
The Di�ety Institute Preprint SeriesPreprint DIPS�3/2008 November 26, 2008

Available via INTERNET:http://di�ety.a.ru; http://di�ety.orgThe Di�ety Institute

Di�erential invariants of generi paraboliMonge-Ampere equationsbyD. Catalano Ferraioli and A. M. Vinogradov



DIFFERENTIAL INVARIANTS OF GENERIC PARABOLICMONGE-AMPERE EQUATIONSD. CATALANO FERRAIOLI AND A. M. VINOGRADOVAbstrat. Some new results on geometry of lassial paraboli Monge-Ampere equa-tions (PMA) are presented. PMAs are either integrable, or nonintegrable aording tointegrability of its harateristi distribution. All integrable PMAs are loally equiva-lent to the equation uxx = 0. We study nonintegrable PMAs by assoiating with eahof them a 1-dimensional distribution on the orresponding �rst order jet manifold,alled the direting distribution. Aording to some property of these distributions,nonintegrable PMAs are subdivided into three lasses, one generi and two speialones. Generi PMAs are uniquely haraterized by their direting distributions. Tostudy direting distributions we introdue their anonial models, projetive urvebundles (PCB). A PCB is a 1-dimensional subbundle of the projetivized otangentbundle to a 4-dimensional manifold. Di�erential invariants of projetive urves om-posing suh a bundle are used to onstrut a series of ontat di�erential invariantsfor orresponding PMAs. These give a solution of the equivalene problem for PMAswith respet to ontat transformations.1. IntrodutionSine Monge's "Appliation de l'Analyse à la Géométrie" Monge-Ampere equationsperiodially attrat attention of geometers. This is not only due to the numerousappliations to geometry, mehanis and physis. Geometry of these equations beingtightly related with various parts of the modern di�erential geometry has all merits tobe studied as itself. Last 2-3 deades manifested a return of interest to geometry ofMonge-Ampere equations, mostly to ellipti and hyperboli ones. The reader will �ndan aount of reent results together with an extensive bibliography in [5℄.In this artile we study geometry of lassial paraboli Monge-Ampere equations(PMAs) on the basis of a new approah skethed in [8℄. Aording to it, a PMA
E ⊂ J2(π), π being a 1-dimensional �ber bundle over a bidimensional manifold, isompletely haraterized by its harateristi distribution DE whih is a 2-dimensionalLagrangian distribution on J1(π), and vie versa. Suh distributions and, aordingly,the orresponding to them PMAs, are naturally subdivided into four lasses, integrable,generi and two types of speial ones (see [8℄ and se.4). All integrable Lagrangianfoliations are loally ontat equivalent. A onsequene of it is that a PMA E is loally2000 Mathematis Subjet Classi�ation. 34A26, 35K55, 53A55, 53D10, 53A20.Key words and phrases. Geometri Methods in Di�erential Equations, Di�erential Invariants, Par-aboli Equations, Monge-Ampere Equations, Projetive Di�erential Geometry, Contat Geometry.1



2 D. CATALANO FERRAIOLI AND A. M. VINOGRADOVontat equivalent to the equation uxx = 0 i� the distribution DE is integrable. Thisexhausts the integrable ase. On the ontrary, nonintegrable Lagrangian distributionsare very diversi�ed and our main goal here is to desribe their multipliity, i.e., morepreisely, equivalene lasses of PMAs with respet to ontat transformations.With this purpose we assoiate with a Lagrangian distribution a projetive urve bun-dle (shortly, PCB) over a 4-dimensional manifold N . A PCB over N is a 1-dimensionalsmooth subbundle of the "projetivized" otangent bundle PT ∗(N) of N . Under someregularity onditions suh a bundle possesses a anonial ontat struture and, as aonsequene, a anonially insribed in it Lagrangian distribution. There exists a one-to-one orrespondene between generi Lagrangian distributions and regular PCBs.This way the equivalene problem for generi PMAs is reformulated as the equivaleneproblem for PCBs (see [8℄) and this is the key point of our approah. The �ber of suha bundle over a point x ∈ N is a urve γx in the projetive spae PT ∗
x (N). The urve

γx an be haraterized by its salar di�erential invariants with respet to the groupof projetive transformations. By putting suh invariants for single urves γx togetherfor all x ∈ N one obtains salar di�erential invariants for the onsidered PCB and,onsequently, for the orresponding PMA.This kind of invariants resolve the equivalene problem for generi PMAs on the basisof the "priniple of n−invariants" (see [1, 10℄). We have hosen them among others fortheir transparent geometrial meaning. It should be stressed, however, that there areother hoies, maybe, less intuitive but more e�ient in pratie. We shall disuss thispoint separately.Speial Lagrangian distributions admit a similar interpretation in terms of 2-dimensional distributions on 4-dimensional manifolds supplied with additional stru-tures, alled fringes (see [8℄). Di�erential invariants of fringes, also oming from pro-jetive di�erential geometry, allow to onstrut basi salar di�erential invariants forspeial PMAs. They will be disussed in a separate paper. It is worth mentioning thatall linear PMAs are speial.Our approah is based on the theory of solution singularities for nonlinear PDEs (see[9℄). Indeed, a Lagrangian distribution or, equivalently, the assoiated PCB, representsequations that desribe fold type singularities of multivalued solutions of the orre-sponding PMA. An advantage of this point of view is that it allows a similar analysis ofhigher order PDEs and, in partiular, to understand what are higher order analogues ofMonge-Ampere equations. These topis will be disussed in a forthoming joint paperby M. Bahtold and the seond author.The paper is organized as follows. The notations and generalities onerning jetspaes and Monge-Ampere equations, we need throughout the paper, are olleted insetions 2 and 3, respetively. In partiular, the interpretation of PMAs as Lagrangiandistributions is presented here. Setion 4 ontains some basi fats on geometry of La-grangian distributions. The entral of them is the notion of the direting distributionof a Lagrangian distribution. The above mentioned subdivision of nonitegrable PMAs



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 3into generi and speial types re�ets some ontat properties of this distribution. Pro-jetive urve bundles that are anonial models of direting distributions are introduedand studied subsequently in setion 6. For ompleteness in setion 5 we give a shortproof of the known fat that integrable PMAs are loally equivalent one to another.Finally, basi salar di�erential invariants of generi PCBs and hene of generi PMAsare onstruted and disussed in setion 7.Throughout the paper we use the following notations and onventions:
• all objets in this paper, e.g., manifolds, mappings, funtions, vetor �elds, et,are supposed to be smooth;
• C∞(M) stands for the algebra of smooth funtions on the manifold M and

C∞(M)-modules of all vetor �elds and di�erential k-forms are denoted by
D(M) and ˜k(M), respetively;

• the evaluation of X ∈ D(M) (resp., of α ∈ ˜k(M)) at p ∈ M is denoted by X|p( resp., α|p);
• dpf : TpM −→ Tf(p)N stands for the di�erential of the map f :M → N ,M and

N being two manifolds;
• For X, Y ∈ D(M) and α ∈ ˜k(M) we shall use the shorten notation Xr(Y ) for

Lr
X(Y ) and Xr(α) for Lr

X(α) (with X0(Y ) = Y and X0(α) = α) for the r-thpower of the Lie derivative LX .
• depending on the ontext by a distribution on a manifold M we understandeither a subbundle D of the tangent bundle TM , whose �ber over p ∈ M isdenoted by D(p), or the C∞(M)-module of its setions. In partiular, X ∈ Dmeans that Xp ∈ D(p), ∀p ∈ M ;
• we write D = 〈X1, ..., X2〉 if the distribution D is generated by vetor �elds

X1, ..., Xr ∈ D(M); similarly, D = Ann(α1, ..., αs) means that D is onstitutedby vetor �elds annihilated by forms α1, ..., αs ∈ ˜
1(M);

