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DIFFERENTIAL INVARIANTS OF GENERIC PARABOLICMONGE-AMPERE EQUATIONSD. CATALANO FERRAIOLI AND A. M. VINOGRADOVAbstra
t. Some new results on geometry of 
lassi
al paraboli
 Monge-Ampere equa-tions (PMA) are presented. PMAs are either integrable, or nonintegrable a

ording tointegrability of its 
hara
teristi
 distribution. All integrable PMAs are lo
ally equiva-lent to the equation uxx = 0. We study nonintegrable PMAs by asso
iating with ea
hof them a 1-dimensional distribution on the 
orresponding �rst order jet manifold,
alled the dire
ting distribution. A

ording to some property of these distributions,nonintegrable PMAs are subdivided into three 
lasses, one generi
 and two spe
ialones. Generi
 PMAs are uniquely 
hara
terized by their dire
ting distributions. Tostudy dire
ting distributions we introdu
e their 
anoni
al models, proje
tive 
urvebundles (PCB). A PCB is a 1-dimensional subbundle of the proje
tivized 
otangentbundle to a 4-dimensional manifold. Di�erential invariants of proje
tive 
urves 
om-posing su
h a bundle are used to 
onstru
t a series of 
onta
t di�erential invariantsfor 
orresponding PMAs. These give a solution of the equivalen
e problem for PMAswith respe
t to 
onta
t transformations.1. Introdu
tionSin
e Monge's "Appli
ation de l'Analyse à la Géométrie" Monge-Ampere equationsperiodi
ally attra
t attention of geometers. This is not only due to the numerousappli
ations to geometry, me
hani
s and physi
s. Geometry of these equations beingtightly related with various parts of the modern di�erential geometry has all merits tobe studied as itself. Last 2-3 de
ades manifested a return of interest to geometry ofMonge-Ampere equations, mostly to ellipti
 and hyperboli
 ones. The reader will �ndan a

ount of re
ent results together with an extensive bibliography in [5℄.In this arti
le we study geometry of 
lassi
al paraboli
 Monge-Ampere equations(PMAs) on the basis of a new approa
h sket
hed in [8℄. A

ording to it, a PMA
E ⊂ J2(π), π being a 1-dimensional �ber bundle over a bidimensional manifold, is
ompletely 
hara
terized by its 
hara
teristi
 distribution DE whi
h is a 2-dimensionalLagrangian distribution on J1(π), and vi
e versa. Su
h distributions and, a

ordingly,the 
orresponding to them PMAs, are naturally subdivided into four 
lasses, integrable,generi
 and two types of spe
ial ones (see [8℄ and se
.4). All integrable Lagrangianfoliations are lo
ally 
onta
t equivalent. A 
onsequen
e of it is that a PMA E is lo
ally2000 Mathemati
s Subje
t Classi�
ation. 34A26, 35K55, 53A55, 53D10, 53A20.Key words and phrases. Geometri
 Methods in Di�erential Equations, Di�erential Invariants, Par-aboli
 Equations, Monge-Ampere Equations, Proje
tive Di�erential Geometry, Conta
t Geometry.1
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onta
t equivalent to the equation uxx = 0 i� the distribution DE is integrable. Thisexhausts the integrable 
ase. On the 
ontrary, nonintegrable Lagrangian distributionsare very diversi�ed and our main goal here is to des
ribe their multipli
ity, i.e., morepre
isely, equivalen
e 
lasses of PMAs with respe
t to 
onta
t transformations.With this purpose we asso
iate with a Lagrangian distribution a proje
tive 
urve bun-dle (shortly, PCB) over a 4-dimensional manifold N . A PCB over N is a 1-dimensionalsmooth subbundle of the "proje
tivized" 
otangent bundle PT ∗(N) of N . Under someregularity 
onditions su
h a bundle possesses a 
anoni
al 
onta
t stru
ture and, as a
onsequen
e, a 
anoni
ally ins
ribed in it Lagrangian distribution. There exists a one-to-one 
orresponden
e between generi
 Lagrangian distributions and regular PCBs.This way the equivalen
e problem for generi
 PMAs is reformulated as the equivalen
eproblem for PCBs (see [8℄) and this is the key point of our approa
h. The �ber of su
ha bundle over a point x ∈ N is a 
urve γx in the proje
tive spa
e PT ∗
x (N). The 
urve

γx 
an be 
hara
terized by its s
alar di�erential invariants with respe
t to the groupof proje
tive transformations. By putting su
h invariants for single 
urves γx togetherfor all x ∈ N one obtains s
alar di�erential invariants for the 
onsidered PCB and,
onsequently, for the 
orresponding PMA.This kind of invariants resolve the equivalen
e problem for generi
 PMAs on the basisof the "prin
iple of n−invariants" (see [1, 10℄). We have 
hosen them among others fortheir transparent geometri
al meaning. It should be stressed, however, that there areother 
hoi
es, maybe, less intuitive but more e�
ient in pra
ti
e. We shall dis
uss thispoint separately.Spe
ial Lagrangian distributions admit a similar interpretation in terms of 2-dimensional distributions on 4-dimensional manifolds supplied with additional stru
-tures, 
alled fringes (see [8℄). Di�erential invariants of fringes, also 
oming from pro-je
tive di�erential geometry, allow to 
onstru
t basi
 s
alar di�erential invariants forspe
ial PMAs. They will be dis
ussed in a separate paper. It is worth mentioning thatall linear PMAs are spe
ial.Our approa
h is based on the theory of solution singularities for nonlinear PDEs (see[9℄). Indeed, a Lagrangian distribution or, equivalently, the asso
iated PCB, representsequations that des
ribe fold type singularities of multivalued solutions of the 
orre-sponding PMA. An advantage of this point of view is that it allows a similar analysis ofhigher order PDEs and, in parti
ular, to understand what are higher order analogues ofMonge-Ampere equations. These topi
s will be dis
ussed in a forth
oming joint paperby M. Ba
htold and the se
ond author.The paper is organized as follows. The notations and generalities 
on
erning jetspa
es and Monge-Ampere equations, we need throughout the paper, are 
olle
ted inse
tions 2 and 3, respe
tively. In parti
ular, the interpretation of PMAs as Lagrangiandistributions is presented here. Se
tion 4 
ontains some basi
 fa
ts on geometry of La-grangian distributions. The 
entral of them is the notion of the dire
ting distributionof a Lagrangian distribution. The above mentioned subdivision of nonitegrable PMAs



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 3into generi
 and spe
ial types re�e
ts some 
onta
t properties of this distribution. Pro-je
tive 
urve bundles that are 
anoni
al models of dire
ting distributions are introdu
edand studied subsequently in se
tion 6. For 
ompleteness in se
tion 5 we give a shortproof of the known fa
t that integrable PMAs are lo
ally equivalent one to another.Finally, basi
 s
alar di�erential invariants of generi
 PCBs and hen
e of generi
 PMAsare 
onstru
ted and dis
ussed in se
tion 7.Throughout the paper we use the following notations and 
onventions:
• all obje
ts in this paper, e.g., manifolds, mappings, fun
tions, ve
tor �elds, et
,are supposed to be smooth;
• C∞(M) stands for the algebra of smooth fun
tions on the manifold M and

C∞(M)-modules of all ve
tor �elds and di�erential k-forms are denoted by
D(M) and ˜k(M), respe
tively;

• the evaluation of X ∈ D(M) (resp., of α ∈ ˜k(M)) at p ∈ M is denoted by X|p( resp., α|p);
• dpf : TpM −→ Tf(p)N stands for the di�erential of the map f :M → N ,M and

N being two manifolds;
• For X, Y ∈ D(M) and α ∈ ˜k(M) we shall use the shorten notation Xr(Y ) for

Lr
X(Y ) and Xr(α) for Lr

X(α) (with X0(Y ) = Y and X0(α) = α) for the r-thpower of the Lie derivative LX .
• depending on the 
ontext by a distribution on a manifold M we understandeither a subbundle D of the tangent bundle TM , whose �ber over p ∈ M isdenoted by D(p), or the C∞(M)-module of its se
tions. In parti
ular, X ∈ Dmeans that Xp ∈ D(p), ∀p ∈ M ;
• we write D = 〈X1, ..., X2〉 if the distribution D is generated by ve
tor �elds

X1, ..., Xr ∈ D(M); similarly, D = Ann(α1, ..., αs) means that D is 
onstitutedby ve
tor �elds annihilated by forms α1, ..., αs ∈ ˜
1(M);

