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DIFFERENTIAL INVARIANTS OF GENERIC PARABOLIC
MONGE-AMPERE EQUATIONS

D. CATALANO FERRAIOLI AND A. M. VINOGRADOV

ABSTRACT. Some new results on geometry of classical parabolic Monge-Ampere equa-
tions (PMA) are presented. PMAs are either integrable, or nonintegrable according to
integrability of its characteristic distribution. All integrable PMAs are locally equiva-
lent to the equation u,, = 0. We study nonintegrable PMAs by associating with each
of them a 1-dimensional distribution on the corresponding first order jet manifold,
called the directing distribution. According to some property of these distributions,
nonintegrable PMAs are subdivided into three classes, one generic and two special
ones. Generic PMAs are uniquely characterized by their directing distributions. To
study directing distributions we introduce their canonical models, projective curve
bundles (PCB). A PCB is a 1-dimensional subbundle of the projectivized cotangent
bundle to a 4-dimensional manifold. Differential invariants of projective curves com-
posing such a bundle are used to construct a series of contact differential invariants
for corresponding PMAs. These give a solution of the equivalence problem for PMAs
with respect to contact transformations.

1. INTRODUCTION

Since Monge’s "Application de I’Analyse a la Géométrie" Monge-Ampere equations
periodically attract attention of geometers. This is not only due to the numerous
applications to geometry, mechanics and physics. Geometry of these equations being
tightly related with various parts of the modern differential geometry has all merits to
be studied as itself. Last 2-3 decades manifested a return of interest to geometry of
Monge-Ampere equations, mostly to elliptic and hyperbolic ones. The reader will find
an account of recent results together with an extensive bibliography in |5].

In this article we study geometry of classical parabolic Monge-Ampere equations
(PMAs) on the basis of a new approach sketched in [8]. According to it, a PMA
& C J3*(m), m being a l-dimensional fiber bundle over a bidimensional manifold, is
completely characterized by its characteristic distribution De which is a 2-dimensional
Lagrangian distribution on J'(7), and vice versa. Such distributions and, accordingly,
the corresponding to them PMAs, are naturally subdivided into four classes, integrable,
generic and two types of special ones (see [8] and sec.4). All integrable Lagrangian
foliations are locally contact equivalent. A consequence of it is that a PMA £ is locally
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contact equivalent to the equation wu,, = 0 iff the distribution D¢ is integrable. This
exhausts the integrable case. On the contrary, nonintegrable Lagrangian distributions
are very diversified and our main goal here is to describe their multiplicity, i.e., more
precisely, equivalence classes of PMAs with respect to contact transformations.

With this purpose we associate with a Lagrangian distribution a projective curve bun-
dle (shortly, PCB) over a 4-dimensional manifold N. A PCB over N is a 1-dimensional
smooth subbundle of the "projectivized" cotangent bundle PT*(N) of N. Under some
regularity conditions such a bundle possesses a canonical contact structure and, as a
consequence, a canonically inscribed in it Lagrangian distribution. There exists a one-
to-one correspondence between generic Lagrangian distributions and regular PCBs.
This way the equivalence problem for generic PMAs is reformulated as the equivalence
problem for PCBs (see [8]) and this is the key point of our approach. The fiber of such
a bundle over a point x € N is a curve +, in the projective space PT;(N). The curve
7. can be characterized by its scalar differential invariants with respect to the group
of projective transformations. By putting such invariants for single curves ~, together
for all € N one obtains scalar differential invariants for the considered PCB and,
consequently, for the corresponding PMA.

This kind of invariants resolve the equivalence problem for generic PMAs on the basis
of the "principle of n—invariants" (see [1, 10]). We have chosen them among others for
their transparent geometrical meaning. It should be stressed, however, that there are
other choices, maybe, less intuitive but more efficient in practice. We shall discuss this
point separately.

Special Lagrangian distributions admit a similar interpretation in terms of 2-
dimensional distributions on 4-dimensional manifolds supplied with additional struc-
tures, called fringes (see [8|). Differential invariants of fringes, also coming from pro-
jective differential geometry, allow to construct basic scalar differential invariants for
special PMAs. They will be discussed in a separate paper. It is worth mentioning that
all linear PMAs are special.

Our approach is based on the theory of solution singularities for nonlinear PDEs (see
[9]). Indeed, a Lagrangian distribution or, equivalently, the associated PCB, represents
equations that describe fold type singularities of multivalued solutions of the corre-
sponding PMA. An advantage of this point of view is that it allows a similar analysis of
higher order PDEs and, in particular, to understand what are higher order analogues of
Monge-Ampere equations. These topics will be discussed in a forthcoming joint paper
by M. Bachtold and the second author.

The paper is organized as follows. The notations and generalities concerning jet
spaces and Monge-Ampere equations, we need throughout the paper, are collected in
sections 2 and 3, respectively. In particular, the interpretation of PMAs as Lagrangian
distributions is presented here. Section 4 contains some basic facts on geometry of La-
grangian distributions. The central of them is the notion of the directing distribution
of a Lagrangian distribution. The above mentioned subdivision of nonitegrable PMAs
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into generic and special types reflects some contact properties of this distribution. Pro-
jective curve bundles that are canonical models of directing distributions are introduced
and studied subsequently in section 6. For completeness in section 5 we give a short
proof of the known fact that integrable PMAs are locally equivalent one to another.
Finally, basic scalar differential invariants of generic PCBs and hence of generic PMAs
are constructed and discussed in section 7.

Throughout the paper we use the following notations and conventions:

e all objects in this paper, e.g., manifolds, mappings, functions, vector fields, etc,
are supposed to be smooth;

e C°(M) stands for the algebra of smooth functions on the manifold M and
C*°(M)-modules of all vector fields and differential k-forms are denoted by
D(M) and A¥(M), respectively;

e the evaluation of X € D(M) (resp., of a € A¥(M)) at p € M is denoted by X|,
(resp., al,);

o dyf : T,M — Ty N stands for the differential of the map f : M — N,M and
N being two manifolds;

e For X,Y € D(M) and a € A*(M) we shall use the shorten notation X"(Y") for
L% (Y) and X" («) for L% () (with X°(Y) = Y and X°(a) = «) for the r-th
power of the Lie derivative Ly.

e depending on the context by a distribution on a manifold M we understand
either a subbundle D of the tangent bundle T'M, whose fiber over p € M is
denoted by D(p), or the C*°(M)-module of its sections. In particular, X € D
means that X, € D(p), Vp € M;

e we write D = (Xy,..., Xy) if the distribution D is generated by vector fields
X1, ..., X; € D(M); similarly, D = Ann(ay, ..., as) means that D is constituted
by vector fields annihilated by forms ay, ..., ay € AY(M);

e if M is equipped with a contact distribution C and & C C is a subdistribution
of C, then S* denotes the C-orthogonal complement to S.