• if M is equipped with a ontat distribution C and S ⊂ C is a subdistributionof C, then S⊥ denotes the C-orthogonal omplement to S.2. PreliminariesIn this setion the notations and basi fats we need throughout the paper are ol-leted. The reader is referred to [1, 3, 4℄ for further details.2.1. Jet bundles. Let E be an (n + m)-dimensional manifold. The manifold of k-th order jets, k ≥ 0, of n-dimensional submanifolds of E is denoted by Jk(E, n) and
πk,l : J

k(E, n) −→ J l(E, n), k ≥ l, stands for the anonial projetion. If E is �beredby a map π : E → M over an n-dimensional manifold M , then Jkπ denotes the k-thorder jet manifold of loal setions of π. Jkπ is an open domain in Jk(E, n). The k−thorder jet of an n−dimensional submanifold L ⊂ E at a point z ∈ L is denoted by [L]kz .Similarly, if σ is a (loal) setion of π and x ∈ M , then [σ]kx = [σ(U)]kσ(x), U being thedomain of σ, stands for the k−th order jet of σ at x. The orrespondene z 7→ [L]kz



4 D. CATALANO FERRAIOLI AND A. M. VINOGRADOVde�nes the k−th lift of L

jkL : L −→ Jk(E, n).Similarly, the k−th lift of a loal setion σ of π

jkσ : U → Jkπsends x ∈ U to [σ]kx, i.e., jkσ = jk(σ(U)) ◦ σ. Put
L(k) = Im(jkL), Mk

σ = Im(jkσ).Let θk+1 = [L]
k+1
z be a point of Jk+1(E, n). Then the R-plane assoiated with θk+1 isthe subspae

Rθk+1
= Tθk

(L(k))of Tθk
(Jk(E, n)) with θk = [L]

k
z . The orrespondene θk+1 7→ Rθk+1

is biunique. Put
Vθk+1

= Tθk
(Jk(E, n))/Rθk+1

.and denote by
prθk+1

: Tθk
(Jk(E, n)) −→ Vθk+1the anonial projetion. The vetor bundle

νk+1 : V(k+1) −→ Jk+1(E, n), k ≥ 0,whose �ber over θk+1, is Vθk+1
is naturally de�ned. By νk,r denote the pullbak of νkvia πr,k, r ≥ k.Let C(θk) ⊂ Tθk

(Jkπ) be the span of all R−planes at θk. Then θk 7→ C(θk) is theCartan distribution on Jk(E, n) denoted by Ck. This distribution an be alternativelyde�ned as the kernel of the νk-valued Cartan form Uk on Jk(E, n):
Uk(ξ) = prθk

(dθk
πk,k−1(ξ)) ∈ Vθk

, ξ ∈ Tθk
(Jk(E, n)).A di�eomorphism ϕ : Jk(E, n)→ Jk(E, n) is alled ontat if it preserves the Cartandistribution. Similarly, a vetor �eld Y on Jk(E, n) is alled ontat if [Y, Ck] ⊂ Ck. Aontat di�eomorphism ϕ (respetively, a ontat �eld Y ) anonially lifts to a ontatdi�eomorphism ϕ(l) (respetively, a ontat �eld Y (l)) on Jk+l(E, n)).Below the above onstrutions will be mainly used for n = 2, m = 1, k = 1, 2. In thisase C1 is the anonial ontat struture on J1(E, 2), dimE = 3, and the bundle ν1 is

1-dimensional. ν1 is anonially isomorphi to the bundle whose �ber over θ ∈ J1(E, 2)is
Tθ(J

1(E, 2))/C(θ).A vetor �eld X on E de�nes a setion sX ∈ •(ν1), sX(θ) = prθ(X). Sine ν1 is
1-dimensional, the ν1-valued form U1 an be presented as(1) U1 = UX · sX , UX ∈ ˜1(J1(E, 2)),in the domain where sX 6= 0.



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 5Let M be a manifold supplied with a ontat distribution C. An almost everywherenonvanishing di�erential form U ∈ ˜1(M) is alled ontat if it vanishes on C. A vetor�eld Y ∈ D(M) is ontat i�(2) LX(U) = λU, λ ∈ C∞(M),for a ontat form U . For instane, UX (see (1)) is a ontat form.If a vetor �eld X ∈ D(J1(E, 2) is ontat, then f = X U1 ∈ •(ν1) is alled thegenerating funtion of X. X is ompletely determined by f and is denoted by Xf inorder to underline this fat. If U is a ontat form on a ontat manifold (M, C) and
X ∈ D(M) is ontat, then f = X U ∈ C∞(M) is the generating funtion of Xwith respet to U .Vetor �elds X, Y ∈ D(M) belonging to C are alled C-orthogonal if [X, Y ] alsobelongs to C. Obviously, this is equivalent to dU(X, Y ) = 0 for a ontat form U .Observe that C-orthogonality is a C∞(M)-linear property. A subdistribution D of C isalled Lagrangian if any two �elds X, Y ∈ D are C-orthogonal and D is not ontained inanother distribution of bigger dimension possessing this property. If dim M = 2n+ 1,then dim D = n.A loal hart (x, y, u) in E, where (x, y) are interpreted as independent variables and
u as the dependent one, extends anonially to a loal hart(3) (x, y, u, ux = p, uy = q, uxx = r, uxy = s, uyy = t)on J2(E, 2). Funtions (x, y, u, p, q) form a (standard) hart in J1(E, 2). The loalontat form U = U∂u

(see (1)) in this hart reads
U = du − pdx − qdy.Aordingly, in this hart the ontat vetor �eld orresponding to the generating withrespet to U funtion f reads(4) Xf = −fp∂x − fq∂y + (f − pfp − qfq)∂u + (fx + pfx)∂p + (fy + qfx)∂q.In the sequel we shall use C and U for the ontat distribution and a ontat form inthe urrent ontext, respetively.3. Paraboli MA equations3.1. MA equations. Let E be a 3-dimensional manifold. A k-th order di�erentialequation imposed on bidimensional submanifolds of E is a hypersurfae E ⊂ Jk(E, 2).In a standard jet hart it is seen as a k-th order equation for one unknown funtion intwo variables. In the sequel we shall deal only with seond order equations of this kind.In a jet hart (3) on J2(E, 2) suh an equation reads(5) F (x, y, u, p, q, r, s, t) = 0.The standard subdivision of equations (5) into hyperboli, paraboli and ellipti onesis intrinsially haraterized by the nature of singularities of their multi-valued solutions



6 D. CATALANO FERRAIOLI AND A. M. VINOGRADOV(see [9℄). Some elementary fats from solution singularity theory we need in this paperare brought below.Let θ2 ∈ J2(E, 2), θ1 = π2,1(θ2) and Fθ1 = π−1
2,1(θ1). Reall that an R-plane at θ1 is aLagrangian plane in C(θ1), i.e., a bidimensional subspae R ⊂ C(θ1) suh that dω|R = 0for a ontat 1-form ω on J1(E, 2). If P ⊂ C(θ1) is a 1-dimensional subspae, then(6) l(P ) = {θ ∈ Fθ1 |Rθ ⊃ P} ⊂ Fθ1is the 1-ray orresponding to P .A loal hart on Fθ1 is formed by restritions of r, s, t to Fθ1. By abusing the notationwe shall use r, s, t for these restritions as well. Denote by (“r, “s, “t) oordinates in Tθ2(Fθ1)with respets to the basis ∂r|θ2, ∂s|θ2, ∂t|θ2 . Cones

Vθ2 =
{

“r“t − “s2 = 0
}

⊂ Tθ2(Fθ1), θ2 ∈ Fθ1 ,de�ne a distribution of ones V : θ2 7→ Vθ2 on Fθ1 alled the ray distribution. Thisdistribution is invariant with respet to ontat transformations.Lemma 1. If P is spanned by the vetor
w = ζ1∂x + ζ2∂y + µ∂u + η1∂p + η2∂q ∈ Tθ1(J