• if M is equipped with a 
onta
t distribution C and S ⊂ C is a subdistributionof C, then S⊥ denotes the C-orthogonal 
omplement to S.2. PreliminariesIn this se
tion the notations and basi
 fa
ts we need throughout the paper are 
ol-le
ted. The reader is referred to [1, 3, 4℄ for further details.2.1. Jet bundles. Let E be an (n + m)-dimensional manifold. The manifold of k-th order jets, k ≥ 0, of n-dimensional submanifolds of E is denoted by Jk(E, n) and
πk,l : J

k(E, n) −→ J l(E, n), k ≥ l, stands for the 
anoni
al proje
tion. If E is �beredby a map π : E → M over an n-dimensional manifold M , then Jkπ denotes the k-thorder jet manifold of lo
al se
tions of π. Jkπ is an open domain in Jk(E, n). The k−thorder jet of an n−dimensional submanifold L ⊂ E at a point z ∈ L is denoted by [L]kz .Similarly, if σ is a (lo
al) se
tion of π and x ∈ M , then [σ]kx = [σ(U)]kσ(x), U being thedomain of σ, stands for the k−th order jet of σ at x. The 
orresponden
e z 7→ [L]kz
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jkL : L −→ Jk(E, n).Similarly, the k−th lift of a lo
al se
tion σ of π

jkσ : U → Jkπsends x ∈ U to [σ]kx, i.e., jkσ = jk(σ(U)) ◦ σ. Put
L(k) = Im(jkL), Mk

σ = Im(jkσ).Let θk+1 = [L]
k+1
z be a point of Jk+1(E, n). Then the R-plane asso
iated with θk+1 isthe subspa
e

Rθk+1
= Tθk

(L(k))of Tθk
(Jk(E, n)) with θk = [L]

k
z . The 
orresponden
e θk+1 7→ Rθk+1

is biunique. Put
Vθk+1

= Tθk
(Jk(E, n))/Rθk+1

.and denote by
prθk+1

: Tθk
(Jk(E, n)) −→ Vθk+1the 
anoni
al proje
tion. The ve
tor bundle

νk+1 : V(k+1) −→ Jk+1(E, n), k ≥ 0,whose �ber over θk+1, is Vθk+1
is naturally de�ned. By νk,r denote the pullba
k of νkvia πr,k, r ≥ k.Let C(θk) ⊂ Tθk

(Jkπ) be the span of all R−planes at θk. Then θk 7→ C(θk) is theCartan distribution on Jk(E, n) denoted by Ck. This distribution 
an be alternativelyde�ned as the kernel of the νk-valued Cartan form Uk on Jk(E, n):
Uk(ξ) = prθk

(dθk
πk,k−1(ξ)) ∈ Vθk

, ξ ∈ Tθk
(Jk(E, n)).A di�eomorphism ϕ : Jk(E, n)→ Jk(E, n) is 
alled 
onta
t if it preserves the Cartandistribution. Similarly, a ve
tor �eld Y on Jk(E, n) is 
alled 
onta
t if [Y, Ck] ⊂ Ck. A
onta
t di�eomorphism ϕ (respe
tively, a 
onta
t �eld Y ) 
anoni
ally lifts to a 
onta
tdi�eomorphism ϕ(l) (respe
tively, a 
onta
t �eld Y (l)) on Jk+l(E, n)).Below the above 
onstru
tions will be mainly used for n = 2, m = 1, k = 1, 2. In this
ase C1 is the 
anoni
al 
onta
t stru
ture on J1(E, 2), dimE = 3, and the bundle ν1 is

1-dimensional. ν1 is 
anoni
ally isomorphi
 to the bundle whose �ber over θ ∈ J1(E, 2)is
Tθ(J

1(E, 2))/C(θ).A ve
tor �eld X on E de�nes a se
tion sX ∈ •(ν1), sX(θ) = prθ(X). Sin
e ν1 is
1-dimensional, the ν1-valued form U1 
an be presented as(1) U1 = UX · sX , UX ∈ ˜1(J1(E, 2)),in the domain where sX 6= 0.



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 5Let M be a manifold supplied with a 
onta
t distribution C. An almost everywherenonvanishing di�erential form U ∈ ˜1(M) is 
alled 
onta
t if it vanishes on C. A ve
tor�eld Y ∈ D(M) is 
onta
t i�(2) LX(U) = λU, λ ∈ C∞(M),for a 
onta
t form U . For instan
e, UX (see (1)) is a 
onta
t form.If a ve
tor �eld X ∈ D(J1(E, 2) is 
onta
t, then f = X U1 ∈ •(ν1) is 
alled thegenerating fun
tion of X. X is 
ompletely determined by f and is denoted by Xf inorder to underline this fa
t. If U is a 
onta
t form on a 
onta
t manifold (M, C) and
X ∈ D(M) is 
onta
t, then f = X U ∈ C∞(M) is the generating fun
tion of Xwith respe
t to U .Ve
tor �elds X, Y ∈ D(M) belonging to C are 
alled C-orthogonal if [X, Y ] alsobelongs to C. Obviously, this is equivalent to dU(X, Y ) = 0 for a 
onta
t form U .Observe that C-orthogonality is a C∞(M)-linear property. A subdistribution D of C is
alled Lagrangian if any two �elds X, Y ∈ D are C-orthogonal and D is not 
ontained inanother distribution of bigger dimension possessing this property. If dim M = 2n+ 1,then dim D = n.A lo
al 
hart (x, y, u) in E, where (x, y) are interpreted as independent variables and
u as the dependent one, extends 
anoni
ally to a lo
al 
hart(3) (x, y, u, ux = p, uy = q, uxx = r, uxy = s, uyy = t)on J2(E, 2). Fun
tions (x, y, u, p, q) form a (standard) 
hart in J1(E, 2). The lo
al
onta
t form U = U∂u

(see (1)) in this 
hart reads
U = du − pdx − qdy.A

ordingly, in this 
hart the 
onta
t ve
tor �eld 
orresponding to the generating withrespe
t to U fun
tion f reads(4) Xf = −fp∂x − fq∂y + (f − pfp − qfq)∂u + (fx + pfx)∂p + (fy + qfx)∂q.In the sequel we shall use C and U for the 
onta
t distribution and a 
onta
t form inthe 
urrent 
ontext, respe
tively.3. Paraboli
 MA equations3.1. MA equations. Let E be a 3-dimensional manifold. A k-th order di�erentialequation imposed on bidimensional submanifolds of E is a hypersurfa
e E ⊂ Jk(E, 2).In a standard jet 
hart it is seen as a k-th order equation for one unknown fun
tion intwo variables. In the sequel we shall deal only with se
ond order equations of this kind.In a jet 
hart (3) on J2(E, 2) su
h an equation reads(5) F (x, y, u, p, q, r, s, t) = 0.The standard subdivision of equations (5) into hyperboli
, paraboli
 and ellipti
 onesis intrinsi
ally 
hara
terized by the nature of singularities of their multi-valued solutions



6 D. CATALANO FERRAIOLI AND A. M. VINOGRADOV(see [9℄). Some elementary fa
ts from solution singularity theory we need in this paperare brought below.Let θ2 ∈ J2(E, 2), θ1 = π2,1(θ2) and Fθ1 = π−1
2,1(θ1). Re
all that an R-plane at θ1 is aLagrangian plane in C(θ1), i.e., a bidimensional subspa
e R ⊂ C(θ1) su
h that dω|R = 0for a 
onta
t 1-form ω on J1(E, 2). If P ⊂ C(θ1) is a 1-dimensional subspa
e, then(6) l(P ) = {θ ∈ Fθ1 |Rθ ⊃ P} ⊂ Fθ1is the 1-ray 
orresponding to P .A lo
al 
hart on Fθ1 is formed by restri
tions of r, s, t to Fθ1. By abusing the notationwe shall use r, s, t for these restri
tions as well. Denote by (“r, “s, “t) 
oordinates in Tθ2(Fθ1)with respe
ts to the basis ∂r|θ2, ∂s|θ2, ∂t|θ2 . Cones

Vθ2 =
{

“r“t − “s2 = 0
}

⊂ Tθ2(Fθ1), θ2 ∈ Fθ1 ,de�ne a distribution of 
ones V : θ2 7→ Vθ2 on Fθ1 
alled the ray distribution. Thisdistribution is invariant with respe
t to 
onta
t transformations.Lemma 1. If P is spanned by the ve
tor
w = ζ1∂x + ζ2∂y + µ∂u + η1∂p + η2∂q ∈ Tθ1(J