2. PRELIMINARIES

In this section the notations and basic facts we need throughout the paper are col-
lected. The reader is referred to |1, 3, 4] for further details.

2.1. Jet bundles. Let E be an (n + m)-dimensional manifold. The manifold of k-
th order jets, k& > 0, of n-dimensional submanifolds of E is denoted by J*(E,n) and
Tt JE(E,n) — JY(E,n), k > [, stands for the canonical projection. If E is fibered
by a map 7 : £ — M over an n-dimensional manifold M, then J*r denotes the k-th
order jet manifold of local sections of w. J*r is an open domain in J*(E,n). The k—th
order jet of an n—dimensional submanifold L C E at a point z € L is denoted by [L]]:
Similarly, if o is a (local) section of m and = € M, then [a]]; = [O’(U)]];(I), U being the

k

domain of o, stands for the k—th order jet of o at . The correspondence z +— [L]]
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defines the k—th [ift of L
gl : L — JH(E, n).
Similarly, the k—th [ift of a local section o of 7
Geo U — Jhr
k

€

sends = € U to [0]%, i.e., jro = ji(c(U)) o o. Put

L™ = TIm(ji L), MF = Tm(j,0).

Let 41 = [L]]Z€+1 be a point of J*¥*1(E n). Then the R-plane associated with 6, is
the subspace

Ry, ., = Ty (LW)
of Ty, (J¥(E,n)) with 6), = [L]*. The correspondence 61 — Ry, ., is biunique. Put
Voer = To (J*(E,n))/Ro,.,-
and denote by
Prog,, : To (JH(E,n)) — Vi, .,
the canonical projection. The vector bundle
Vi1 : Vierny — JTHE, n), k>0,

whose fiber over 0y1, is Vp, , is naturally defined. By vy, denote the pullback of v
via T, 7 > k.

Let C(A)) C Ty, (J*7) be the span of all R—planes at ;. Then ), — C(6) is the
Cartan distribution on J*(E,n) denoted by Cy. This distribution can be alternatively
defined as the kernel of the v-valued Cartan form Uy on J*(E, n):

Ui(6) = pro, (do,mii-1(8)) € Vo, & € Ty, (J*(E,n)).

A diffeomorphism ¢ : J*(E,n) — J*(E,n) is called contact if it preserves the Cartan
distribution. Similarly, a vector field Y on J*(E,n) is called contact if [Y,Cy] C Cip. A
contact diffeomorphism ¢ (respectively, a contact field Y') canonically lifts to a contact
diffeomorphism o (respectively, a contact field Y) on J*(E, n)).

Below the above constructions will be mainly used for n =2, m =1,k = 1,2. In this
case C; is the canonical contact structure on J'(E,2),dim E = 3, and the bundle v, is
1-dimensional. v is canonically isomorphic to the bundle whose fiber over § € J(E, 2)
is
Ty(JY(E,2))/C(0).

A vector field X on E defines a section sx € I'(v1),sx(0) = pro(X). Since vy is
1-dimensional, the v;-valued form U; can be presented as

(1) Up=Ux-sx, UxeA(JY(E,?2)),

in the domain where sx # 0.
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Let M be a manifold supplied with a contact distribution C. An almost everywhere
nonvanishing differential form U € A*(M) is called contact if it vanishes on C. A vector
field Y € D(M) is contact iff

2) Lx(U) =AU, XeC®(M),

for a contact form U. For instance, Ux (see (1)) is a contact form.

If a vector field X € D(J'(FE,2) is contact, then f = X 1 U; € (1) is called the
generating function of X. X is completely determined by f and is denoted by Xy in
order to underline this fact. If U is a contact form on a contact manifold (M, C) and
X € D(M) is contact, then f = X 4 U € C®°(M) is the generating function of X
with respect to U.

Vector fields X, Y € D(M) belonging to C are called C-orthogonal if [X,Y] also
belongs to C. Obviously, this is equivalent to dU(X,Y) = 0 for a contact form U.
Observe that C-orthogonality is a C°>°(M)-linear property. A subdistribution D of C is
called Lagrangian if any two fields X, Y € D are C-orthogonal and D is not contained in
another distribution of bigger dimension possessing this property. If dim M = 2n + 1,
then dim D = n.

A local chart (x,y,u) in E, where (z,y) are interpreted as independent variables and
u as the dependent one, extends canonically to a local chart

(3) (T, Yy, U, Uy = P, Uy = @, Uy = T, Ugy = S, Uyy = )
on J*(F,2). Functions (z,y,u,p,q) form a (standard) chart in J'(F,2). The local
contact form U = Uy, (see (1)) in this chart reads

U = du — pdx — qdy.

Accordingly, in this chart the contact vector field corresponding to the generating with
respect to U function f reads

(4) Xf = _fpaﬂv - fqay + (f - pfp - qu)au + (.f:c _l'pfx)ap + (.fy + Q.f:c)aq

In the sequel we shall use C and U for the contact distribution and a contact form in
the current context, respectively.

3. PARABOLIC MA EQUATIONS

3.1. MA equations. Let E be a 3-dimensional manifold. A k-th order differential
equation imposed on bidimensional submanifolds of F is a hypersurface & C J*(E,2).
In a standard jet chart it is seen as a k-th order equation for one unknown function in
two variables. In the sequel we shall deal only with second order equations of this kind.
In a jet chart (3) on J2(F,2) such an equation reads

(5) F(ZE,y,U,p,q,T,S,t):O.

The standard subdivision of equations (5) into hyperbolic, parabolic and elliptic ones
is intrinsically characterized by the nature of singularities of their multi-valued solutions
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(see [9]). Some elementary facts from solution singularity theory we need in this paper
are brought below.