1(E, 2))then the 1-ray l(P ) is desribed by equations(7) {

ζ1r + ζ2s = η1,
ζ1s+ ζ2t = η2.In partiular, l(P ) is tangent to V.Proof. Put p0 = p(θ1), q0 = q(θ1). Sine P ⊂ C(θ1) we have(8) w U = 0⇔ µ = ζ1p0 + ζ2q0,and hene

w = ζ1(∂x + p0∂u) + ζ2(∂y + q0∂u) + η1∂p + η2∂q.Moreover, Rθ2 ⊃ P i�
w (dp − rdx − sdy)θ2 = w (dq − sdx − tdy)θ2 = 0and these relations are idential to (7).Obviously, the omponents of the tangent to l(P ) vetor at θ1 are(9) (“r, “s, “t) =

(

ζ22 ,−ζ1ζ2, ζ
2
1

)and manifestly satisfy the equation “r“t − “s2 = 0. �Put
Eθ1 = E ∩ Fθ1An equation E is of prinipal type if it intersets transversally �bers of the projetion

π2,1. In suh a ase Eθ1 is a bidimensional submanifold of Fθ1 , ∀ θ1 ∈ J1(E, 2). Furtheron we assume E to be of prinipal type.



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 7The symbol of E at θ2 ∈ E is the bidimensional subspae
Smblθ2(E) := Tθ2Eθ1of Tθ2 (Fθ1).A point θ2 ∈ E is ellipti (resp., paraboli, or hyperboli) if Vθ2 intersets Smblθ2(E)in its vertex only (resp., along a line, or along two lines). So, if θ2 is paraboli, then

Smblθ2(E) is a tangent to the one Vθ2 plane. In other words, in this ase Eθ1 is tangentto the ray distribution on Fθ1 .De�nition 1. An equation E is alled ellipti (resp., paraboli, or hyperboli) if allits points are ellipti (resp., paraboli, or hyperboli).Lemma 2. If a 1-ray l(P ) is tangent to a paraboli equation E at a point θ2, then
l(P ) ⊂ Eθ1.Proof. The 1-rays distribution on Fθ1 may be viewed as the distribution of Monge'sones of a �rst order PDE for one unknown funtion in two variables. As it is easy tosee, this equation in terms of oordinates x1 = r, x2 = t, y = s on Fθ1 is ∂y

∂x1
· ∂y

∂x2
= 1
4
. Abanal omputation then shows that harateristis of this equation are exatly 1-raysand hene its solutions are ruled surfaes omposed of 1-rays. �Corollary 1. If E is a paraboli equation, then Eθ1 is a ruled surfae in Fθ1 omposedof 1-rays.For a paraboli equation E and a point θ1 ∈ J1(E, 2) onsider all 1-dimensionalsubspaes P ⊂ C(θ1) suh that l(P ) ⊂ Eθ1. This is a 1-parametri family of lines and,so, their union is a bidimensional oni surfae Wθ1 in C(θ1). Then

θ1 7→ Wθ1 , θ1 ∈ J1(E, 2),is the Monge distribution of E . Integral urves of this distribution are urves alongwhih multivalued solutions of E fold up. It is worth mentioning that tangent planes toa surfae Wθ1 are all Lagrangian. We omit the proof but note that Lagrangian planesare simplest surfaes possessing this property.Given type singularities of multivalued solutions of a PDE are desribed by orre-sponding subsidiary equations. If E is a paraboli equation, then integral urves ofthe orresponding to E Monge distribution desribe loi of fold type singularities of itssolutions.Intrinsially, the lass of Monge-Ampere (MA) equations is haraterized by the prop-erty that these subsidiary equations are as simple as possible. More preisely, thismeans that oni surfaes Wθ1s' must be geometrially simplest. As we have alreadynotied, for paraboli equations the simplest are Lagrangian planes. Thus paraboliMA equations (PMAs) are oneptually de�ned as paraboli equations whose Mongedistributions are distributions of Lagrangian planes. It will be shown below that thisde�nition oinides with the traditional one.



8 D. CATALANO FERRAIOLI AND A. M. VINOGRADOVReall that, aording to the traditional desriptive point of view, MA equations arede�ned as equations of the form(10) N(rt − s2) + Ar +Bs+ Ct+D = 0with N, A, B, C and D being some funtions of variables x, y, u, p, q. MA equationswith N = 0 are alled quasilinear. – = B2 − 4AC + 4ND is the disriminant of (10).Proposition 1. Equation (10) is ellipti (resp., paraboli, or hyperboli) if – <
0 (resp.,– = 0, or – > 0).Proof. As it is easy to see, the symbol of equation (10) at a point θ2 of oordinates
(r, s, t) is desribed by the equation(11) N(t“r + r“t − 2s“s) + A“r +B“s+ C“t = 0.with (“r, “s, “t) subjet to the relation “r“t − “s2 = 0. Now one diretly extrats the resultfrom this relation and (11). �Finally, we observe that all above de�nitions and onstrutions are ontat invariant.3.2. Paraboli MA equations as Lagrangian distributions. In this setion it willbe shown that the oneptual de�nition of PMA equations oinides with the traditionalone.First of all, we haveProposition 2. Equation (10) is paraboli in the sense of de�nition 1 if and only if
– = 0. The Monge distribution of paraboli equation (10) is a distribution of Lagrangianplanes, i.e., a Lagrangian distribution.Proof. First, let E be equation (10). A simple diret omputation shows that E istangent to the 1-ray distribution i� – = 0.Seond, oe�ients of equation (10) may be thought as funtions on J1(E, 2). Let
A0, . . . , N0 be their values at a point θ1 ∈ J1(E, 2). Then

N0(t“r + r“t − 2s“s) + A0“r +B0“s+ C0“t = 0is the equation of Eθ1 in Fθ1 . If N0 6= 0 this equation desribes a standard one with thevertex at the point θ2 of oordinates r = −C0/N0, s = B0/2N0, t = −A0/N0. So, Eθ1 isthe union of 1-rays l(P ) passing through θ2. By de�nition this implies that P ⊂ Rθ2and hene Wθ1 is the union of lines P that belong to Rθ2. This shows that Wθ1 = Rθ2.Finally, note that the ase N0 = 0 an be brought to the previous one by a suitablehoie of jet oordinates. �From now on we shall denote by DE the Monge distribution of a PMA equation E .From the proof of the above Proposition we immediately extrat geometrial meaningof the orrespondene E 7→ DE .Corollary 2. The distribution DE assoiates with a point θ1 ∈ J1(E, 2) the R-plane
Rθ2 with θ2 being the vertex of the one Eθ1.



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 9A oordinate desription of DE is as follows.Proposition 3.(12) DE =

〈

∂x + p∂u −
C

N
∂p +

B

2N
∂q, ∂y + q∂u +

B

2N
∂p −

A

N
∂q

〉

, if N 6= 0or(13) DE =

〈

A∂x +
B

2
∂y + (Ap+Bq)∂u − D∂p,

B

2
∂p − A∂q

〉

, if N = 0.Proof. If (x0, . . . , t0) are oordinates of θ2 ∈ J2(E, 2), then the R-plane Rθ2 is generatedby vetors
∂x + p0∂u + r0∂p + s0∂q and ∂y + q0∂u + s0∂p + t0∂qat the point θ1. By Corollary 2 one gets the needed result for N 6= 0 just by speializingoordinates of θ2 in these expressions to that of the vertex of the one Eθ1 (see theproof of Proposition 2). The ase N = 0 is redued to the previous one by a suitabletransformation of jet oordinates. �In its turn, the distribution DE ompletely determines the equation E . More exatly,we haveProposition 4. Let D be a Lagrangian subdistribution of C. Then the submanifold

ED = {θ2 ∈ J2(E, 2) : dim(Rθ2 ∩ D(θ1)) > 0}of J2(E, 2) is a paraboli Monge-Ampere equation and D = DED
.Proof. There is the only one point θ2 ∈ (ED)θ1 suh that Rθ2 = D(θ1). With thisexeption dim(Rθ2 ∩ D(θ1)) = 1. Hene (ED)θ1 is the union of all 1-rays l(P ) suh that

P ⊂ D(θ1). They all pass through the exeptional point θ2 and hene onstitute aone in Fθ1 . But ones omposed of 1-rays are tangent to the 1-ray distribution on Fθ1and, so, all their points are paraboli. Finally, the last assertion diretly follows fromCorollary 2. �Results of this setion are summed up in the following Theorem whih is the startingpoint of our subsequent disussion of paraboli Monge-Ampere equations.Theorem 1. The orrespondene D 7−→ ED between Lagrangian distributions on
J1(E, 2) and paraboli Monge-Ampere equations is one-to-one.The meaning of this Theorem is that it deodes the geometrial problem hidden underanalytial ondition (10). Namely, this problem is to �nd Legendrian submanifolds S ofa 5-dimensional ontat manifold (M, C) that interset a given Lagrangian distribution
D ⊂ C in a nontrivial manner, i.e.,

dim{Tθ(S) ∩ D(θ)} > 0, ∀ θ ∈ S.