1(E, 2))then the 1-ray l(P ) is des
ribed by equations(7) {

ζ1r + ζ2s = η1,
ζ1s+ ζ2t = η2.In parti
ular, l(P ) is tangent to V.Proof. Put p0 = p(θ1), q0 = q(θ1). Sin
e P ⊂ C(θ1) we have(8) w U = 0⇔ µ = ζ1p0 + ζ2q0,and hen
e

w = ζ1(∂x + p0∂u) + ζ2(∂y + q0∂u) + η1∂p + η2∂q.Moreover, Rθ2 ⊃ P i�
w (dp − rdx − sdy)θ2 = w (dq − sdx − tdy)θ2 = 0and these relations are identi
al to (7).Obviously, the 
omponents of the tangent to l(P ) ve
tor at θ1 are(9) (“r, “s, “t) =

(

ζ22 ,−ζ1ζ2, ζ
2
1

)and manifestly satisfy the equation “r“t − “s2 = 0. �Put
Eθ1 = E ∩ Fθ1An equation E is of prin
ipal type if it interse
ts transversally �bers of the proje
tion

π2,1. In su
h a 
ase Eθ1 is a bidimensional submanifold of Fθ1 , ∀ θ1 ∈ J1(E, 2). Furtheron we assume E to be of prin
ipal type.



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 7The symbol of E at θ2 ∈ E is the bidimensional subspa
e
Smblθ2(E) := Tθ2Eθ1of Tθ2 (Fθ1).A point θ2 ∈ E is ellipti
 (resp., paraboli
, or hyperboli
) if Vθ2 interse
ts Smblθ2(E)in its vertex only (resp., along a line, or along two lines). So, if θ2 is paraboli
, then

Smblθ2(E) is a tangent to the 
one Vθ2 plane. In other words, in this 
ase Eθ1 is tangentto the ray distribution on Fθ1 .De�nition 1. An equation E is 
alled ellipti
 (resp., paraboli
, or hyperboli
) if allits points are ellipti
 (resp., paraboli
, or hyperboli
).Lemma 2. If a 1-ray l(P ) is tangent to a paraboli
 equation E at a point θ2, then
l(P ) ⊂ Eθ1.Proof. The 1-rays distribution on Fθ1 may be viewed as the distribution of Monge's
ones of a �rst order PDE for one unknown fun
tion in two variables. As it is easy tosee, this equation in terms of 
oordinates x1 = r, x2 = t, y = s on Fθ1 is ∂y

∂x1
· ∂y

∂x2
= 1
4
. Abanal 
omputation then shows that 
hara
teristi
s of this equation are exa
tly 1-raysand hen
e its solutions are ruled surfa
es 
omposed of 1-rays. �Corollary 1. If E is a paraboli
 equation, then Eθ1 is a ruled surfa
e in Fθ1 
omposedof 1-rays.For a paraboli
 equation E and a point θ1 ∈ J1(E, 2) 
onsider all 1-dimensionalsubspa
es P ⊂ C(θ1) su
h that l(P ) ⊂ Eθ1. This is a 1-parametri
 family of lines and,so, their union is a bidimensional 
oni
 surfa
e Wθ1 in C(θ1). Then

θ1 7→ Wθ1 , θ1 ∈ J1(E, 2),is the Monge distribution of E . Integral 
urves of this distribution are 
urves alongwhi
h multivalued solutions of E fold up. It is worth mentioning that tangent planes toa surfa
e Wθ1 are all Lagrangian. We omit the proof but note that Lagrangian planesare simplest surfa
es possessing this property.Given type singularities of multivalued solutions of a PDE are des
ribed by 
orre-sponding subsidiary equations. If E is a paraboli
 equation, then integral 
urves ofthe 
orresponding to E Monge distribution des
ribe lo
i of fold type singularities of itssolutions.Intrinsi
ally, the 
lass of Monge-Ampere (MA) equations is 
hara
terized by the prop-erty that these subsidiary equations are as simple as possible. More pre
isely, thismeans that 
oni
 surfa
es Wθ1s' must be geometri
ally simplest. As we have alreadynoti
ed, for paraboli
 equations the simplest are Lagrangian planes. Thus paraboli
MA equations (PMAs) are 
on
eptually de�ned as paraboli
 equations whose Mongedistributions are distributions of Lagrangian planes. It will be shown below that thisde�nition 
oin
ides with the traditional one.
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all that, a

ording to the traditional des
riptive point of view, MA equations arede�ned as equations of the form(10) N(rt − s2) + Ar +Bs+ Ct+D = 0with N, A, B, C and D being some fun
tions of variables x, y, u, p, q. MA equationswith N = 0 are 
alled quasilinear. – = B2 − 4AC + 4ND is the dis
riminant of (10).Proposition 1. Equation (10) is ellipti
 (resp., paraboli
, or hyperboli
) if – <
0 (resp.,– = 0, or – > 0).Proof. As it is easy to see, the symbol of equation (10) at a point θ2 of 
oordinates
(r, s, t) is des
ribed by the equation(11) N(t“r + r“t − 2s“s) + A“r +B“s+ C“t = 0.with (“r, “s, “t) subje
t to the relation “r“t − “s2 = 0. Now one dire
tly extra
ts the resultfrom this relation and (11). �Finally, we observe that all above de�nitions and 
onstru
tions are 
onta
t invariant.3.2. Paraboli
 MA equations as Lagrangian distributions. In this se
tion it willbe shown that the 
on
eptual de�nition of PMA equations 
oin
ides with the traditionalone.First of all, we haveProposition 2. Equation (10) is paraboli
 in the sense of de�nition 1 if and only if
– = 0. The Monge distribution of paraboli
 equation (10) is a distribution of Lagrangianplanes, i.e., a Lagrangian distribution.Proof. First, let E be equation (10). A simple dire
t 
omputation shows that E istangent to the 1-ray distribution i� – = 0.Se
ond, 
oe�
ients of equation (10) may be thought as fun
tions on J1(E, 2). Let
A0, . . . , N0 be their values at a point θ1 ∈ J1(E, 2). Then

N0(t“r + r“t − 2s“s) + A0“r +B0“s+ C0“t = 0is the equation of Eθ1 in Fθ1 . If N0 6= 0 this equation des
ribes a standard 
one with thevertex at the point θ2 of 
oordinates r = −C0/N0, s = B0/2N0, t = −A0/N0. So, Eθ1 isthe union of 1-rays l(P ) passing through θ2. By de�nition this implies that P ⊂ Rθ2and hen
e Wθ1 is the union of lines P that belong to Rθ2. This shows that Wθ1 = Rθ2.Finally, note that the 
ase N0 = 0 
an be brought to the previous one by a suitable
hoi
e of jet 
oordinates. �From now on we shall denote by DE the Monge distribution of a PMA equation E .From the proof of the above Proposition we immediately extra
t geometri
al meaningof the 
orresponden
e E 7→ DE .Corollary 2. The distribution DE asso
iates with a point θ1 ∈ J1(E, 2) the R-plane
Rθ2 with θ2 being the vertex of the 
one Eθ1.
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oordinate des
ription of DE is as follows.Proposition 3.(12) DE =

〈

∂x + p∂u −
C

N
∂p +

B

2N
∂q, ∂y + q∂u +

B

2N
∂p −

A

N
∂q

〉

, if N 6= 0or(13) DE =

〈

A∂x +
B

2
∂y + (Ap+Bq)∂u − D∂p,

B

2
∂p − A∂q

〉

, if N = 0.Proof. If (x0, . . . , t0) are 
oordinates of θ2 ∈ J2(E, 2), then the R-plane Rθ2 is generatedby ve
tors
∂x + p0∂u + r0∂p + s0∂q and ∂y + q0∂u + s0∂p + t0∂qat the point θ1. By Corollary 2 one gets the needed result for N 6= 0 just by spe
ializing
oordinates of θ2 in these expressions to that of the vertex of the 
one Eθ1 (see theproof of Proposition 2). The 
ase N = 0 is redu
ed to the previous one by a suitabletransformation of jet 
oordinates. �In its turn, the distribution DE 
ompletely determines the equation E . More exa
tly,we haveProposition 4. Let D be a Lagrangian subdistribution of C. Then the submanifold