Let 65 € J2(E,2), 61 = m31(02) and Fy, = m51(61). Recall that an R-plane at 6, is a
Lagrangian plane in C(6,), i.e., a bidimensional subspace R C C(6;) such that dw|gr = 0
for a contact 1-form w on J*(E,2). If P C C(6,) is a 1-dimensional subspace, then

(6) I(P)=1{60 € Fy,|Ry D P} C Fp,

is the 1-ray corresponding to P.

A local chart on Fy, is formed by restrictions of r, s, to Fp,. By abusing the notation
we shall use r, s, t for these restrictions as well. Denote by (7, §,t) coordinates in Ty, (Fy,)
with respects to the basis 0, |g,, Os|o,, O¢|g,. Cones

V02 = {’l:{— §2 — 0} C ng(Fgl), 92 € F91a

define a distribution of cones V : 65 — Vy, on Fy, called the ray distribution. This
distribution is invariant with respect to contact transformations.

Lemma 1. If P is spanned by the vector
w = glaz + C28y + M&u + 7]181, + 7]28q S T91 (Jl(E, 2))
then the 1-ray [(P) is described by equations

Q7+ Gos = 11,
(7) { gis+§2t:ngl.

In particular, [(P) is tangent to V.
Proof. Put pg = p(61), g0 = q(61). Since P C C(#;) we have
(8) w 1U =0 1= Gipo~+ G2,
and hence
w = Cl (893 +p08u) —+ gz(ay -+ quu) —+ 7]18;, -+ 7]28[1.
Moreover, Ry, D P ift
w 1 (dp — rdx — sdy)p, = w 1 (dg — sdx — tdy)s, =0

and these relations are identical to (7).
Obviously, the components of the tangent to I(P) vector at 0; are

(9) (f> §> E) = (C22a _C1C27 C12)
and manifestly satisfy the equation 7t — §2 = 0. O
Put
Eo, = EN Fy,

An equation & is of principal type if it intersects transversally fibers of the projection
m,1. In such a case &, is a bidimensional submanifold of Fy,,V 6; € JY(E,2). Further
on we assume &£ to be of principal type.
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The symbol of £ at 6, € £ is the bidimensional subspace
Sm1)192 (8) = T92891

of ng (Fgl).

A point 0y € & is elliptic (resp., parabolic, or hyperbolic) if Vs, intersects Smblg,(E)
in its vertex only (resp., along a line, or along two lines). So, if 6, is parabolic, then
Smbly, (£) is a tangent to the cone V,, plane. In other words, in this case &, is tangent
to the ray distribution on Fp,.

Definition 1. An equation £ is called elliptic (resp., parabolic, or hyperbolic) if all
its points are elliptic (resp., parabolic, or hyperbolic).

Lemma 2. If a 1-ray I[(P) is tangent to a parabolic equation £ at a point Oy, then
l(P) C 591.

Proof. The 1-rays distribution on Fj, may be viewed as the distribution of Monge’s
cones of a first order PDE for one unknown function in two variables. As it is easy to
see, this equation in terms of coordinates 71 = r,z9 = t,y = s on Fy, is 59_51 . %’2 = i. A
banal computation then shows that characteristics of this equation are exactly 1-rays

and hence its solutions are ruled surfaces composed of 1-rays. U

Corollary 1. If £ is a parabolic equation, then &y, is a ruled surface in Fy, composed
of 1-rays.

For a parabolic equation & and a point 6, € J'(E,2) consider all 1-dimensional
subspaces P C C(f;) such that [(P) C &,. This is a 1-parametric family of lines and,
so, their union is a bidimensional conic surface W, in C(6;). Then

01— Wy, 0,¢JY(E,2),

is the Monge distribution of £. Integral curves of this distribution are curves along
which multivalued solutions of £ fold up. It is worth mentioning that tangent planes to
a surface W, are all Lagrangian. We omit the proof but note that Lagrangian planes
are simplest surfaces possessing this property.

Given type singularities of multivalued solutions of a PDE are described by corre-
sponding subsidiary equations. If £ is a parabolic equation, then integral curves of
the corresponding to £ Monge distribution describe loci of fold type singularities of its
solutions.

Intrinsically, the class of Monge-Ampere (MA) equations is characterized by the prop-
erty that these subsidiary equations are as simple as possible. More precisely, this
means that conic surfaces W, s’ must be geometrically simplest. As we have already
noticed, for parabolic equations the simplest are Lagrangian planes. Thus parabolic
MA equations (PMAs) are conceptually defined as parabolic equations whose Monge
distributions are distributions of Lagrangian planes. It will be shown below that this
definition coincides with the traditional one.
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Recall that, according to the traditional descriptive point of view, MA equations are
defined as equations of the form

(10) N(rt —s*)+ Ar+ Bs+ Ct+ D =0

with N, A, B,C and D being some functions of variables z,y,u,p,q. MA equations
with N = 0 are called quasilinear. A = B*> —4AC + 4N D is the discriminant of (10).

Proposition 1. Fquation (10) is elliptic (resp., parabolic, or hyperbolic) if A <
0 (resp,A=0,orA>0).

Proof. As it is easy to see, the symbol of equation (10) at a point #y of coordinates
(r,s,t) is described by the equation

(11) N(tF +rt — 2s3) + AF + B+ Ct = 0.
with (7, 3,%) subject to the relation #f — 5> = 0. Now one directly extracts the result
from this relation and (11). O

Finally, we observe that all above definitions and constructions are contact invariant.

3.2. Parabolic M A equations as Lagrangian distributions. In this section it will
be shown that the conceptual definition of PMA equations coincides with the traditional
one.

First of all, we have

Proposition 2. FEquation (10) is parabolic in the sense of definition 1 if and only if
A = 0. The Monge distribution of parabolic equation (10) is a distribution of Lagrangian
planes, i.e., a Lagrangian distribution.

Proof. First, let £ be equation (10). A simple direct computation shows that & is
tangent to the 1-ray distribution iff A = 0.

Second, coefficients of equation (10) may be thought as functions on J!(E,2). Let
Ay, ..., Ny be their values at a point ¢; € J*(F,2). Then

No(t7 + rt — 2s5) + Ao + Bys + Cot = 0

is the equation of &, in Fy,. If Ny # 0 this equation describes a standard cone with the
vertex at the point 0y of coordinates r = —Cy/Ny, s = By/2Ny,t = —Ag/Ny. So, &y, is
the union of 1-rays [(P) passing through #,. By definition this implies that P C Ry,
and hence W, is the union of lines P that belong to Ry,. This shows that Wy, = Ry,.