10 D. CATALANO FERRAIOLI AND A. M. VINOGRADOVThe triple E = (M, C,D) enodes this problem. By this reason, in the rest of this paperthe term �paraboli Monge-Ampere equation� will refer to suh a triple. In partiular,equivalene and lassi�ation problems for PMAs are interpreted as suh problems forLagrangian distributions on 5-dimensional ontat manifolds.4. Geometry of Lagrangian distributionsIn this setion we dedue some basi fats about Lagrangian distributions on 5-dimensional ontat manifolds whih allow to reveal four natural lasses of them. We�x the notation (M, C) for the onsidered ontat manifold and D for a Lagrangiandistribution on it.First of all, Lagrangian distributions are subdivided onto integrable and nonitegrableones. Aordingly, the orresponding paraboli Monge-Ampere equations are alled in-tegrable, or non-integrable. In the subsequent setion it will be shown that all integrablePMAs are loally ontat equivalent to the equation uxx = 0 and we shall onentrateon nonintegrable PMAs.If D is nonintegrable, then its �rst prolongation D(1), i.e., the span of all vetor �eldsbelonging to D and their ommutators, is 3-dimensional. Moreover, we haveLemma 3.(1) D(1) ⊂ C;(2) the C-orthogonal omplement R of D(1) is a 1-dimensional subdistribution of D.Proof. (1) If (loally) D = 〈X, Y 〉, then (loally) D(1) = 〈X, Y, [X, Y ]〉. But, by de�ni-tion of C-orthogonality, [X, Y ] ∈ C.(2) The form dU restrited to C is nondegenerate. So, the assertion follows from thefat that in a sympleti linear spae a Lagrangian subspae in a hyperplane ontainsthe skew-orthogonal omplement of the hyperplane. �The 1-dimensional distribution R will be alled the direting distribution of D (alter-natively, of E).This way one gets the following �ag of distributions
R ⊂ D ⊂ D(1) ⊂ C.The direting distribution R uniquely de�nes D(1), whih is its C-orthogonal omple-ment, and the distribution

D′ =
{

X ∈ D(1)| [X,R] ⊂ D(1)
}

.Sine [X,R] ⊂ D(1) for any X ∈ D, we see that D ⊆ D′ ⊆ D(1). So, by obviousdimension arguments, only one of the following two possibilities may our loally:either D′ = D, or D′ = D(1). A non-integrable Lagrangian distribution D is alledgeneri in the �rst ase and speial in the seond. Aordingly, the orrespondingPMAs are alled generi, or speial.The following assertion diretly follows from the above de�nitions.



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 11Proposition 5. A generi Lagrangian distribution D is ompletely determined by itsdireting distribution R. It is no longer so for a speial distribution and in this ase Ris the harateristi distribution of D(1).In this paper we shall onentrate on generi PMA equations with a speial attentionto the equivalene problem. In view of Proposition 5 this problem takes part of theequivalene problem for 1-dimensional subdistributions of C. To loalize this part ariterion allowing to distinguish direting distributions of generi PMA equations fromother 1-dimensional subdistributions of C. The introdued below notion of the type ofa 1-dimensional subdistribution of C gives suh a riterion.Fix a 1-dimensional distribution S ⊂ C and put
Sr = {Y ∈ C | Xs(Y ) ∈ C, ∀ X ∈ S and 0 ≤ s ≤ r} .In the following lemma we list without a proof some obvious properties of Sr.Lemma 4.

• Sr+1 ⊂ Sr and S ⊂ Sr;
• If (loally) S = 〈X〉, then (loally)

Sr = {Y ∈ C | Xs(Y ) ∈ C, 0 ≤ s ≤ r}

• Sr is a �nitely generated C∞(M)-module;
• If (loally) C = Ann(U), U ∈ ˜1(M), and (loally) S = 〈X〉, then

Sr = Ann(U, X(U), ..., Xr(U)).Let T be a C∞(M)-module. An open domain B ⊂ M is alled regular for T if theloalization of T to B is a projetive C∞(B)-module. If T is �nitely generated (see [7℄),then this loalization is isomorphi to the C∞(B)-module of smooth setions of a �nitedimensional vetor bundle over B. In suh a ase the dimension of this bundle is alledthe rank of T on B and denoted by rankBT . Moreover, the manifold M is subdividedinto a number of open domains that are regular for T and the set of its singular pointswhih is losed and thin. In partiular, vetor bundles representing loalizations of Srto its regular domains are distributions ontained in C and ontaining S (Lemma 4).Lemma 5. Let B ⊂ M be a ommon regular domain for modules Sr and Sr+1. Theneither rankBSr = rankBSr+1 + 1, or rankBSr = rankBSr+1. In the latter ase B is regularfor Sp, p ≥ r, and rankBSp = rankBSr.Proof. The �rst alternative takes plae i� Xr+1(U) is C∞(M)-independent of
U, X(U), . . . , Xr(U) as it is easily seen from the last assertion of Lemma 4. In theseond ase the equality of ranks implies that loalizations of Sr and Sr+1 to B oin-ide. This shows that the loalization of Sp to B stabilizes by starting from p = r. �Corollary 3. With the exeption of a thin losed set the manifold M is subdividedinto open domains eah of them is regular for all Sp, p ≥ 0. Moreover, in suh adomain B, rankBSp = 4 − p, if p ≤ r, and rankBSp = 4 − r, if p ≥ r, for an integer
r = r(B), 1 ≤ r ≤ 3.