ED = {θ2 ∈ J2(E, 2) : dim(Rθ2 ∩ D(θ1)) > 0}of J2(E, 2) is a paraboli
 Monge-Ampere equation and D = DED
.Proof. There is the only one point θ2 ∈ (ED)θ1 su
h that Rθ2 = D(θ1). With thisex
eption dim(Rθ2 ∩ D(θ1)) = 1. Hen
e (ED)θ1 is the union of all 1-rays l(P ) su
h that

P ⊂ D(θ1). They all pass through the ex
eptional point θ2 and hen
e 
onstitute a
one in Fθ1 . But 
ones 
omposed of 1-rays are tangent to the 1-ray distribution on Fθ1and, so, all their points are paraboli
. Finally, the last assertion dire
tly follows fromCorollary 2. �Results of this se
tion are summed up in the following Theorem whi
h is the startingpoint of our subsequent dis
ussion of paraboli
 Monge-Ampere equations.Theorem 1. The 
orresponden
e D 7−→ ED between Lagrangian distributions on
J1(E, 2) and paraboli
 Monge-Ampere equations is one-to-one.The meaning of this Theorem is that it de
odes the geometri
al problem hidden underanalyti
al 
ondition (10). Namely, this problem is to �nd Legendrian submanifolds S ofa 5-dimensional 
onta
t manifold (M, C) that interse
t a given Lagrangian distribution
D ⊂ C in a nontrivial manner, i.e.,

dim{Tθ(S) ∩ D(θ)} > 0, ∀ θ ∈ S.



10 D. CATALANO FERRAIOLI AND A. M. VINOGRADOVThe triple E = (M, C,D) en
odes this problem. By this reason, in the rest of this paperthe term �paraboli
 Monge-Ampere equation� will refer to su
h a triple. In parti
ular,equivalen
e and 
lassi�
ation problems for PMAs are interpreted as su
h problems forLagrangian distributions on 5-dimensional 
onta
t manifolds.4. Geometry of Lagrangian distributionsIn this se
tion we dedu
e some basi
 fa
ts about Lagrangian distributions on 5-dimensional 
onta
t manifolds whi
h allow to reveal four natural 
lasses of them. We�x the notation (M, C) for the 
onsidered 
onta
t manifold and D for a Lagrangiandistribution on it.First of all, Lagrangian distributions are subdivided onto integrable and nonitegrableones. A

ordingly, the 
orresponding paraboli
 Monge-Ampere equations are 
alled in-tegrable, or non-integrable. In the subsequent se
tion it will be shown that all integrablePMAs are lo
ally 
onta
t equivalent to the equation uxx = 0 and we shall 
on
entrateon nonintegrable PMAs.If D is nonintegrable, then its �rst prolongation D(1), i.e., the span of all ve
tor �eldsbelonging to D and their 
ommutators, is 3-dimensional. Moreover, we haveLemma 3.(1) D(1) ⊂ C;(2) the C-orthogonal 
omplement R of D(1) is a 1-dimensional subdistribution of D.Proof. (1) If (lo
ally) D = 〈X, Y 〉, then (lo
ally) D(1) = 〈X, Y, [X, Y ]〉. But, by de�ni-tion of C-orthogonality, [X, Y ] ∈ C.(2) The form dU restri
ted to C is nondegenerate. So, the assertion follows from thefa
t that in a symple
ti
 linear spa
e a Lagrangian subspa
e in a hyperplane 
ontainsthe skew-orthogonal 
omplement of the hyperplane. �The 1-dimensional distribution R will be 
alled the dire
ting distribution of D (alter-natively, of E).This way one gets the following �ag of distributions
R ⊂ D ⊂ D(1) ⊂ C.The dire
ting distribution R uniquely de�nes D(1), whi
h is its C-orthogonal 
omple-ment, and the distribution

D′ =
{

X ∈ D(1)| [X,R] ⊂ D(1)
}

.Sin
e [X,R] ⊂ D(1) for any X ∈ D, we see that D ⊆ D′ ⊆ D(1). So, by obviousdimension arguments, only one of the following two possibilities may o

ur lo
ally:either D′ = D, or D′ = D(1). A non-integrable Lagrangian distribution D is 
alledgeneri
 in the �rst 
ase and spe
ial in the se
ond. A

ordingly, the 
orrespondingPMAs are 
alled generi
, or spe
ial.The following assertion dire
tly follows from the above de�nitions.
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 Lagrangian distribution D is 
ompletely determined by itsdire
ting distribution R. It is no longer so for a spe
ial distribution and in this 
ase Ris the 
hara
teristi
 distribution of D(1).In this paper we shall 
on
entrate on generi
 PMA equations with a spe
ial attentionto the equivalen
e problem. In view of Proposition 5 this problem takes part of theequivalen
e problem for 1-dimensional subdistributions of C. To lo
alize this part a
riterion allowing to distinguish dire
ting distributions of generi
 PMA equations fromother 1-dimensional subdistributions of C. The introdu
ed below notion of the type ofa 1-dimensional subdistribution of C gives su
h a 
riterion.Fix a 1-dimensional distribution S ⊂ C and put
Sr = {Y ∈ C | Xs(Y ) ∈ C, ∀ X ∈ S and 0 ≤ s ≤ r} .In the following lemma we list without a proof some obvious properties of Sr.Lemma 4.

• Sr+1 ⊂ Sr and S ⊂ Sr;
• If (lo
ally) S = 〈X〉, then (lo
ally)

Sr = {Y ∈ C | Xs(Y ) ∈ C, 0 ≤ s ≤ r}

• Sr is a �nitely generated C∞(M)-module;
• If (lo
ally) C = Ann(U), U ∈ ˜1(M), and (lo
ally) S = 〈X〉, then

Sr = Ann(U, X(U), ..., Xr(U)).Let T be a C∞(M)-module. An open domain B ⊂ M is 
alled regular for T if thelo
alization of T to B is a proje
tive C∞(B)-module. If T is �nitely generated (see [7℄),then this lo
alization is isomorphi
 to the C∞(B)-module of smooth se
tions of a �nitedimensional ve
tor bundle over B. In su
h a 
ase the dimension of this bundle is 
alledthe rank of T on B and denoted by rankBT . Moreover, the manifold M is subdividedinto a number of open domains that are regular for T and the set of its singular pointswhi
h is 
losed and thin. In parti
ular, ve
tor bundles representing lo
alizations of Srto its regular domains are distributions 
ontained in C and 
ontaining S (Lemma 4).Lemma 5. Let B ⊂ M be a 
ommon regular domain for modules Sr and Sr+1. Theneither rankBSr = rankBSr+1 + 1, or rankBSr = rankBSr+1. In the latter 
ase B is regularfor Sp, p ≥ r, and rankBSp = rankBSr.Proof. The �rst alternative takes pla
e i� Xr+1(U) is C∞(M)-independent of
U, X(U), . . . , Xr(U) as it is easily seen from the last assertion of Lemma 4. In these
ond 
ase the equality of ranks implies that lo
alizations of Sr and Sr+1 to B 
oin-
ide. This shows that the lo
alization of Sp to B stabilizes by starting from p = r. �Corollary 3. With the ex
eption of a thin 
losed set the manifold M is subdividedinto open domains ea
h of them is regular for all Sp, p ≥ 0. Moreover, in su
h adomain B, rankBSp = 4 − p, if p ≤ r, and rankBSp = 4 − r, if p ≥ r, for an integer
r = r(B), 1 ≤ r ≤ 3.