Finally, note that the case Ny = 0 can be brought to the previous one by a suitable
choice of jet coordinates. 0

From now on we shall denote by Dg the Monge distribution of a PMA equation £.
From the proof of the above Proposition we immediately extract geometrical meaning
of the correspondence £ — Deg.

Corollary 2. The distribution Dg associates with a point 0; € J'(E,2) the R-plane
Ry, with 65 being the vertex of the cone &y,.
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A coordinate description of D¢ is as follows.

Proposition 3.

C B B A
(12) Dg = <8m —l—p@u - Nﬁp + ﬁ&]’ 8y + qau + ﬁap — N8q> s ’LfN 7A 0

or

(13)  De= <A8x + gay + (Ap + Bq)d, — Do, gap - A8q> . ifN=0.

Proof. 1f (g, . .., ty) are coordinates of 6, € J*(E,2), then the R-plane Ry, is generated
by vectors

896 + poﬁu + 7“08,, + 500q and 8y + quu + Soap + t()aq

at the point #;. By Corollary 2 one gets the needed result for N # 0 just by specializing
coordinates of #, in these expressions to that of the vertex of the cone &, (see the
proof of Proposition 2). The case N = 0 is reduced to the previous one by a suitable
transformation of jet coordinates. 0

In its turn, the distribution Dg completely determines the equation £. More exactly,
we have

Proposition 4. Let D be a Lagrangian subdistribution of C. Then the submanifold
51) = {92 S J2(E, 2) : d1m(R€2 N D(@l)) > 0}
of J*(E,2) is a parabolic Monge-Ampere equation and D = Dg,,.

Proof. There is the only one point 6, € (Ep),, such that Ry, = D(#;). With this
exception dim(Rg, N D(¢1)) = 1. Hence (Ep),, is the union of all 1-rays [(P) such that
P C D(6;). They all pass through the exceptional point # and hence constitute a
cone in Fjy, . But cones composed of 1-rays are tangent to the 1-ray distribution on Fj,

and, so, all their points are parabolic. Finally, the last assertion directly follows from
Corollary 2. 0

Results of this section are summed up in the following Theorem which is the starting
point of our subsequent discussion of parabolic Monge-Ampere equations.

Theorem 1. The correspondence D +—— Ep between Lagrangian distributions on
JYE,2) and parabolic Monge-Ampere equations is one-to-one.

The meaning of this Theorem is that it decodes the geometrical problem hidden under
analytical condition (10). Namely, this problem is to find Legendrian submanifolds S of
a b-dimensional contact manifold (M, C) that intersect a given Lagrangian distribution
D C C in a nontrivial manner, i.e.,

dim{Ty(S) N D(6)} >0, V6 € S.
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The triple £ = (M, C, D) encodes this problem. By this reason, in the rest of this paper
the term “parabolic Monge-Ampere equation” will refer to such a triple. In particular,
equivalence and classification problems for PMAs are interpreted as such problems for
Lagrangian distributions on 5-dimensional contact manifolds.

4. GEOMETRY OF LAGRANGIAN DISTRIBUTIONS

In this section we deduce some basic facts about Lagrangian distributions on 5-
dimensional contact manifolds which allow to reveal four natural classes of them. We
fix the notation (M, C) for the considered contact manifold and D for a Lagrangian
distribution on it.

First of all, Lagrangian distributions are subdivided onto integrable and nonitegrable
ones. Accordingly, the corresponding parabolic Monge-Ampere equations are called in-
tegrable, or non-integrable. In the subsequent section it will be shown that all integrable
PMAs are locally contact equivalent to the equation u,, = 0 and we shall concentrate
on nonintegrable PMAs.

If D is nonintegrable, then its first prolongation D), i.e., the span of all vector fields
belonging to D and their commutators, is 3-dimensional. Moreover, we have

Lemma 3.
(1) Duy € C;
(2) the C-orthogonal complement R of Dy is a 1-dimensional subdistribution of D.

Proof. (1) If (locally) D = (X,Y’), then (locally) Dy = (X, Y, [X,Y]). But, by defini-
tion of C-orthogonality, [X,Y] € C.

(2) The form dU restricted to C is nondegenerate. So, the assertion follows from the
fact that in a symplectic linear space a Lagrangian subspace in a hyperplane contains
the skew-orthogonal complement of the hyperplane. 0

The 1-dimensional distribution R will be called the directing distribution of D (alter-
natively, of ).
This way one gets the following flag of distributions

RC'DCD(UCC.

The directing distribution R uniquely defines D(yy, which is its C-orthogonal comple-
ment, and the distribution

D' ={X € D [X,R] € D) } -

Since [X,R| C D for any X € D, we see that D C D' C D). So, by obvious
dimension arguments, only one of the following two possibilities may occur locally:
either D' = D, or D' = D(;y. A non-integrable Lagrangian distribution D is called
generic in the first case and special in the second. Accordingly, the corresponding
PMAs are called generic, or special.

The following assertion directly follows from the above definitions.
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Proposition 5. A generic Lagrangian distribution D is completely determined by its
directing distribution R. It is no longer so for a special distribution and in this case R
is the characteristic distribution of D(yy.

In this paper we shall concentrate on generic PMA equations with a special attention
to the equivalence problem. In view of Proposition 5 this problem takes part of the
equivalence problem for 1-dimensional subdistributions of C. To localize this part a
criterion allowing to distinguish directing distributions of generic PMA equations from
other 1-dimensional subdistributions of C. The introduced below notion of the type of
a 1-dimensional subdistribution of C gives such a criterion.

Fix a 1-dimensional distribution & C C and put

S,={YeC|X?(Y)eC,VXeSand0<s <r}.
In the following lemma we list without a proof some obvious properties of S,.

Lemma 4.

¢ S5..1CS andSCS,;
o [f (locally) S = (X)), then (locally)

S, ={YeC|X(Y)eC, 0<s<r}

e S, is a finitely generated C°°(M)-module;
o If (locally) C = Ann(U), U € AY(M), and (locally) S = (X), then

S, = Ann(U, X(U), ..., X"(U)).