12 D. CATALANO FERRAIOLI AND A. M. VINOGRADOVProof. It immediately follows from Lemma 5 that the funtion p 7→ rankBSp steadilydereases up to the instane, say p = r, when
rankBSr = rankBSr+1 ours for the �rst time, and stabilizes after. Sine S ⊂ Sp, thelast assertion of Lemma 4 shows that this instane happens at most for p = 3, i.e., that
r ≤ 3. On the other hand, forms U and X(U) are independent. Indeed, the equality
X(U) = fU for a funtionf means that X is a ontat �eld with generating funtion
iX(U) ≡ 0. But only the zero �eld is suh one. Hene r ≥ 1.Finally, observe that regular domains for Sp+1 are obtained from those for Sp byremoving from latters some thin subsets. Sine, as we have seen before, the situationstabilizes after at most four steps by starting from p = 0, the existene of ommonregular domains for all Sp's whose union is everywhere dense in M is guaranteed. �De�nition 2. If M is the only regular domain for all Sp's, then S is alled regular on
M and the integer r by starting from whih the rankBSr stabilizes is alled the type of
S and also the type of X, if S = 〈X〉.Hene Lemma 5 tells that the type of S an be only one of the numbers 1, 2, or 3,and that the union of domains in whih S is regular is everywhere dense in M.It is not di�ult to exhibit vetor �elds of eah these three types. For instane, vetor�elds of the form Xf − fX1 on M = J1(E, 2) with everywhere non-vanishing funtion
f are of type 1. Fields ∂x + p∂z + q∂p and ∂x + p∂z + (xy + q)∂p are of type 2 and 3,respetively.Now we an haraterize direting distributions of generi PMA equationsProposition 6. A 1-dimensional regular distribution S ⊂ C is the direting distributionof a generi PMA equation i� it is of type 3.Proof. Let S be a regular distribution of type 3 and (loally) S =< X >. Then byde�nition S1 = S⊥ andD = S2 is a bidimensional subdistribution of C. D is Lagrangian,sine D ⊂ S1 = S⊥ and S ⊂ D. If (loally) D = 〈X, Y 〉, then [X, Y ] /∈ D. Indeed,assuming that [X, Y ] ∈ D one sees that Xp(Y ) ∈ D ⊂ C, ∀p, and hene Y ∈ Sp, ∀p.In partiular, this implies that D = 〈X, Y 〉 ⊂ S3 in ontradition with the fat that
dim S3 = 1 if S is of type 3. So, dim 〈X,Y, [X,Y]〉 = 3, and 〈X, Y, [X, Y ]〉 ⊂ S⊥, sine
X(Y ), X2(Y ) ∈ C. Now, by dimension arguments, we onlude that 〈X, Y, [X, Y ]〉 = S⊥and, therefore, S is the direting distribution of D = S2.Conversely, assume that (loally) R = 〈X〉 is the direting distribution of a generiPMA equation orresponding to the Lagrangian distribution D = 〈X, Y 〉 (loally).Then, by de�nition, R1 = R⊥. Moreover, D = D′ implies that X2(Y ) /∈ R⊥ and hene�elds X, Y, X(Y ), X2(Y ) form a loal basis of C. This shows that X3(Y ) /∈ C. Indeed,the assumption X3(Y ) ∈ C implies [X, C] ⊂ C, i.e., that X is a nonzero ontat �eldwith zero generating funtion. Hene Y /∈ R3 ⇔ [X, Y ] /∈ R2. From one side, this showsthat D = R2 and, from other side, that R2 6= R3. So, R3 = 〈R〉 ⇒ rank R = 3. �



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 13From now on we denote by Z the direting distribution of the onsidered PMA E . Aoordinate desription of D = DE ,D1 and Z is easily obtained by a diret omputation(see Proposition 3):Proposition 7. Let E be a quasilinear nonintegrable PMA of the form (10) with A 6= 0.By normalizing its oe�ients to A = 1 one has: D = 〈X1, X2〉 and D(1) = 〈X1, X2, X3〉with
X1 := ∂x + p∂u +

B

2
(∂y + q∂u)− D∂p,

X2 :=
B

2
∂p − ∂q,

X3 := [X1, X2] =M1 (∂y + q∂u) +M2∂p,where
M1 = −

1

2
X2(B), M2 =

1

2
X1(B) +X2(D),and R = 〈Z〉 with

Z :=M1X1 − M2X2.Proposition 8. Let E be a nonintegrable PMA of the form (10) with N 6= 0. Bynormalizing its oe�ients to N = 1 one has: D = 〈X1, X2〉 and D(1) = 〈X1, X2, X3〉with
X1 := ∂x + p∂u − C∂p +

B

2
∂q,

X2 := ∂y + q∂u +
B

2
∂p − A∂q,

X3 := [X1, X2] =M1∂q +M2∂p,where
M1 = −X1(A)−

1

2
X2(B), M2 =

1

2
X1(B) +X2(C),and R = 〈Z〉 with

Z :=M1X1 − M2X2.5. Classifiation of integrable PMAsFor ompleteness we shall prove here the following, essentially known, result in amanner that illustrate the idea of our further approah.Theorem 2. With the exeption of singular points all integrable PMA equations areloally ontat equivalent eah other and, in partiular, to the equation uxx = 0.Proof. Let E = (M, C,D) be an integrable PMA equation, i.e., the Lagrangian distri-bution D is integrable and, as suh, de�ne a 2-dimensional Legendrian foliation of M.Loally this foliation an be viewed as a �bre bundle š :M → W over a 3-dimensionalmanifold W . The di�erential dθ(š) : TθM → TyW, y = š(θ), sends C(θ) to a bidi-mensional subspae Pθ ⊂ TyW , sine ker dθ(š) = D(θ). This way one gets the map



14 D. CATALANO FERRAIOLI AND A. M. VINOGRADOV
šy : š

−1(y) → G3,2(y), θ 7→ Pθ, where G3,2(y) is the Grassmanian of 2-dimensionalsubspaes in TyW . Note that dimš−1(y) = dimG3,2(y) = 2 and, so, the loal rank of
šy may vary from 0 to 2. We shall show that, with the exeption of a thin set ofsingular points, šy's are of rank 2, i.e., šy's are loal di�eomorphisms.First, assume that this rank is zero for all y ∈ W , i.e., šy's are loally onstantmaps. In this ase Pθ does not depend on θ ∈ š−1(y) and we an put P(y) = Pθ, for a
θ ∈ š−1(y). Hene y 7→ P(y) is a distribution on W and C is its pullbak via š. Thisshows that the distribution tangent to �bers of š, i.e., D, is harateristi for C. But aontat distribution does not admit nonzero harateristis.Seond, if the rank of šy's equals to one for all y ∈ W , then M is foliated by urves

γP = {θ ∈ š−1(y)|dθš(C(θ)) = P}with P being a bidimensional subspae of TyW . Loally, this foliation may be seen asa �bre bundle š0 :M → N over a 4-dimensional manifold N, and š fatorizes into theomposition
C
š0→ N

š1→ Wwith š1 uniquely de�ned by š and š0. By onstrution the 3-dimensional subspae
dθš0(C(θ)) ⊂ TzN, z = š0(θ), does not depend on θ ∈ š−1

0 (z) = γP and one an put
Q(z) = dθš0(C(θ)) for a θ ∈ š−1

0 (z). As before we see that C is the pullbak via š0 ofthe 3-dimensional distribution z 7→ Q(z) in ontradition with the fat that C does notadmit nonzero harateristis.Thus, exept singular points, š is of rank 2 and hene a loal di�eomorphism.So, loally, šy identi�es š−1(y) and an open domain in G3,2(y). By observing that
G3,2(y) = π−1

1,0(y), with π1,0 : J
1(W, 2)→ W being a natural projetion, one gets a loalidenti�ation of M with an open domain in J1(W, 2). It is easy to see that this identi�-ation is a ontat di�eomorphism. In other words, we have proven that any integrableLagrangian distribution on a 5-dimensional ontat manifold is loally equivalent to thedistribution of tangent planes to �bers of the projetion J1(R3, 2)→ R

3.Finally, we observe that DE = 〈∂x, ∂y〉 for the equation E = {uxx = 0} and hene thisequation is integrable. �6. Projetive urve bundles and non-integrablegeneri PMAsIn this setion non-integrable generi Lagrangian distributions and, therefore, theorresponding PMAs are represented as 4-parameter families of urves in the projetive
3-spae or, more exatly, as projetive urve bundles. Di�erential invariants of singleurves omposing suh a bundle (say, projetive urvature, torsion,et) put togethergive di�erential invariants of the whole bundle and onsequently of the orrespondingPMA. This basi geometri idea is developed in details in the subsequent setion.Let N be a 4-dimensional manifold. Denote by PT ∗

a N the 3-dimensional projetivespae of all 1-dimensional subspaes of the otangent to N spae T ∗
a N at the point



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 15
a ∈ N . The projetivization pτ ∗ : PT ∗N → N of the otangent to N bundle τ ∗ :
T ∗N → N is the bundle whose total spae is PT ∗N =