12 D. CATALANO FERRAIOLI AND A. M. VINOGRADOVProof. It immediately follows from Lemma 5 that the fun
tion p 7→ rankBSp steadilyde
reases up to the instan
e, say p = r, when
rankBSr = rankBSr+1 o

urs for the �rst time, and stabilizes after. Sin
e S ⊂ Sp, thelast assertion of Lemma 4 shows that this instan
e happens at most for p = 3, i.e., that
r ≤ 3. On the other hand, forms U and X(U) are independent. Indeed, the equality
X(U) = fU for a fun
tionf means that X is a 
onta
t �eld with generating fun
tion
iX(U) ≡ 0. But only the zero �eld is su
h one. Hen
e r ≥ 1.Finally, observe that regular domains for Sp+1 are obtained from those for Sp byremoving from latters some thin subsets. Sin
e, as we have seen before, the situationstabilizes after at most four steps by starting from p = 0, the existen
e of 
ommonregular domains for all Sp's whose union is everywhere dense in M is guaranteed. �De�nition 2. If M is the only regular domain for all Sp's, then S is 
alled regular on
M and the integer r by starting from whi
h the rankBSr stabilizes is 
alled the type of
S and also the type of X, if S = 〈X〉.Hen
e Lemma 5 tells that the type of S 
an be only one of the numbers 1, 2, or 3,and that the union of domains in whi
h S is regular is everywhere dense in M.It is not di�
ult to exhibit ve
tor �elds of ea
h these three types. For instan
e, ve
tor�elds of the form Xf − fX1 on M = J1(E, 2) with everywhere non-vanishing fun
tion
f are of type 1. Fields ∂x + p∂z + q∂p and ∂x + p∂z + (xy + q)∂p are of type 2 and 3,respe
tively.Now we 
an 
hara
terize dire
ting distributions of generi
 PMA equationsProposition 6. A 1-dimensional regular distribution S ⊂ C is the dire
ting distributionof a generi
 PMA equation i� it is of type 3.Proof. Let S be a regular distribution of type 3 and (lo
ally) S =< X >. Then byde�nition S1 = S⊥ andD = S2 is a bidimensional subdistribution of C. D is Lagrangian,sin
e D ⊂ S1 = S⊥ and S ⊂ D. If (lo
ally) D = 〈X, Y 〉, then [X, Y ] /∈ D. Indeed,assuming that [X, Y ] ∈ D one sees that Xp(Y ) ∈ D ⊂ C, ∀p, and hen
e Y ∈ Sp, ∀p.In parti
ular, this implies that D = 〈X, Y 〉 ⊂ S3 in 
ontradi
tion with the fa
t that
dim S3 = 1 if S is of type 3. So, dim 〈X,Y, [X,Y]〉 = 3, and 〈X, Y, [X, Y ]〉 ⊂ S⊥, sin
e
X(Y ), X2(Y ) ∈ C. Now, by dimension arguments, we 
on
lude that 〈X, Y, [X, Y ]〉 = S⊥and, therefore, S is the dire
ting distribution of D = S2.Conversely, assume that (lo
ally) R = 〈X〉 is the dire
ting distribution of a generi
PMA equation 
orresponding to the Lagrangian distribution D = 〈X, Y 〉 (lo
ally).Then, by de�nition, R1 = R⊥. Moreover, D = D′ implies that X2(Y ) /∈ R⊥ and hen
e�elds X, Y, X(Y ), X2(Y ) form a lo
al basis of C. This shows that X3(Y ) /∈ C. Indeed,the assumption X3(Y ) ∈ C implies [X, C] ⊂ C, i.e., that X is a nonzero 
onta
t �eldwith zero generating fun
tion. Hen
e Y /∈ R3 ⇔ [X, Y ] /∈ R2. From one side, this showsthat D = R2 and, from other side, that R2 6= R3. So, R3 = 〈R〉 ⇒ rank R = 3. �



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 13From now on we denote by Z the dire
ting distribution of the 
onsidered PMA E . A
oordinate des
ription of D = DE ,D1 and Z is easily obtained by a dire
t 
omputation(see Proposition 3):Proposition 7. Let E be a quasilinear nonintegrable PMA of the form (10) with A 6= 0.By normalizing its 
oe�
ients to A = 1 one has: D = 〈X1, X2〉 and D(1) = 〈X1, X2, X3〉with
X1 := ∂x + p∂u +

B

2
(∂y + q∂u)− D∂p,

X2 :=
B

2
∂p − ∂q,

X3 := [X1, X2] =M1 (∂y + q∂u) +M2∂p,where
M1 = −

1

2
X2(B), M2 =

1

2
X1(B) +X2(D),and R = 〈Z〉 with

Z :=M1X1 − M2X2.Proposition 8. Let E be a nonintegrable PMA of the form (10) with N 6= 0. Bynormalizing its 
oe�
ients to N = 1 one has: D = 〈X1, X2〉 and D(1) = 〈X1, X2, X3〉with
X1 := ∂x + p∂u − C∂p +

B

2
∂q,

X2 := ∂y + q∂u +
B

2
∂p − A∂q,

X3 := [X1, X2] =M1∂q +M2∂p,where
M1 = −X1(A)−

1

2
X2(B), M2 =

1

2
X1(B) +X2(C),and R = 〈Z〉 with

Z :=M1X1 − M2X2.5. Classifi
ation of integrable PMAsFor 
ompleteness we shall prove here the following, essentially known, result in amanner that illustrate the idea of our further approa
h.Theorem 2. With the ex
eption of singular points all integrable PMA equations arelo
ally 
onta
t equivalent ea
h other and, in parti
ular, to the equation uxx = 0.Proof. Let E = (M, C,D) be an integrable PMA equation, i.e., the Lagrangian distri-bution D is integrable and, as su
h, de�ne a 2-dimensional Legendrian foliation of M.Lo
ally this foliation 
an be viewed as a �bre bundle š :M → W over a 3-dimensionalmanifold W . The di�erential dθ(š) : TθM → TyW, y = š(θ), sends C(θ) to a bidi-mensional subspa
e Pθ ⊂ TyW , sin
e ker dθ(š) = D(θ). This way one gets the map
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šy : š

−1(y) → G3,2(y), θ 7→ Pθ, where G3,2(y) is the Grassmanian of 2-dimensionalsubspa
es in TyW . Note that dimš−1(y) = dimG3,2(y) = 2 and, so, the lo
al rank of
šy may vary from 0 to 2. We shall show that, with the ex
eption of a thin set ofsingular points, šy's are of rank 2, i.e., šy's are lo
al di�eomorphisms.First, assume that this rank is zero for all y ∈ W , i.e., šy's are lo
ally 
onstantmaps. In this 
ase Pθ does not depend on θ ∈ š−1(y) and we 
an put P(y) = Pθ, for a
θ ∈ š−1(y). Hen
e y 7→ P(y) is a distribution on W and C is its pullba
k via š. Thisshows that the distribution tangent to �bers of š, i.e., D, is 
hara
teristi
 for C. But a
onta
t distribution does not admit nonzero 
hara
teristi
s.Se
ond, if the rank of šy's equals to one for all y ∈ W , then M is foliated by 
urves

γP = {θ ∈ š−1(y)|dθš(C(θ)) = P}with P being a bidimensional subspa
e of TyW . Lo
ally, this foliation may be seen asa �bre bundle š0 :M → N over a 4-dimensional manifold N, and š fa
torizes into the
omposition
C
š0→ N

š1→ Wwith š1 uniquely de�ned by š and š0. By 
onstru
tion the 3-dimensional subspa
e
dθš0(C(θ)) ⊂ TzN, z = š0(θ), does not depend on θ ∈ š−1

0 (z) = γP and one 
an put
Q(z) = dθš0(C(θ)) for a θ ∈ š−1

0 (z). As before we see that C is the pullba
k via š0 ofthe 3-dimensional distribution z 7→ Q(z) in 
ontradi
tion with the fa
t that C does notadmit nonzero 
hara
teristi
s.Thus, ex
ept singular points, š is of rank 2 and hen
e a lo
al di�eomorphism.So, lo
ally, šy identi�es š−1(y) and an open domain in G3,2(y). By observing that
G3,2(y) = π−1

1,0(y), with π1,0 : J
1(W, 2)→ W being a natural proje
tion, one gets a lo
alidenti�
ation of M with an open domain in J1(W, 2). It is easy to see that this identi�-
ation is a 
onta
t di�eomorphism. In other words, we have proven that any integrableLagrangian distribution on a 5-dimensional 
onta
t manifold is lo
ally equivalent to thedistribution of tangent planes to �bers of the proje
tion J1(R3, 2)→ R

3.Finally, we observe that DE = 〈∂x, ∂y〉 for the equation E = {uxx = 0} and hen
e thisequation is integrable. �6. Proje
tive 
urve bundles and non-integrablegeneri
 PMAsIn this se
tion non-integrable generi
 Lagrangian distributions and, therefore, the
orresponding PMAs are represented as 4-parameter families of 
urves in the proje
tive
3-spa
e or, more exa
tly, as proje
tive 
urve bundles. Di�erential invariants of single
urves 
omposing su
h a bundle (say, proje
tive 
urvature, torsion,et
) put togethergive di�erential invariants of the whole bundle and 
onsequently of the 
orrespondingPMA. This basi
 geometri
 idea is developed in details in the subsequent se
tion.Let N be a 4-dimensional manifold. Denote by PT ∗

a N the 3-dimensional proje
tivespa
e of all 1-dimensional subspa
es of the 
otangent to N spa
e T ∗
a N at the point
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a ∈ N . The proje
tivization pτ ∗ : PT ∗N → N of the 
otangent to N bundle τ ∗ :
T ∗N → N is the bundle whose total spa
e is PT ∗N =