Let 7 be a C°°(M)-module. An open domain B C M is called regular for 7 if the
localization of 7 to B is a projective C*°(B)-module. If 7 is finitely generated (see [7]),
then this localization is isomorphic to the C'*°(B)-module of smooth sections of a finite
dimensional vector bundle over B. In such a case the dimension of this bundle is called
the rank of 7 on B and denoted by rankg7. Moreover, the manifold M is subdivided
into a number of open domains that are regular for 7 and the set of its singular points
which is closed and thin. In particular, vector bundles representing localizations of S,
to its regular domains are distributions contained in C and containing S (Lemma 4).

Lemma 5. Let B C M be a common regular domain for modules S, and S,y1. Then
either rankgS, = rankgS,11 + 1, orrankgS, = rankgS,11. In the latter case B is reqular
for §,,p > r, and rankgS, = rankgS;.

Proof. The first alternative takes place iff X" TY(U) is C°°(M)-independent of
UXU),...,X"(U) as it is easily seen from the last assertion of Lemma 4. In the
second case the equality of ranks implies that localizations of S, and §,,1 to B coin-
cide. This shows that the localization of S, to B stabilizes by starting from p =r. 0O

Corollary 3. With the exception of a thin closed set the manifold M is subdivided
into open domains each of them is regular for all S,,p > 0. Moreover, in such a
domain B, rankgS, = 4 —p, if p < r, and rankgS, = 4 —r, if p > r, for an integer
r=r(B),1<r<3.
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Proof. It immediately follows from Lemma 5 that the function p — rankgS, steadily
decreases up to the instance, say p = r, when

rankpS, = rankpS; 41 occurs for the first time, and stabilizes after. Since & C S, the
last assertion of Lemma 4 shows that this instance happens at most for p = 3, i.e., that
r < 3. On the other hand, forms U and X (U) are independent. Indeed, the equality
X(U) = fU for a functionf means that X is a contact field with generating function
ix(U) = 0. But only the zero field is such one. Hence r > 1.

Finally, observe that regular domains for S,y; are obtained from those for S, by
removing from latters some thin subsets. Since, as we have seen before, the situation
stabilizes after at most four steps by starting from p = 0, the existence of common
regular domains for all §,’s whose union is everywhere dense in M is guaranteed. [J

Definition 2. If M is the only reqular domain for all S,’s, then S is called regular on
M and the integer r by starting from which the rankgS, stabilizes is called the type of
S and also the type of X, if S = (X).

Hence Lemma 5 tells that the type of S can be only one of the numbers 1,2, or 3,
and that the union of domains in which S is regular is everywhere dense in M.

It is not difficult to exhibit vector fields of each these three types. For instance, vector
fields of the form X; — fX; on M = J'(FE,2) with everywhere non-vanishing function
[ are of type 1. Fields 0, + pd. + ¢q0, and 0, + pd. + (zy + ¢)0, are of type 2 and 3,
respectively.

Now we can characterize directing distributions of generic PMA equations

Proposition 6. A 1-dimensional regular distribution S C C is the directing distribution
of a generic PMA equation iff it is of type 3.

Proof. Let S be a regular distribution of type 3 and (locally) S =< X >. Then by
definition S; = S+ and D = S, is a bidimensional subdistribution of C. D is Lagrangian,
since D C & = St and S C D. If (locally) D = (X,Y), then [X,Y] ¢ D. Indeed,
assuming that [X,Y] € D one sees that XP(Y) € D C C,Vp, and hence Y € S,,Vp.
In particular, this implies that D = (X,Y) C 83 in contradiction with the fact that
dim S3 = 1 if S is of type 3. So, dim (X,Y,[X,Y]) =3, and (X,Y,[X,Y]) C 8%, since
X(Y),X?(Y) € C. Now, by dimension arguments, we conclude that (X,Y,[X,Y]) = S+
and, therefore, S is the directing distribution of D = Ss.

Conversely, assume that (locally) R = (X) is the directing distribution of a generic
PMA equation corresponding to the Lagrangian distribution D = (X,Y) (locally).
Then, by definition, R; = R*. Moreover, D = D’ implies that X2(Y) ¢ R and hence
fields X,Y, X(Y), X?(Y) form a local basis of C. This shows that X?(Y) ¢ C. Indeed,
the assumption X3(Y) € C implies [X,C] C C, i.e., that X is a nonzero contact field
with zero generating function. Hence Y ¢ R3 < [X,Y]| ¢ R,. From one side, this shows
that D = Ry and, from other side, that Ry # R3. So, R3 = (R) = rank R = 3. O
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From now on we denote by Z the directing distribution of the considered PMA &£. A
coordinate description of D = D¢, Dy and Z is easily obtained by a direct computation
(see Proposition 3):

Proposition 7. Let £ be a quasilinear nonintegrable PMA of the form (10) with A # 0.
By normalizing its coefficients to A =1 one has: D = (X1, Xy) and D1y = (X1, Xo, X3)
with B
Xl = a:c +p8u + 5(811 + qau) - Dap?
B
X2 = 5817 — Oq,

X3 = [Xl, XQ] — Ml (ay + qau) + MQaP’
where

1 1
M, = —§X2(B), My = §X1(B) + Xo(D),

and R = (Z) with
J = Mle - MQXQ.
Proposition 8. Let £ be a nonintegrable PMA of the form (10) with N # 0. By
normalizing its coefficients to N = 1 one has: D = (X1, X3) and Dy = (X1, Xy, X3)
with B
X1 = 05,; +p8u - COP + an,

B
Xp = 0, + g+ 50, — Ad,,

X3 = [Xl, Xg] = Mlaq + Mgﬁp,
where

My = —X;(A) - %X2(B), M, = %Xl(B) + X,(0),

and R = (Z) with
Z = M1X1 — MQXQ.

5. CLASSIFICATION OF INTEGRABLE PMAS

For completeness we shall prove here the following, essentially known, result in a
manner that illustrate the idea of our further approach.

Theorem 2. With the exception of singular points all integrable PMA equations are
locally contact equivalent each other and, in particular, to the equation ., = 0.

Proof. Let £ = (M,C,D) be an integrable PMA equation, i.e., the Lagrangian distri-
bution D is integrable and, as such, define a 2-dimensional Legendrian foliation of M.
Locally this foliation can be viewed as a fibre bundle II : M — W over a 3-dimensional
manifold W. The differential dy(Il) : TypM — T, W,y = II(6), sends C(f) to a bidi-
mensional subspace Py C T,W, since ker dy(Il) = D(#). This way one gets the map



14 D. CATALANO FERRAIOLI AND A. M. VINOGRADOV

I, : T (y) — Gs2(y), 0 — Py, where G35(y) is the Grassmanian of 2-dimensional
subspaces in T,W. Note that dim 17 (y) = dim G32(y) = 2 and, so, the local rank of
IT, may vary from 0 to 2. We shall show that, with the exception of a thin set of
singular points, II,’s are of rank 2, i.e., I,’s are local diffeomorphisms.