⋃

a∈NPT ∗
a N and the �ber over

a ∈ N is PT ∗
a N , i.e., (pτ ∗)−1(a) = PT ∗

a N . A projetive urve bundle (PCB) over N isa 1-dimensional subbundle π : K → N of pτ ∗:
K →֒ PT ∗N

π ↓ ↓ pτ ∗

N
id

−→ NThe �ber π−1(y), y ∈ N , is a smooth urve in the projetive spae PT ∗
y N . A di�eo-morphism � : N → N ′ lifts anonially to a di�eomorphism PT ∗N → PT ∗N ′. Thislift sends a PCB π over N to a PCB over N ′, denoted by �π. A PCB π over N anda PCB π′ over N ′ are equivalent if there exist a di�eomorphism � : N → N ′ suh that

π′ = �π.Let π : K → N be a PCB and θ =< ρ >∈ K with ρ ∈ T ∗

π(θ)N . Denote by Wθ the
3-dimensional subspae of Tπ(θ)N annihilated by θ, i.e.,

Wθ =
{

ξ ∈ Tπ(θ)N | ρ(ξ) = 0
}

.Two distributions are anonially de�ned on K. First of them is the 1-dimensionaldistribution Rπ formed by all vertial with respet to π vetors. The seond one,denoted by Cπ, is de�ned by
(Cπ)θ = {η ∈ TθK | dθπ(η) ∈ Wθ} .Obviously, dim Cπ = 4 and Rπ ⊂ Cπ. If, loally, Rπ = 〈Z〉 , Z ∈ D(K), and Cπ =

Ann(Uπ), Uπ ∈ ˜1(K), then the osulating distributions of π are de�ned as
Zπ

s = Ann(Uπ, Z(Uπ), ..., Z
s(Uπ)), s = 0, 1, 2, 3.It is easy to see that this de�nition does not depend on the hoie of Z and Uπ. Notethat Cπ = Zπ

0 . Also, Rπ ⊂ Zπ
s , ∀ s ≥ 0, as it easily follows from [iZ , LZ ] = 0 and

Uπ(Z) = 0. Moreover, generially forms Uπ, Z(Uπ), ..., Z
3(Uπ) are independent and so,by dimension arguments, Rπ = Zπ

3 .We say that π is a regular PCB i� the following two onditions are satis�ed: (i)
Rπ = Zπ

3 and (ii) Cπ is a ontat struture on K. We emphasize that regularity is ageneri ondition. Moreover, onditions (i)-(ii) are equivalent to the fat that Rπ is oftype 3 with respet to the ontat distribution Cπ. So, by Proposition 6, the distribution
Dπ = {X ∈ R⊥

π |LX(Rπ) ⊂ R⊥

π }.with R⊥
π being the Cπ-orthogonal omplement of Rπ is bidimensional and Lagrangianfor a regular PCB π. Thus we haveTheorem 3. If π is a regular PCB, then Dπ is a Lagrangian subdistribution of Cπ and

(K, Cπ,Dπ) is a generi PMA whose direting distribution is Rπ. Conversely, a generiPMA loally determines a regular PCB.



16 D. CATALANO FERRAIOLI AND A. M. VINOGRADOVProof. The �rst assertion of the Theorem is already proved. It remains to represent ageneri PMA (M, C,D) as a regular PCB. Integral urves of its direting distribution
R foliate M. Loally, this foliation may be onsidered as a �ber bundle π :M → Nover a 4-dimensional manifold N . Sine R(θ) ⊂ C(θ), the subspae Vθ = dθπ(C(θ)) ⊂
TyN, y = π(θ), is 3-dimensional. Put •y = π−1(y). The map πy : •y → G4,3(y), θ 7→
Vθ, with G4,3(y) being the Grassmanian of 3-dimensional subspaes in TyN , is almosteverywhere of rank 1. Indeed, the assumption that loally this rank is zero leads, asin the proof of Theorem 2, to onlude that loally the ontat distribution C is thepullbak via π of a 3-dimensional distribution on N .The orrespondene ιy : G4,3(y) → PT ∗

y N that sends a 3-dimensional subspae V ⊂
TyN to Ann(V ) is, obviously, a di�eomorphism. Hene the omposition ιy ◦ πy is aloal embedding with exeption of a thin subset of singular points. Now, it is easy tosee that images of •y's via ιy ◦ πy's give the required PCB. �The above onstrution assoiating a PCB with a given PMA is manifestly funtorial,i.e., an equivalene F : (M, C,D) −→ (M′, C′,D′) of PMAs indues an equivalene
� : (N, K, π) −→ (N ′, K ′, π′) of assoiated PCBs. Indeed, F sends R to R′ and heneintegral urves of R (loally, �bers of π) to integral urves of R′ (loally, �bers of π′).This de�nes a map � of the variety N of �bers of π to the variety N ′ of �bers of π′,et. Thus we haveCorollary 4. The problem of loal ontat lassi�ation of generi PMAs is equivalentto the problem of loal lassi�ation of regular PCBs with respet to di�eomorphisms ofbase manifolds.Now we observe that there is another, in a sense, dual PCB assoiated with a givenPMA equation. Namely, assoiate with a point θ ∈ K the line Lθ = dθπ(Dπ(θ)) ⊂
TyN, y = π(θ). The orrespondene θ 7→ Lθ ∈ PTyN , where PTyN denotes the proje-tive spae of lines in TyN , de�nes a map of π−1(y) to PTyN , i.e., a (singular) urve in
PTyN . As before this de�nes loally a 1-dimensional subbundle in the projetivization
PTN of TN . It will be alled the seond PCB assoiated with the onsidered PMA.PCBs may be onsidered as anonial models of PMAs. Besides other they suggest ageometrially transparent onstrution of salar di�erential invariants of PMAs.Let I be a salar projetive di�erential invariant of urves in RP 3, say, the projetiveurvature (see [11, 2℄), θ ∈ K and y = π(θ). The value of this invariant for the urve
•y = π−1(y) in PT ∗

y is a funtion on •y. Denote it by Iπ,y and put Iπ(θ) = Iπ,y(θ) if
θ ∈ •y ⊂ K. Then, obviously, Iπ ∈ C∞(K) is a di�erential invariant of the PCB π andhene of the PMA represented by π.Theorem 4. The di�erential invariants of the form Iā are su�ient for a ompletelassi�ation of generi PMA equations on the basis of the "priniple of n-invariants".



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 17Proof. Aording to the "priniple of n-invariants", it is su�ient to onstrut n =
dimM = 5 independent di�erential invariants of PMAs in order to solve the lassi�-ation problem. Suh invariants of the required form will be onstruted in the nextsetion. �For the "priniple of n-invariants" the reader is referred to [1, 10℄.7. Differential invariants of generi PCBsLet π : K → N be a regular PCB and, as before, Rπ =< Z >, Dπ =< Z, X >and Cπ = Ann(U). Here the vetor �eld Z and the 1-form U are unique up to afuntional nowhere vanishing fator, while X is unique up to a transformation X 7−→
gX + ϕZ, g, ϕ ∈ C∞(K) with nowhere vanishing g.Sine the onsidered PCB is regular we have the following �ag of distributions

Rπ ⊂ Dπ ⊂ R⊥

π ⊂ Cπ ⊂ D(K)of dimensions inreasing from 1 to 5, respetively. In terms of X, Z and U they aredesribed as follows:Proposition 9. Loally, with the exeption of a thin set of singular points we have:(1) Rπ = Ann(Z i(U) : i = 0, 1, 2, 3) = 〈Z〉 ;(2) Dπ = Ann(U, Z(U), Z2(U)) = 〈Z, X〉 ;(3) R⊥
π = Ann(U, Z(U)) =< Z, X, Z(X) >;(4) Cπ = Ann(U) =< Z, Z i(X) : i = 0, 1, 2 >;(5) {Z, X, Z(X), Z2(X), Z3(X)} is a base of the C∞(K)-module D(K);(6) for some funtions ri ∈ C∞(K)(14) Z4(U) + r1Z

3(U) + r2Z
2(U) + r3Z(U) + r4U = 0Proof. Assertions (1)-(3) are diret onsequenes of Lemma 4, Proposition 6 and def-initions. Assertion (4) follows from independene of Z2(X) from Z, X, Z(X). Thisis so beause otherwise Z would be a harateristi of R⊥

π = < Z, X, Z(X) > inontradition with the fat that Rπ is of rank 3. Similarly, Z3(X) is independent of
Z, X, Z(X), Z2(X). Indeed, otherwise Z would be a harateristi of Cπ. This proves(5).Finally, forms Zs(U), s ≥ 0, are annihilated by Z. Sine dimM = 5 this implies that
Z4(U) depends on Zs(U), s ≤ 3. But this is equivalent to (14). �Corollary 5. If 0 ≤ k, l ≤ 3 and k + l = 3, then

Zk(X)yZ l(U) = (−1)k+1Z3(X)yU 6= 0.Proof. Assertions (5) and (6) of the above Proposition show that Z3(X) ompletes abasis of C to a basis of D(K). So, Z3(X)yU is a nowhere vanishing funtion.