⋃

a∈NPT ∗
a N and the �ber over

a ∈ N is PT ∗
a N , i.e., (pτ ∗)−1(a) = PT ∗

a N . A proje
tive 
urve bundle (PCB) over N isa 1-dimensional subbundle π : K → N of pτ ∗:
K →֒ PT ∗N

π ↓ ↓ pτ ∗

N
id

−→ NThe �ber π−1(y), y ∈ N , is a smooth 
urve in the proje
tive spa
e PT ∗
y N . A di�eo-morphism � : N → N ′ lifts 
anoni
ally to a di�eomorphism PT ∗N → PT ∗N ′. Thislift sends a PCB π over N to a PCB over N ′, denoted by �π. A PCB π over N anda PCB π′ over N ′ are equivalent if there exist a di�eomorphism � : N → N ′ su
h that

π′ = �π.Let π : K → N be a PCB and θ =< ρ >∈ K with ρ ∈ T ∗

π(θ)N . Denote by Wθ the
3-dimensional subspa
e of Tπ(θ)N annihilated by θ, i.e.,

Wθ =
{

ξ ∈ Tπ(θ)N | ρ(ξ) = 0
}

.Two distributions are 
anoni
ally de�ned on K. First of them is the 1-dimensionaldistribution Rπ formed by all verti
al with respe
t to π ve
tors. The se
ond one,denoted by Cπ, is de�ned by
(Cπ)θ = {η ∈ TθK | dθπ(η) ∈ Wθ} .Obviously, dim Cπ = 4 and Rπ ⊂ Cπ. If, lo
ally, Rπ = 〈Z〉 , Z ∈ D(K), and Cπ =

Ann(Uπ), Uπ ∈ ˜1(K), then the os
ulating distributions of π are de�ned as
Zπ

s = Ann(Uπ, Z(Uπ), ..., Z
s(Uπ)), s = 0, 1, 2, 3.It is easy to see that this de�nition does not depend on the 
hoi
e of Z and Uπ. Notethat Cπ = Zπ

0 . Also, Rπ ⊂ Zπ
s , ∀ s ≥ 0, as it easily follows from [iZ , LZ ] = 0 and

Uπ(Z) = 0. Moreover, generi
ally forms Uπ, Z(Uπ), ..., Z
3(Uπ) are independent and so,by dimension arguments, Rπ = Zπ

3 .We say that π is a regular PCB i� the following two 
onditions are satis�ed: (i)
Rπ = Zπ

3 and (ii) Cπ is a 
onta
t stru
ture on K. We emphasize that regularity is ageneri
 
ondition. Moreover, 
onditions (i)-(ii) are equivalent to the fa
t that Rπ is oftype 3 with respe
t to the 
onta
t distribution Cπ. So, by Proposition 6, the distribution
Dπ = {X ∈ R⊥

π |LX(Rπ) ⊂ R⊥

π }.with R⊥
π being the Cπ-orthogonal 
omplement of Rπ is bidimensional and Lagrangianfor a regular PCB π. Thus we haveTheorem 3. If π is a regular PCB, then Dπ is a Lagrangian subdistribution of Cπ and

(K, Cπ,Dπ) is a generi
 PMA whose dire
ting distribution is Rπ. Conversely, a generi
PMA lo
ally determines a regular PCB.



16 D. CATALANO FERRAIOLI AND A. M. VINOGRADOVProof. The �rst assertion of the Theorem is already proved. It remains to represent ageneri
 PMA (M, C,D) as a regular PCB. Integral 
urves of its dire
ting distribution
R foliate M. Lo
ally, this foliation may be 
onsidered as a �ber bundle π :M → Nover a 4-dimensional manifold N . Sin
e R(θ) ⊂ C(θ), the subspa
e Vθ = dθπ(C(θ)) ⊂
TyN, y = π(θ), is 3-dimensional. Put •y = π−1(y). The map πy : •y → G4,3(y), θ 7→
Vθ, with G4,3(y) being the Grassmanian of 3-dimensional subspa
es in TyN , is almosteverywhere of rank 1. Indeed, the assumption that lo
ally this rank is zero leads, asin the proof of Theorem 2, to 
on
lude that lo
ally the 
onta
t distribution C is thepullba
k via π of a 3-dimensional distribution on N .The 
orresponden
e ιy : G4,3(y) → PT ∗

y N that sends a 3-dimensional subspa
e V ⊂
TyN to Ann(V ) is, obviously, a di�eomorphism. Hen
e the 
omposition ιy ◦ πy is alo
al embedding with ex
eption of a thin subset of singular points. Now, it is easy tosee that images of •y's via ιy ◦ πy's give the required PCB. �The above 
onstru
tion asso
iating a PCB with a given PMA is manifestly fun
torial,i.e., an equivalen
e F : (M, C,D) −→ (M′, C′,D′) of PMAs indu
es an equivalen
e
� : (N, K, π) −→ (N ′, K ′, π′) of asso
iated PCBs. Indeed, F sends R to R′ and hen
eintegral 
urves of R (lo
ally, �bers of π) to integral 
urves of R′ (lo
ally, �bers of π′).This de�nes a map � of the variety N of �bers of π to the variety N ′ of �bers of π′,et
. Thus we haveCorollary 4. The problem of lo
al 
onta
t 
lassi�
ation of generi
 PMAs is equivalentto the problem of lo
al 
lassi�
ation of regular PCBs with respe
t to di�eomorphisms ofbase manifolds.Now we observe that there is another, in a sense, dual PCB asso
iated with a givenPMA equation. Namely, asso
iate with a point θ ∈ K the line Lθ = dθπ(Dπ(θ)) ⊂
TyN, y = π(θ). The 
orresponden
e θ 7→ Lθ ∈ PTyN , where PTyN denotes the proje
-tive spa
e of lines in TyN , de�nes a map of π−1(y) to PTyN , i.e., a (singular) 
urve in
PTyN . As before this de�nes lo
ally a 1-dimensional subbundle in the proje
tivization
PTN of TN . It will be 
alled the se
ond PCB asso
iated with the 
onsidered PMA.PCBs may be 
onsidered as 
anoni
al models of PMAs. Besides other they suggest ageometri
ally transparent 
onstru
tion of s
alar di�erential invariants of PMAs.Let I be a s
alar proje
tive di�erential invariant of 
urves in RP 3, say, the proje
tive
urvature (see [11, 2℄), θ ∈ K and y = π(θ). The value of this invariant for the 
urve
•y = π−1(y) in PT ∗

y is a fun
tion on •y. Denote it by Iπ,y and put Iπ(θ) = Iπ,y(θ) if
θ ∈ •y ⊂ K. Then, obviously, Iπ ∈ C∞(K) is a di�erential invariant of the PCB π andhen
e of the PMA represented by π.Theorem 4. The di�erential invariants of the form Iā are su�
ient for a 
omplete
lassi�
ation of generi
 PMA equations on the basis of the "prin
iple of n-invariants".
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ording to the "prin
iple of n-invariants", it is su�
ient to 
onstru
t n =
dimM = 5 independent di�erential invariants of PMAs in order to solve the 
lassi�-
ation problem. Su
h invariants of the required form will be 
onstru
ted in the nextse
tion. �For the "prin
iple of n-invariants" the reader is referred to [1, 10℄.7. Differential invariants of generi
 PCBsLet π : K → N be a regular PCB and, as before, Rπ =< Z >, Dπ =< Z, X >and Cπ = Ann(U). Here the ve
tor �eld Z and the 1-form U are unique up to afun
tional nowhere vanishing fa
tor, while X is unique up to a transformation X 7−→
gX + ϕZ, g, ϕ ∈ C∞(K) with nowhere vanishing g.Sin
e the 
onsidered PCB is regular we have the following �ag of distributions

Rπ ⊂ Dπ ⊂ R⊥

π ⊂ Cπ ⊂ D(K)of dimensions in
reasing from 1 to 5, respe
tively. In terms of X, Z and U they aredes
ribed as follows:Proposition 9. Lo
ally, with the ex
eption of a thin set of singular points we have:(1) Rπ = Ann(Z i(U) : i = 0, 1, 2, 3) = 〈Z〉 ;(2) Dπ = Ann(U, Z(U), Z2(U)) = 〈Z, X〉 ;(3) R⊥
π = Ann(U, Z(U)) =< Z, X, Z(X) >;(4) Cπ = Ann(U) =< Z, Z i(X) : i = 0, 1, 2 >;(5) {Z, X, Z(X), Z2(X), Z3(X)} is a base of the C∞(K)-module D(K);(6) for some fun
tions ri ∈ C∞(K)(14) Z4(U) + r1Z