First, assume that this rank is zero for all y € W, i.e., II,’s are locally constant
maps. In this case Py does not depend on 6 € II7(y) and we can put P(y) = P, for a
0 € II"'(y). Hence y — P(y) is a distribution on W and C is its pullback via II. This
shows that the distribution tangent to fibers of I, i.e., D, is characteristic for C. But a
contact distribution does not admit nonzero characteristics.

Second, if the rank of II,’s equals to one for all y € W, then M is foliated by curves

v = {0 € I (y)|dsT1(C(0)) = P}

with P being a bidimensional subspace of T},JW. Locally, this foliation may be seen as
a fibre bundle IIy : M — N over a 4-dimensional manifold N, and II factorizes into the
composition
chNDw

with II; uniquely defined by II and II,. By construction the 3-dimensional subspace
deIly(C(0)) C T.N, 2 = Iy(#), does not depend on 6 € II;*(z) = vp and one can put
Q(2) = dyIly(C(0)) for a 6 € TI;*(2). As before we see that C is the pullback via IIy of
the 3-dimensional distribution z — Q(z) in contradiction with the fact that C does not
admit nonzero characteristics.

Thus, except singular points, II is of rank 2 and hence a local diffeomorphism.
So, locally, II, identifies II"!(y) and an open domain in G35(y). By observing that
Gsa(y) = Wié (y), with 7 o : JY(W,2) — W being a natural projection, one gets a local
identification of M with an open domain in J'(W,2). It is easy to see that this identifi-
cation is a contact diffeomorphism. In other words, we have proven that any integrable
Lagrangian distribution on a 5-dimensional contact manifold is locally equivalent to the
distribution of tangent planes to fibers of the projection J*(R?,2) — R3,

Finally, we observe that D¢ = (0,, d,) for the equation & = {u,, = 0} and hence this
equation is integrable. 0J

6. PROJECTIVE CURVE BUNDLES AND NON-INTEGRABLE
GENERIC PMAS

In this section non-integrable generic Lagrangian distributions and, therefore, the
corresponding PMAs are represented as 4-parameter families of curves in the projective
3-space or, more exactly, as projective curve bundles. Differential invariants of single
curves composing such a bundle (say, projective curvature, torsion,etc) put together
give differential invariants of the whole bundle and consequently of the corresponding
PMA. This basic geometric idea is developed in details in the subsequent section.

Let N be a 4-dimensional manifold. Denote by P71 N the 3-dimensional projective
space of all 1-dimensional subspaces of the cotangent to N space TN at the point
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a € N. The projectivization pt* : PI*N — N of the cotangent to N bundle 7* :
T*N — N is the bundle whose total space is PT*N = |J,.yPT,;N and the fiber over
a € Nis PT:N, i.e., (pr*)~'(a) = PT:N. A projective curve bundle (PCB) over N is
a 1-dimensional subbundle 7 : K — N of pr™:

K — PI*N
Tl Lpr*
N 4 N
The fiber 77'(y), y € N, is a smooth curve in the projective space PT;N. A diffeo-
morphism ® : N — N’ lifts canonically to a diffeomorphism PT*N — PT*N’. This
lift sends a PCB 7 over N to a PCB over N, denoted by ®x. A PCB 7 over N and
a PCB 7" over N’ are equivalent if there exist a diffeomorphism ® : N — N’ such that
= Pr.
Let m: K — N be a PCB and 6 =< p > K with p € T;:(O)N. Denote by Wy the
3-dimensional subspace of T )N annihilated by 0, i.e.,

W = {¢ € Tro)N [ p(§) = 0}

Two distributions are canonically defined on K. First of them is the 1-dimensional
distribution R, formed by all vertical with respect to m vectors. The second one,
denoted by C, is defined by

(Cx)o = {n € ToK | domc(n) € Wy} .

Obviously, dimC, = 4 and R, C C,. If, locally, R, = (Z), Z € D(K), and C, =
Ann(Uy), U, € AY(K), then the osculating distributions of 7 are defined as

Z7 = Ann(Uy, Z(Uy), ..., Z°(Uy)), s=0,1,2,3.

It is easy to see that this definition does not depend on the choice of Z and U,. Note
that C, = ZJ. Also, R, C 2I,Vs > 0, as it easily follows from [iz, Lz] = 0 and
U.(Z) = 0. Moreover, generically forms Uy, Z(Uy), ..., Z*(U,) are independent and so,
by dimension arguments, R, = Z7J.

We say that 7 is a regular PCB iff the following two conditions are satisfied: (i)
R, = Z] and (ii) C, is a contact structure on K. We emphasize that regularity is a
generic condition. Moreover, conditions (i)-(ii) are equivalent to the fact that R, is of
type 3 with respect to the contact distribution C,. So, by Proposition 6, the distribution

D, ={X € R:|Lx(R.) C R+}.

with R+ being the Cr-orthogonal complement of R, is bidimensional and Lagrangian
for a regular PCB 7. Thus we have

Theorem 3. If 7 is a reqular PCB, then D, is a Lagrangian subdistribution of C. and
(K,Cr,D;) is a generic PMA whose directing distribution is R,. Conversely, a generic
PMA locally determines a reqular PCB.
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Proof. The first assertion of the Theorem is already proved. It remains to represent a
generic PMA (M, C, D) as a regular PCB. Integral curves of its directing distribution
R foliate M. Locally, this foliation may be considered as a fiber bundle 7 : M — N
over a 4-dimensional manifold N. Since R(f) C C(#), the subspace Vy = dym(C(0)) C
T,N, y = w(0), is 3-dimensional. Put T’y = 7~ *(y). The map m, : I’y — G43(y), 0 —
Vo, with G4 3(y) being the Grassmanian of 3-dimensional subspaces in T, N, is almost
everywhere of rank 1. Indeed, the assumption that locally this rank is zero leads, as
in the proof of Theorem 2, to conclude that locally the contact distribution C is the
pullback via 7 of a 3-dimensional distribution on N.