18 D. CATALANO FERRAIOLI AND A. M. VINOGRADOVIt follows from the standard formula [iX , LY ] = i[X,Y ] that
Zk(X)yZ l(U) =

[

iZk(X), LZ

]

(Z l−1(U))− LZ(Z
k(X)yZ l−1(U)) =

− Zk+1(X)yZ l−1(U)− LZ(Z
k(X)yZ l−1(U))(15)Aording to Proposition 9, (1)-(3), Zr(X)yZs(U) = 0 if r + s = 2. So, for k + l = 3relation (15) beomes

Zk(X)yZ l(U) = −Zk+1(X)yZ l−1(U)

�By deomposing Z4(X) with respet to the base in (5) of Proposition 9 we get(16) Z4(X) + ρ1Z
3(X) + ρ2Z

2(X) + ρ3Z(X) + ρ4X + ρ5Z = 0for some funtions ρi ∈ C∞(K) and hene(17) Z4(X ∧ Z) + ρ1Z
3(X ∧ Z) + ρ2Z

2(X ∧ Z) + ρ3Z(X ∧ Z) + ρ4X ∧ Z = 0.The last is a relation binding the bivetor X ∧ Z, whih generates the distribution
Dπ. This bivetor is unique up to a funtional fator.Proposition 10. Funtions ri's in deomposition (14) are expressed in terms of iteratedLie derivatives Z i(U), Zj(X) as follows:

r1 = −
XyZ4(U)

XyZ3(U)
, r2 = −

Z(X)yZ4(U) + r1Z(X)yZ3(U)

Z(X)yZ2(U)
,

r3 = −
Z2(U)yZ4(U) + r1Z

2(X)yZ3(U) + r2Z
2(X)yZ2(U)

Z2(X)yZ(U)
,

r4 = −
Z3(X)yZ4(U) + r1Z

3(X)yZ3(U) + r2Z
3(X)yZ2(U) + r3Z

3(X)yZ(U)

Z3(X)yU
.Proof. By subsequently inserting �elds Zs(X), 0 ≤ s ≤ 3, in (14) one easily gets theresult by taking into aount Proposition 9 and Corollary 5. �Similarly, we haveProposition 11. Funtions ρi in deomposition (17) are expressed in terms of iteratedLie derivatives Z i(U), Zj(X) as follows:

ρ1 = −
Z4(X)yU

Z3(X)yU
, ρ2 = −

Z4(X)yZ(U) + ρ1Z
3(X)yZ(U)

Z2(X)yZ(U)
,

ρ3 = −
Z4(U)yZ2(U) + ρ1Z

3(X)yZ2(U) + ρ2Z
2(X)yZ2(U)

Z(X)yZ2(U)
,

ρ4 = −
Z4(X)yZ3(U) + ρ1Z

3(X)yZ3(U) + ρ2Z
2(X)yZ3(U) + ρ3Z(X)yZ3(U)

XyZ3(U)
.



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 19Proof. As before we get the desired result by subsequently inserting the vetor �eld inthe left hand side of (16) into 1-forms Zs(U), 0 ≤ s ≤ 3. �Remark 1. By introduing funtions αkl = Zk(X)yZ l(U) we see that ri's and ρi's arerational funtions of αkl's:
r1 =

α04
α03

, r2 =
α03α14 + α04α13

α03α12
, etc.Di�erential invariants we are going to onstrut are projetive di�erential invariantsof urves omposing the onsidered PCB. Clearly, it is not possible to desribe expliitlythese urves. So, the problem is how to express these invariants in terms of the data atour disposal, i.e., X, Z and U . In what follows this problem is solved on the basis of arather transparent analogy. For instane, the �eld Z restrited to one of these urvesmay be thought as the derivation with respet to a parameter along this urve, andso on. So, with similar interpretations in mind it is su�ient just to mimi a knownonstrution of projetive di�erential invariants for urves in order to obtain the desiredresult. In doing that we follows lassial Wilzynski's book [11℄. By stressing the usedanalogy we pass to Wilzynski's pi's and qj's instead of above ri's and ρj 's:(18) r1 = 4p1, r2 = 6p2, r3 = 4p3, r4 = p4and(19) ρ1 = 4q1, ρ2 = 6q2, ρ3 = 4q3, ρ4 = q4.In terms of these funtions relations (14) and (17) read(20) Z4(U) + 4p1Z

3(U) + 6p2Z
2(U) + 4p3Z(U) + p4U = 0,(21) Z4(X ∧ Z) + 4q1Z

3(X ∧ Z) + 6q2Z
2(X ∧ Z) + 4q3Z(X ∧ Z) + q4X ∧ Z = 0.These relations are idential to Wilzynski's formulas (see equation (1), page 238 of[11℄).

Z and U are unique up to a "gauge" transformation (Z, U) 7−→ (Z, U)(22) Z = fZ, U = hUwith nowhere vanishing f, h ∈ C∞(K). The orresponding transformation of oe�ients
{pi} 7−→ {�pi} an be easily obtained from (20) by a diret omputation:
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(23)
p1 7−→ �p1 =

Z(h)

h
+

p1
f
+
3Z(f)

2f
,

p2 7−→ �p2 =
p2
f 2
+
2p1 Z(f)

f 2
+
2p1 Z(h)

3hf
+ 3

Z(h)Z(f)

hf
+
7Z(f)2

6f 2

+
2Z2(f)

3f
+

Z2(h)

h
,

p3 7−→ �p3 =
p3
f 3
+
3p2Z(h)

hf 2
+
3p2Z(f)

2f 3
+

p1 Z(f)
2

f 3
+
6p1Z(h)Z(f)

hf 2

+
3p1Z

2(h)

hf
+

p1Z
2(f)

f 2
+

Z3(f)

4f
+
9Z(f)Z2(h)

2hf
+

Z(f)3

4f 3

+
7Z(h)Z(f)2

2hf 2
+
2Z(h)Z2(f)

hf
+

Z3(h)

h
+

Z2(f)Z(f)

f 2
,

p4 7−→ �p4 =
p4
f 4
+
4p3Z(h)

hf 3
+
6p2Z

2(f)

hf 2
+
6p2Z(h)Z(f)

hf 3
+
4p1 Z

3(h)

hf

+
4p1Z(h)Z

2(f)

hf 2
+
4p1Z(h)Z(f)

2

hf 3
+
12p1Z(f)Z

2(h)

hf 2

+
6Z(f)Z3(h)

hf
+

Z4(h)

h
+
7Z(f)2Z2(h)

hf 2
+

Z(h)Z3(f)

hf

+
4Z(h)Z2(f)Z(f)

hf 2
+

Z(f)3Z(h)

hf 3
+
4Z2(h)Z2(f)

hf
.Now the problem is to ombine pi's in a way to obtain expressions whih are invariantwith respet to transformations (23). To this end we �rst normalize (Z, U) by theondition p1 = 0. This an be easily done with f = 1 and a solution h of the equation