3(U) + r2Z
2(U) + r3Z(U) + r4U = 0Proof. Assertions (1)-(3) are dire
t 
onsequen
es of Lemma 4, Proposition 6 and def-initions. Assertion (4) follows from independen
e of Z2(X) from Z, X, Z(X). Thisis so be
ause otherwise Z would be a 
hara
teristi
 of R⊥

π = < Z, X, Z(X) > in
ontradi
tion with the fa
t that Rπ is of rank 3. Similarly, Z3(X) is independent of
Z, X, Z(X), Z2(X). Indeed, otherwise Z would be a 
hara
teristi
 of Cπ. This proves(5).Finally, forms Zs(U), s ≥ 0, are annihilated by Z. Sin
e dimM = 5 this implies that
Z4(U) depends on Zs(U), s ≤ 3. But this is equivalent to (14). �Corollary 5. If 0 ≤ k, l ≤ 3 and k + l = 3, then

Zk(X)yZ l(U) = (−1)k+1Z3(X)yU 6= 0.Proof. Assertions (5) and (6) of the above Proposition show that Z3(X) 
ompletes abasis of C to a basis of D(K). So, Z3(X)yU is a nowhere vanishing fun
tion.



18 D. CATALANO FERRAIOLI AND A. M. VINOGRADOVIt follows from the standard formula [iX , LY ] = i[X,Y ] that
Zk(X)yZ l(U) =

[

iZk(X), LZ

]

(Z l−1(U))− LZ(Z
k(X)yZ l−1(U)) =

− Zk+1(X)yZ l−1(U)− LZ(Z
k(X)yZ l−1(U))(15)A

ording to Proposition 9, (1)-(3), Zr(X)yZs(U) = 0 if r + s = 2. So, for k + l = 3relation (15) be
omes

Zk(X)yZ l(U) = −Zk+1(X)yZ l−1(U)

�By de
omposing Z4(X) with respe
t to the base in (5) of Proposition 9 we get(16) Z4(X) + ρ1Z
3(X) + ρ2Z

2(X) + ρ3Z(X) + ρ4X + ρ5Z = 0for some fun
tions ρi ∈ C∞(K) and hen
e(17) Z4(X ∧ Z) + ρ1Z
3(X ∧ Z) + ρ2Z

2(X ∧ Z) + ρ3Z(X ∧ Z) + ρ4X ∧ Z = 0.The last is a relation binding the bive
tor X ∧ Z, whi
h generates the distribution
Dπ. This bive
tor is unique up to a fun
tional fa
tor.Proposition 10. Fun
tions ri's in de
omposition (14) are expressed in terms of iteratedLie derivatives Z i(U), Zj(X) as follows:

r1 = −
XyZ4(U)

XyZ3(U)
, r2 = −

Z(X)yZ4(U) + r1Z(X)yZ3(U)

Z(X)yZ2(U)
,

r3 = −
Z2(U)yZ4(U) + r1Z

2(X)yZ3(U) + r2Z
2(X)yZ2(U)

Z2(X)yZ(U)
,

r4 = −
Z3(X)yZ4(U) + r1Z

3(X)yZ3(U) + r2Z
3(X)yZ2(U) + r3Z

3(X)yZ(U)

Z3(X)yU
.Proof. By subsequently inserting �elds Zs(X), 0 ≤ s ≤ 3, in (14) one easily gets theresult by taking into a

ount Proposition 9 and Corollary 5. �Similarly, we haveProposition 11. Fun
tions ρi in de
omposition (17) are expressed in terms of iteratedLie derivatives Z i(U), Zj(X) as follows:

ρ1 = −
Z4(X)yU

Z3(X)yU
, ρ2 = −

Z4(X)yZ(U) + ρ1Z
3(X)yZ(U)

Z2(X)yZ(U)
,

ρ3 = −
Z4(U)yZ2(U) + ρ1Z

3(X)yZ2(U) + ρ2Z
2(X)yZ2(U)

Z(X)yZ2(U)
,

ρ4 = −
Z4(X)yZ3(U) + ρ1Z

3(X)yZ3(U) + ρ2Z
2(X)yZ3(U) + ρ3Z(X)yZ3(U)

XyZ3(U)
.



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 19Proof. As before we get the desired result by subsequently inserting the ve
tor �eld inthe left hand side of (16) into 1-forms Zs(U), 0 ≤ s ≤ 3. �Remark 1. By introdu
ing fun
tions αkl = Zk(X)yZ l(U) we see that ri's and ρi's arerational fun
tions of αkl's:
r1 =

α04
α03

, r2 =
α03α14 + α04α13

α03α12
, etc.Di�erential invariants we are going to 
onstru
t are proje
tive di�erential invariantsof 
urves 
omposing the 
onsidered PCB. Clearly, it is not possible to des
ribe expli
itlythese 
urves. So, the problem is how to express these invariants in terms of the data atour disposal, i.e., X, Z and U . In what follows this problem is solved on the basis of arather transparent analogy. For instan
e, the �eld Z restri
ted to one of these 
urvesmay be thought as the derivation with respe
t to a parameter along this 
urve, andso on. So, with similar interpretations in mind it is su�
ient just to mimi
 a known
onstru
tion of proje
tive di�erential invariants for 
urves in order to obtain the desiredresult. In doing that we follows 
lassi
al Wil
zynski's book [11℄. By stressing the usedanalogy we pass to Wil
zynski's pi's and qj's instead of above ri's and ρj 's:(18) r1 = 4p1, r2 = 6p2, r3 = 4p3, r4 = p4and(19) ρ1 = 4q1, ρ2 = 6q2, ρ3 = 4q3, ρ4 = q4.In terms of these fun
tions relations (14) and (17) read(20) Z4(U) + 4p1Z

3(U) + 6p2Z
2(U) + 4p3Z(U) + p4U = 0,(21) Z4(X ∧ Z) + 4q1Z

3(X ∧ Z) + 6q2Z
2(X ∧ Z) + 4q3Z(X ∧ Z) + q4X ∧ Z = 0.These relations are identi
al to Wil
zynski's formulas (see equation (1), page 238 of[11℄).

Z and U are unique up to a "gauge" transformation (Z, U) 7−→ (Z, U)(22) Z = fZ, U = hUwith nowhere vanishing f, h ∈ C∞(K). The 
orresponding transformation of 
oe�
ients
{pi} 7−→ {�pi} 
an be easily obtained from (20) by a dire
t 
omputation:
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(23)
p1 7−→ �p1 =

Z(h)

h
+

p1
f
+
3Z(f)

2f
,

p2 7−→ �p2 =
p2
f 2
+
2p1 Z(f)

f 2
+
2p1 Z(h)

3hf
+ 3

Z(h)Z(f)

hf
+
7Z(f)2

6f 2

+
2Z2(f)

3f
+

Z2(h)

h
,

p3 7−→ �p3 =
p3
f 3
+
3p2Z(h)

hf 2
+
3p2Z(f)

2f 3
+

p1 Z(f)
2

f 3
+
6p1Z(h)Z(f)

hf 2

+
3p1Z

2(h)

hf
+

p1Z
2(f)

f 2
+

Z3(f)

4f
+
9Z(f)Z2(h)

2hf
+

Z(f)3

4f 3

+
7Z(h)Z(f)2

2hf 2
+
2Z(h)Z2(f)

hf
+

Z3(h)

h
+

Z2(f)Z(f)

f 2
,

p4 7−→ �p4 =
p4
f 4
+
4p3Z(h)

hf 3
+
6p2Z

2(f)

hf 2
+
6p2Z(h)Z(f)

hf 3
+
4p1 Z

3(h)

hf

+
4p1Z(h)Z

2(f)

hf 2
+
4p1Z(h)Z(f)

2

hf 3
+
12p1Z(f)Z

2(h)

hf 2

+
6Z(f)Z3(h)

hf
+

Z4(h)

h
+
7Z(f)2Z2(h)

hf 2
+

Z(h)Z3(f)

hf

+
4Z(h)Z2(f)Z(f)

hf 2
+

Z(f)3Z(h)

hf 3
+
4Z2(h)Z2(f)

hf
.Now the problem is to 
ombine pi's in a way to obtain expressions whi
h are invariantwith respe
t to transformations (23). To this end we �rst normalize (Z, U) by the
ondition p1 = 0. This 
an be easily done with f = 1 and a solution h of the equation

