
M

Theorem 11. Under the regularity Assumption 1, there exists a unique PD-hamiltonian
system wo in TIm| 2, © Po — M, such that i (wi) = ol (wo).

Proof. Since qoil» : & — P, has connected fibers, it is enough to prove that
iviip(w) = Lyii(w) = 0 for all vector fields Y € D(Z?) vertical with respect to
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qo,- Let Y € D(€TJY) be a vector field on €'TJ*!, vertical with respect to go;, and
Y := Y| its restriction to &2. Then Y is locally of the form

V=Y Y|,

|K|=1+1

for some . .., Ylg, ... local functions on &. Now Y € D(2) iff, locally,

> Y{0K0lL» = 0.
|I|=1+1
Compute
Y(Elo)= Y YiO§Bls= Y YF(Eh,pl'—0tL)|s =0.
|K|=1+1 [T|=1+1
Therefore
iy’i}»(u}l) - —?(El|ga)dn$ =0.
Similarly,

Lyi’;—g(wl) = —d?(ElL@)dn[L’ =0.
It follows from the arbitrariness of Y that i%,(w;) = qo,|%(wo), where, locally
=Y il (dplLidug)d" x; — dHd"x,
i<t
and H is the local function on %, uniquely defined by putting qo,|%(H) = Eil». O

Definition 3. wy is called the PD-hamiltonian system determined by the (I+1)th order
lagrangian density .Z and the corresponding PD-Hamilton equations are the Hamilton-
de Donder-Weyl (HDW) equations determined by .Z.

Definition 4. A lagrangian density of order |+ 1 £ is regular at the order [+ 1 if &
is an open submanifold of Jim.

Clearly, under the regularity assumptions 1, the lagrangian density of order [+ 1, .Z,
is reqular at the order | + 1 iff the matrix

|5 LL)0)]] (5. 111K =1+1,

where the pairs (a, I') and (3, K') are understood as single indexes, is of maximal rank at
every point # € J*°. In this case, wy is a PD-hamiltonian system on an open subbundle
of 7T, and it is locally given by

= dplidujd" 'z, — dHd"x,

<t
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where, now, H is a local function on Ji7m;. Then, as expected, the HDW equations read

locally
1.1 OH
Po i = T oue
o oH "
u[ T 8pé'i

Notice that the HDW equations are canonically associated to a lagrangian density and
its order and no additional structure is required to define them. Moreover, in view of
Theorem 8, two lagrangian densities of the same order determining the same system of
EL equations, determine equivalent HDW equations. Finally, to write down the HDW
equations there is no need of any distinguished Legendre transform. Actually, the
emergence of ambiguities in all proposed Hamiltonian formalism for higher order field
theories in literature seems to rely on the common attempt to first define a higher order
analogue of the Legendre transform and, only thereafter, to define the “hamiltonian
theory”. In the next section we present our own point of view about the Legendre
transform in higher order lagrangian field theories.

8. THE LEGENDRE TRANSFORM

Keeping the same notations as in the previous section, denote by ‘$xry C J¥q41 the
infinite prolongation of the PD-Hamilton equations of w; and by p’ : €Tm 1 — E the
natural projection.

Proposition 12. (joop')(€prr) C et and joop' : Eprn — Epr is a covering.
Proof. The proof is the finite dimensional version of the proof of Theorem 6 and will
be omitted. H

Denote also by &7 C J®q C J¥¢ the infinite prolongation of the PD-Hamilton equa-
tions of i, (w;) and & C J*°71m |4, the infinite prolongation of the HDW equations.
Proposition 13. (joqo)(&7) C Ex and juoqo, : &7 — Er is a covering.

Proof. It immediately follows from Theorem 11 and Proposition 3. 0

Notice that, in view of Propositions 4, 12 and 13, there is a diagram of morphisms of
PDEs,

oy —— &7

joopll l jOOQO,l 5 (18)

éaEL éaH

whose vertical arrows are coverings. Therefore the inclusion $rry C éja? may be
understood as a non local morphism of &g into &;. We interpret such morphism as
Legendre transform according to the following

Definition 5. We call diagram (18) the Legendre transform determined by the la-
grangian density .Z.
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Any Legendre form of order [, ¥ : J* — JlT — ¢Tm41, determines a section
Joo¥lep, @ Epr, — Eppy of the covering joop' : Cpry — &pr and, therefore, via
composition with j.qo, a concrete map &g, — &x. Nevertheless, among these maps,
there is no distinguished one.