Z(h) + p1h= 0.After this normalization, equation (20) takes a simpler form(24) Z4(U) + 6P2Z
2(U) + 4P3Z(U) + P4U = 0with(25) P2 := p2 − Z(p1)− Z(p1)

2,

P3 := p3 − Z(Z(p1))− 3p1p2 + 2p
3
1,

P4 := p4 − 4p1p3 − 3p
4
1 − Z(Z(Z(p1))) + 3Z(p1)

2

+6p21Z(p1) + 6p
2
1p2 − 6Z(p1)p2.Proposition 12. Transformations (22) preserving the normalization p1 = 0 are subjetto the ondition(26) Z(h) +
3

2
Z(ln(f))h = 0.



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 21Proof. A diret omputation. �Now the problem redues to �nding invariant ombinations of P2, P3 and P4 withrespet to normalized, i.e., respeting ondition (26), transformations (22). This an bedone, for instane, by mimiking the onstrution of projetive urvature and torsionin [11℄. Namely, introdue �rst the funtions(27) —3 = P3 −
3
2
Z(P2),

—4 = P4 − 2Z(P3) +
6
5
Z(Z(P2))−

81
25

P 22 ,

—3·1 = 6—3Z(Z(—3))− 7Z(—3)
2 − 108

5
P2—

2
3They are semi-invariant with respet to normalized transformations (22), i.e., they aretransformed aording to formulas(28) —3 =

—3
f 3

, —4 =
—4
f 4

, —3·1 =
—3·1
f 8

.Obviously, the following ombinations of the —i's(29) κ1 =
—4

—
4/3
3

, κ2 =
—3·1

—
8/3
3are invariant with respet to normalized transformations (22).Thus we haveProposition 13. κ1 and κ2 are salar di�erential invariants of paraboli Monge-Ampereequations (10) with respet to ontat transformations.Expliit expressions of κ1 and κ2 in terms of oe�ients of PMA (10) an be straight-forwardly obtained from those of Z and U . However, they are not very instrutive andtoo umbersome to be reported here.Another invariant, whih an be readily extrated from (28), is the invariant vetor�eld(30) N1 = —

−1/3
3 Z.Another set of salar di�erential invariants an be onstruted in a similar mannerby starting from equation (17). Indeed, the vetor �eld Z and the bivetor �eld X ∧Zgenerating distributions R and D, respetively, are unique up to transformations(31) Z = fZ, X ∧ Z = gX ∧ Zwith nowhere vanishing f, g ∈ C∞(K).It is easy to hek that oe�ients qi's are transformed aording to formulas (23)and one an repeat what was already done previously in the ase of equation (14). Inpartiular, equation (17) an be normalized as(32) Z4(X ∧ Z) + 6Q2Z

2(X ∧ Z) + 4Q3Z(X ∧ Z) +Q4X ∧ Z = 0



22 D. CATALANO FERRAIOLI AND A. M. VINOGRADOVwith(33) Q2 = q2 − Z(q1)− Z(q1)
2,

Q3 = q3 − Z(Z(q1))− 3q1q2 + 2q
3
1,

Q4 = q4 − 4q1q3 − 3q
4
1 − Z(Z(Z(q1))) + 3Z(q1)

2

+6q21Z(q1) + 6q
2
1q2 − 6Z(q1)q2.This way we obtain the following salar di�erential invariants of PMAs(34) τ1 :=

˜4

˜
4/3
3

, τ2 :=
˜3·1

˜
8/3
3with semi-invariants ˜i's de�ned by(35) ˜3 = Q3 −

3
2
Z(Q2),

˜4 = Q4 − 2Z(Q3) +
6
5
Z(Z(Q2))−

81
25

Q22,

˜3·1 = 6˜3Z(Z(˜3))− 7Z(˜3)
2 − 108

5
Q2˜

2
3.Similarly,(36) N2 = ˜

−1/3
3 Z.is an invariant vetor �eld.Remark 2. The observed parallelism in onstrution of two sets of di�erential invari-ants is explained by the fat that in both ases we ompute the same invariants in twodi�erent PCB, namely, the �rst and the seond ones, assoiated with the onsideredPMA.Sine vetor �elds N1 and N2 are invariant and N1 = λN2 the fator λ = —

−1/3
3 ˜

1/3
3is a salar di�erential invariant. So,

γ3 := λ3 =
˜3
—3is a salar di�erential invariant of a new �mixed� kind as well as ratios

γ4 :=
˜4
—4

, λ3·1 :=
˜3·1
—3·1By applying to already onstruted salar di�erential invariants

κ1, κ2, τ1, τ2, γ3, γ4, γ3·1various algebrai operations and arbitrary ompositions of invariant vetor �elds N1 and
N2 one an onstrut many other salar di�erential invariants of PMAs. These does notexhaust all invariants. Nevertheless, various quintuples of (funtionally) independentinvariants an be omposed from them, and this is the only one need in order to applythe �priniple of n invariants�. For instane, we have



DIFFERENTIAL INVARIANTS OF GENERIC PMAS 23Theorem 5. Quintuples (κ1, κ2, τ1, τ2, γ3) and (γ3, N1(γ3), N21 (γ3), κ1, κ2) are omposedof independent invariants.Proof. It is su�ient to exhibit an example for whih invariants omposing eah of thesetwo quintuples are independent. For instane, for both quintuples suh is the equationdetermined by the direting distribution R generated by
Z = q∂x + y∂y + (qp+ yq)∂z + x∂p − xz∂q .In this ase the orresponding Lagrangian distribution D is generated by

X1 = a1(∂x + p∂u) + a2∂p + a3∂q, X2 = a1(∂y + q∂u) + a3∂p + a4∂qwith
a1 = xyu − (x − y)q, a2 = −(x − y)x − (u+ xp)y2,
a3 = x2u+ (u+ xp)yq, a4 = −(q + xu)xu − (u+ xp)q2,and the orresponding PMA is(37) a21(rt − s2) + a1a4r + 2a1a3s − a1a2t+ xa1(xyup − xu − xpq + yu2 − uq) = 0.Expliit expressions of invariants (κ1, κ2, τ1, τ2, γ3) and (γ3, N1(γ3), N21 (γ3), κ1, κ2) forequation (37) are too umbersome to be reported here. A diret hek shows that theyare funtionally independent in eah of above two quintuples. �Thus, aording to the �priniple of n-invariants� (see [1, 10℄), the proven existene of�ve independent salar di�erential invariants solves in priniple the equivalene problemfor generi PMA equations. It should be stressed, however, that a pratial implemen-tation of this result ould meet some boring omputational problems.8. Conluding remarksRepresentation of a PMA equation E by means of the assoiated PCB makes learlyvisible the nature of its nonlinearities. For example, if all urves of this bundle areprojetively nonequivalent eah other, then E does not admit ontat symmetries, et.The instane of this an be deteted by means of invariants onstruted in the previoussetion. On the ontrary, it may happen that all urves omposing a PCB are proje-tively equivalent, i.e., nonlinearities of the orresponding PMA E are �homogeneous�.The above onstruted invariants are not su�ient to distinguish one homogeneous inthis sense PMA from another, and a need of new �ner invariants arises. It is remark-able that in similar situations PCBs themselves give an idea of how suh invariantsan be onstruted. For instane, in the above homogeneous ase one an observe thatthe bundle PT ∗N → N is naturally supplied with a full parallelism struture whihimmediately furnishes the required new invariants. It is not di�ult to imagine var-ious intermediate situations, whih demonstrate the diversity and omplexity of theworld of paraboli Monge-Ampere equations. In partiular, the problem of desribingall strata of the harateristi di�ety (see [10℄) for paraboli Monge-Ampere equationsis a task of a rather large sale. Further results in this diretion will appear in a seriesof forthoming publiations.
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