Z(h) + p1h= 0.After this normalization, equation (20) takes a simpler form(24) Z4(U) + 6P2Z
2(U) + 4P3Z(U) + P4U = 0with(25) P2 := p2 − Z(p1)− Z(p1)

2,

P3 := p3 − Z(Z(p1))− 3p1p2 + 2p
3
1,

P4 := p4 − 4p1p3 − 3p
4
1 − Z(Z(Z(p1))) + 3Z(p1)

2

+6p21Z(p1) + 6p
2
1p2 − 6Z(p1)p2.Proposition 12. Transformations (22) preserving the normalization p1 = 0 are subje
tto the 
ondition(26) Z(h) +
3

2
Z(ln(f))h = 0.
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t 
omputation. �Now the problem redu
es to �nding invariant 
ombinations of P2, P3 and P4 withrespe
t to normalized, i.e., respe
ting 
ondition (26), transformations (22). This 
an bedone, for instan
e, by mimi
king the 
onstru
tion of proje
tive 
urvature and torsionin [11℄. Namely, introdu
e �rst the fun
tions(27) —3 = P3 −
3
2
Z(P2),

—4 = P4 − 2Z(P3) +
6
5
Z(Z(P2))−

81
25

P 22 ,

—3·1 = 6—3Z(Z(—3))− 7Z(—3)
2 − 108

5
P2—

2
3They are semi-invariant with respe
t to normalized transformations (22), i.e., they aretransformed a

ording to formulas(28) —3 =

—3
f 3

, —4 =
—4
f 4

, —3·1 =
—3·1
f 8

.Obviously, the following 
ombinations of the —i's(29) κ1 =
—4

—
4/3
3

, κ2 =
—3·1

—
8/3
3are invariant with respe
t to normalized transformations (22).Thus we haveProposition 13. κ1 and κ2 are s
alar di�erential invariants of paraboli
 Monge-Ampereequations (10) with respe
t to 
onta
t transformations.Expli
it expressions of κ1 and κ2 in terms of 
oe�
ients of PMA (10) 
an be straight-forwardly obtained from those of Z and U . However, they are not very instru
tive andtoo 
umbersome to be reported here.Another invariant, whi
h 
an be readily extra
ted from (28), is the invariant ve
tor�eld(30) N1 = —

−1/3
3 Z.Another set of s
alar di�erential invariants 
an be 
onstru
ted in a similar mannerby starting from equation (17). Indeed, the ve
tor �eld Z and the bive
tor �eld X ∧Zgenerating distributions R and D, respe
tively, are unique up to transformations(31) Z = fZ, X ∧ Z = gX ∧ Zwith nowhere vanishing f, g ∈ C∞(K).It is easy to 
he
k that 
oe�
ients qi's are transformed a

ording to formulas (23)and one 
an repeat what was already done previously in the 
ase of equation (14). Inparti
ular, equation (17) 
an be normalized as(32) Z4(X ∧ Z) + 6Q2Z

2(X ∧ Z) + 4Q3Z(X ∧ Z) +Q4X ∧ Z = 0



22 D. CATALANO FERRAIOLI AND A. M. VINOGRADOVwith(33) Q2 = q2 − Z(q1)− Z(q1)
2,

Q3 = q3 − Z(Z(q1))− 3q1q2 + 2q
3
1,

Q4 = q4 − 4q1q3 − 3q
4
1 − Z(Z(Z(q1))) + 3Z(q1)

2

+6q21Z(q1) + 6q
2
1q2 − 6Z(q1)q2.This way we obtain the following s
alar di�erential invariants of PMAs(34) τ1 :=

˜4

˜
4/3
3

, τ2 :=
˜3·1

˜
8/3
3with semi-invariants ˜i's de�ned by(35) ˜3 = Q3 −

3
2
Z(Q2),

˜4 = Q4 − 2Z(Q3) +
6
5
Z(Z(Q2))−

81
25

Q22,

˜3·1 = 6˜3Z(Z(˜3))− 7Z(˜3)
2 − 108

5
Q2˜

2
3.Similarly,(36) N2 = ˜

−1/3
3 Z.is an invariant ve
tor �eld.Remark 2. The observed parallelism in 
onstru
tion of two sets of di�erential invari-ants is explained by the fa
t that in both 
ases we 
ompute the same invariants in twodi�erent PCB, namely, the �rst and the se
ond ones, asso
iated with the 
onsideredPMA.Sin
e ve
tor �elds N1 and N2 are invariant and N1 = λN2 the fa
tor λ = —

−1/3
3 ˜

1/3
3is a s
alar di�erential invariant. So,

γ3 := λ3 =
˜3
—3is a s
alar di�erential invariant of a new �mixed� kind as well as ratios

γ4 :=
˜4
—4

, λ3·1 :=
˜3·1
—3·1By applying to already 
onstru
ted s
alar di�erential invariants

κ1, κ2, τ1, τ2, γ3, γ4, γ3·1various algebrai
 operations and arbitrary 
ompositions of invariant ve
tor �elds N1 and
N2 one 
an 
onstru
t many other s
alar di�erential invariants of PMAs. These does notexhaust all invariants. Nevertheless, various quintuples of (fun
tionally) independentinvariants 
an be 
omposed from them, and this is the only one need in order to applythe �prin
iple of n invariants�. For instan
e, we have



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 23Theorem 5. Quintuples (κ1, κ2, τ1, τ2, γ3) and (γ3, N1(γ3), N21 (γ3), κ1, κ2) are 
omposedof independent invariants.Proof. It is su�
ient to exhibit an example for whi
h invariants 
omposing ea
h of thesetwo quintuples are independent. For instan
e, for both quintuples su
h is the equationdetermined by the dire
ting distribution R generated by
Z = q∂x + y∂y + (qp+ yq)∂z + x∂p − xz∂q .In this 
ase the 
orresponding Lagrangian distribution D is generated by

X1 = a1(∂x + p∂u) + a2∂p + a3∂q, X2 = a1(∂y + q∂u) + a3∂p + a4∂qwith
a1 = xyu − (x − y)q, a2 = −(x − y)x − (u+ xp)y2,
a3 = x2u+ (u+ xp)yq, a4 = −(q + xu)xu − (u+ xp)q2,and the 
orresponding PMA is(37) a21(rt − s2) + a1a4r + 2a1a3s − a1a2t+ xa1(xyup − xu − xpq + yu2 − uq) = 0.Expli
it expressions of invariants (κ1, κ2, τ1, τ2, γ3) and (γ3, N1(γ3), N21 (γ3), κ1, κ2) forequation (37) are too 
umbersome to be reported here. A dire
t 
he
k shows that theyare fun
tionally independent in ea
h of above two quintuples. �Thus, a

ording to the �prin
iple of n-invariants� (see [1, 10℄), the proven existen
e of�ve independent s
alar di�erential invariants solves in prin
iple the equivalen
e problemfor generi
 PMA equations. It should be stressed, however, that a pra
ti
al implemen-tation of this result 
ould meet some boring 
omputational problems.8. Con
luding remarksRepresentation of a PMA equation E by means of the asso
iated PCB makes 
learlyvisible the nature of its nonlinearities. For example, if all 
urves of this bundle areproje
tively nonequivalent ea
h other, then E does not admit 
onta
t symmetries, et
.The instan
e of this 
an be dete
ted by means of invariants 
onstru
ted in the previousse
tion. On the 
ontrary, it may happen that all 
urves 
omposing a PCB are proje
-tively equivalent, i.e., nonlinearities of the 
orresponding PMA E are �homogeneous�.The above 
onstru
ted invariants are not su�
ient to distinguish one homogeneous inthis sense PMA from another, and a need of new �ner invariants arises. It is remark-able that in similar situations PCBs themselves give an idea of how su
h invariants
an be 
onstru
ted. For instan
e, in the above homogeneous 
ase one 
an observe thatthe bundle PT ∗N → N is naturally supplied with a full parallelism stru
ture whi
himmediately furnishes the required new invariants. It is not di�
ult to imagine var-ious intermediate situations, whi
h demonstrate the diversity and 
omplexity of theworld of paraboli
 Monge-Ampere equations. In parti
ular, the problem of des
ribingall strata of the 
hara
teristi
 di�ety (see [10℄) for paraboli
 Monge-Ampere equationsis a task of a rather large s
ale. Further results in this dire
tion will appear in a seriesof forth
oming publi
ations.
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