The correspondence v, : Gu3(y) — PT; N that sends a 3-dimensional subspace V' C
T,N to Ann(V) is, obviously, a diffeomorphism. Hence the composition ¢, o 7, is a
local embedding with exception of a thin subset of singular points. Now, it is easy to
see that images of I')’s via ¢, o m,’s give the required PCB. U

The above construction associating a PCB with a given PMA is manifestly functorial,
i.e., an equivalence F' : (M,C,D) — (M’,C’,D') of PMAs induces an equivalence
®: (N,K,m) — (N, K',7’") of associated PCBs. Indeed, F' sends R to R’ and hence
integral curves of R (locally, fibers of 7) to integral curves of R’ (locally, fibers of 7).
This defines a map ® of the variety N of fibers of 7 to the variety N’ of fibers of 7/,
etc. Thus we have

Corollary 4. The problem of local contact classification of generic PMAs is equivalent
to the problem of local classification of reqular PCBs with respect to diffeomorphisms of
base manifolds.

Now we observe that there is another, in a sense, dual PCB associated with a given
PMA equation. Namely, associate with a point 6 € K the line Ly = dym(D,(0)) C
T,N, y = (). The correspondence 6 — Ly € PT,N, where PT,N denotes the projec-
tive space of lines in T, N, defines a map of 7*(y) to PT,N, i.e., a (singular) curve in
PT,N. As before this defines locally a 1-dimensional subbundle in the projectivization
PTN of TN. It will be called the second PCB associated with the considered PMA.

PCBs may be considered as canonical models of PMAs. Besides other they suggest a
geometrically transparent construction of scalar differential invariants of PMAs.

Let Z be a scalar projective differential invariant of curves in RP3, say, the projective
curvature (see [11, 2]), # € K and y = w(#). The value of this invariant for the curve
Iy = 7~'(y) in PT; is a function on I'y. Denote it by Z., and put Z.(0) = Z,(6) if
8 € I'y C K. Then, obviously, Z, € C*(K) is a differential invariant of the PCB 7 and
hence of the PMA represented by .

Theorem 4. The differential invariants of the form Ly are sufficient for a complete
classification of generic PMA equations on the basis of the "principle of n-invariants”.
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Proof. According to the "principle of n-invariants", it is sufficient to construct n =
dim M =5 independent differential invariants of PMAs in order to solve the classifi-
cation problem. Such invariants of the required form will be constructed in the next
section. 0]

For the "principle of n-invariants" the reader is referred to [1, 10].

7. DIFFERENTIAL INVARIANTS OF GENERIC PCBSs

Let 7 : K — N be a regular PCB and, as before, R, =< Z >, D, =< Z, X >
and C, = Ann(U). Here the vector field Z and the 1-form U are unique up to a
functional nowhere vanishing factor, while X is unique up to a transformation X ——
9gX + ¢Z, g, € C°(K) with nowhere vanishing g.

Since the considered PCB is regular we have the following flag of distributions

R, CD, CRr CCr C D(K)

of dimensions increasing from 1 to 5, respectively. In terms of X, 7 and U they are
described as follows:

Proposition 9. Locally, with the exception of a thin set of singular points we have:
(1) Ry = Ann(Z{(U) :i=0,1,2,3) = (Z);
(2) D, = Ann(U,Z(U),Z2(U)) (Z,X);
(3) Ry = Ann(U, Z(V)) =< Z, X, Z(X) >
(4) Cr = Ann(U) =< Z, ZZ(X) i=0,1, 2>
(5) {Z,X,Z(X), Z*(X), Z>(X)} is a base of the C>=(K)-module D(K);
(6) for some functions r; € C*(K)

)

(14) ZAU) +rZ3U) + ry Z2(U) + 173Z(U) +1,U =0

Proof. Assertions (1)-(3) are direct consequences of Lemma 4, Proposition 6 and def-
initions. Assertion (4) follows from independence of Z*(X) from Z, X, Z(X). This
is so because otherwise Z would be a characteristic of R: = < Z,X,Z(X) > in
contradiction with the fact that R, is of rank 3. Similarly, Z3(X) is independent of
Z,X,7(X),Z*(X). Indeed, otherwise Z would be a characteristic of C,. This proves
(5).

Finally, forms Z*(U), s > 0, are annihilated by Z. Since dim M = 5 this implies that
Z*(U) depends on Z*(U), s < 3. But this is equivalent to (14). O

Corollary 5. If 0 < k,l <3 and k+ 1 =3, then
ZH(X)1ZNU) = (1)1 Z3(X).U # 0.

Proof. Assertions (5) and (6) of the above Proposition show that Z3(X) completes a
basis of C to a basis of D(K). So, Z3(X).U is a nowhere vanishing function.
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It follows from the standard formula [ix, Ly ] = i[xy that
ZH(X) 2 = [izs ). L) (Z7(U)) = L2 (X) 527 (0) =
(15) — ZMUX) 127N U) — Ly (Z9(X) 2271 0))

According to Proposition 9, (1)-(3), Z"(X)1Z*(U) =0if r +s =2. So, for k+1=3
relation (15) becomes

ZH(X)1ZNU) = 2" X) .27 U)

By decomposing Z*(X') with respect to the base in (5) of Proposition 9 we get
(16) ZNX) + 1 Z3(X) + p2Z2(X) + p3 Z(X) + paX + psZ = 0
for some functions p; € C°°(K) and hence
(17)  ZAXANZ) +pZP(XNZ) 4+ p2Z2 (X NZ) 4+ p3Z(X NZ) + puX N Z = 0.

The last is a relation binding the bivector X A Z, which generates the distribution
D.,.. This bivector is unique up to a functional factor.