We now prove that, if % is regular at the order [ + 1, then & itself covers &zr. This
result should be interpreted as the higher order analogue of the theorem stating the
equivalence of EL equations and HDW equations for first order theories with regular
lagrangian (see, for instance, [11]). Let us first prove the following

Lemma 14. If % is reqular at the order | + 1, then gy = &7 .

Proof. The proof is in local coordinates. Let o : U — %Tm; be a local section of
qi+1, U C M an open subset. Suppose imo C &. Then, locally,

OiLoo — 0000 =0, |I[=1+1.
Now, isw|, is locally given by
id'wl|0'

= [Z|I|§l+1( o’ 5]] o +81LOU)dU1+Z|I|<z(0m —af;)dp}; }|odn$-

As already outlined, the annihilator of D(Z) in AY(€ 1)
1-forms

locally spanned by

= d(OLL — &) p9)] o = (Zuq KL . — 5§jdpgj) s I =1+1.
Therefore, i4i%,(w;)|, = 0 iff, locally,
iswilo = Y [Nl (19)
|1]=141
for some local functions ..., f*, ... on imo. Equations (19) read

Z|I|§l+1( ol i+0iL oo — 5JJU Zm =l+1 fKaKﬁjL o o)dufl,
+Zm<z(0u of;)dplls + Z|I|:l(al i =0+ l+1 fh)dp 1o=0"

Since the forms ..., du%|,,...,dp.|,,... are linearly independent, isi*,(w;)|, = 0 iff,
locally,
ol +0l L oo — 0,007 =3 ey [ROKOLLoo =0, |I|<1+1
O-I,i UIZ - O |I| <l 9 (20)
0-?77: _UIZ l+1 fIz - 7 |[‘ =

for some ..., ff,.... It follows from the third of Equations (20) that
fii =~ (ofi—of), =1 (21)
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Moreover, since imo C &, the first equation, for |I| = [+ 1, gives

0= Z fﬁ@?@ilz oo = J[ﬂﬂffjaﬁ‘]j@iL 00 = — Z(Ug,j —agj)ﬁﬁ‘]jﬁéL oo,

1+1
|K|=1+1 |J|=1 |J|=l

and, in view of the regularity of . and Equations (21),
ofi—on = fr; =0, \f|=l-
Substituting again into (20), we finally find that the PD-Hamilton equations
is1%(wi)|, = 0 are locally equivalent to equations
Peti= 0L — 5py?, || <1+1
U7 = U, 1] <1 ’

which are the PD-Hamilton equations of wj. U

Now, notice that, in view of the above lemma, if % is regular at the order [ + 1, the
Legendre transform (18) reduces to a Bicklund transformation

l - &
@@ELH éaH
joole/ J/ .]OO q0,1
éaEL éaH

Finally, J'm maps to E via m o TOT m and such map is a morphisms of bundles (over

M). Therefore, it induces a morphism J ongm — J*° and, by restriction, a morphism
of PDEs k : &g — J*°, locally defined as x*(uf%) = udk, |K| > 0. It is easy to show
that diagram

l P
éaE LH gH

joop/J/ J/ joolIo,L )

K
Epr, © > J < En

commutes, so that k(&y) C &g and Kk : &y — &gy is a covering. We have thus proved
the following

Theorem 15. If £ is reqular at the order | + 1, then &y covers &gy,.

CONCLUSIONS

In this paper, using the geometric theory of PDEs, we solved the long standing prob-
lem of finding a reasonably natural, higher order, field theoretic analogue of hamiltonian
mechanics of lagrangian systems. By naturality we mean dependence on no other struc-
ture than the action functional. we achieved our goal in two steps. First we found a
higher order, field theoretic analogue of the Skinner-Rusk mixed lagrangian-hamiltonian
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formalism [13, 14, 15] and, second, we shew that such theory projects naturally to a PD-
hamiltonian system on a smaller space. The obtained hamiltonian field equations enjoy
the following nice properties: 1) they are first order, 2) there is a canonical, non-local
embedding of the Euler-Lagrange equations into them, and 3) for regular lagrangian
theories, they cover the Euler-Lagrange equations. Moreover, for regular lagrangian
theories, the coordinate expressions of the obtained field equations are nothing but
the de Donder higher order field equations. This proves that our theory is truly the
coordinate-free formulation of de Donder one [2].
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