Proposition 10. Functions r;’s in decomposition (14) are expressed in terms of iterated

Lie derivatives Z'(U), Z7(X) as follows:

S _X_IZ4(U) - _Z(X)_IZ4(U) + le(X)_nZ?’(U)
YTOXLz3UYy T Z(X).22(U) ’
. _Z2(U)_IZ4( )+ Z3(X)Z3(U) + e Z%(X)1Z2(U)
’ 72(X)22(U) |
. _Z3(X)JZ4( )+ Z3(X)2Z3(U) + e Z3(X) 2 Z2(U) + r3 Z23(X) 2 Z(U)
T Z3(X).U ‘
Proof. By subsequently inserting fields Z°(X), 0 < s < 3, in (14) one easily gets the
result by taking into account Proposition 9 and Corollary 5. U

Similarly, we have

Proposition 11. Functions p; in decomposition (17) are expressed in terms of iterated

Lie derivatives Z'(U), Z7(X) as follows:

ZAMX)U  Z(X)aZ(U) + m Z3(X)aZ(U)
n="pmxo T Z2(X) Z(U) ’
B ZYU)Z2U) + ;i Z3(X) 223 (U) + po Z3(X) 22Z%(U)

P =" Z(X).22(U) ’

 Z(X)aZ3(U) + p Z3(X)2Z3(U) + paZ%(X)aZ3(U) + ps Z(X)2Z3(U)
pr=- X,Z3(U) '
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Proof. As before we get the desired result by subsequently inserting the vector field in
the left hand side of (16) into 1-forms Z*(U), 0 < s < 3. O

Remark 1. By introducing functions ay = Z*(X)1ZY(U) we see that r;’s and p;’s are
rational functions of au’s:

Q4 Q3014 T QlpaQi13
rn=—-—, Ty = s etc.
Qo3 Qo312

Differential invariants we are going to construct are projective differential invariants
of curves composing the considered PCB. Clearly, it is not possible to describe explicitly
these curves. So, the problem is how to express these invariants in terms of the data at
our disposal, i.e., X, Z and U. In what follows this problem is solved on the basis of a
rather transparent analogy. For instance, the field Z restricted to one of these curves
may be thought as the derivation with respect to a parameter along this curve, and
so on. So, with similar interpretations in mind it is sufficient just to mimic a known
construction of projective differential invariants for curves in order to obtain the desired
result. In doing that we follows classical Wilczynski’s book [11]. By stressing the used
analogy we pass to Wilczynski’s p;’s and g;’s instead of above r;’s and p;’s:

(18) ry = 4py, ro = 6pa, r3 = 4ps, T4 =Py
and
(19) p1 = 4q1, p2 = 6qa, p3 = 4q3, Ps = Qa.

In terms of these functions relations (14) and (17) read

(20) ZHU) +4p1 Z>(U) + 6p2Z*(U) + 4ps Z(U) + psU = 0,

(21) ZY(XAZ)+4quZ3 (X AN Z) + 62 (X ANZ) + 4 Z(X NZ) + X N Z = 0.

These relations are identical to Wilczynski’s formulas (see equation (1), page 238 of
[11]).

Z and U are unique up to a "gauge" transformation (Z,U) — (Z,0)

(22) Z=1fZ, ~ U=hU

with nowhere vanishing f, h € C°°(K). The corresponding transformation of coefficients
{pi} —— {Pi} can be easily obtained from (20) by a direct computation:



20 D. CATALANO FERRAIOLI AND A. M. VINOGRADOV

Z(h) | p, 32(f)
ho T T2

N %+2p12(f) 2p1 Z(h)

pL——p1 =

Z(hZ(f) | TZ(f)?
72 + Shf +3 hf + 62
22%(f) , Z*(h)
5 h
_ 3pZ(h)  3paZ VZ(f)? 6piZ
ngpgz%ﬂL phf2( ) p2f§f)+p fg) P }(lf)2 (f)
L322 mZ(f)  Z2F) | 9Z2(NZ () Z()°
(23) hf f? 4f 2hf 413
2P 2207 | 2R | ZANDZY)
2h f? hf h 12 ’
dpsZ(h)  6paZ2%(f)  6paZ 4p, Z3(h
p4Hp4:% p;fg ) pzth( ), b }(lfl ), plhf( )
JAZWZAY) | A ZWZUP | 2 Z()ZA0)
hf? hf3 hf?
6ZNZN) | 2N | TZGPZW) | ZNZ)
hf h hf? hf
ZW N2 | ZUVZ0) AZWZ)
hf? hf3 hf '
Now the problem is to combine p;’s in a way to obtain expressions which are invariant
with respect to transformations (23). To this end we first normalize (Z,U) by the
condition p; = 0. This can be easily done with f =1 and a solution h of the equation

_|_

Z(h) + pr1h=0.
After this normalization, equation (20) takes a simpler form
(24) ZHU) + 6P, Z*(U) + 4P Z(U) + P,U = 0
with
Py :=py — Z(p1) — Z(p1)27
(25) Ps = ps — Z(Z(p1)) — 3pip2 + 213,

Py :=py — 4pips — 3pt — Z(Z(Z(p1))) + 3Z(p1)?
+6p Z(p1) + 6pip2 — 6.Z(p1)po.

Proposition 12. Transformations (22) preserving the normalization p; = 0 are subject
to the condition

(26) 2(h) + 2 Z(n()h = 0.
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Proof. A direct computation. OJ

Now the problem reduces to finding invariant combinations of P, P; and P, with
respect to normalized, i.e., respecting condition (26), transformations (22). This can be
done, for instance, by mimicking the construction of projective curvature and torsion
in [11]. Namely, introduce first the functions

@3 — P3 - %Z(Pg),
(27) Oy = Py —2Z(Ps) + $Z(Z(P,)) — 8L P2,
O34 = 6032(Z(03)) — 7Z(03)* — 1 P03

They are semi-invariant with respect to normalized transformations (22), i.e., they are
transformed according to formulas

_ O, — Oy — O3.1
(28) @3 - F, @4 — F, @3.1 — ?
Obviously, the following combinations of the ©;’s
04 O34
(29) R1 = W, Rg = W

3 3

are invariant with respect to normalized transformations (22).
Thus we have

Proposition 13. k1 and ko are scalar differential invariants of parabolic Monge-Ampere
equations (10) with respect to contact transformations.

Explicit expressions of k1 and ks in terms of coefficients of PMA (10) can be straight-
forwardly obtained from those of Z and U. However, they are not very instructive and
too cumbersome to be reported here.

Another invariant, which can be readily extracted from (28), is the invariant vector
field

(30) Ny =0;"%27.

Another set of scalar differential invariants can be constructed in a similar manner
by starting from equation (17). Indeed, the vector field Z and the bivector field X A Z
generating distributions R and D, respectively, are unique up to transformations

(31) Z=fZ, XNZ=gXNZ

with nowhere vanishing f, g € C*°(K).

It is easy to check that coefficients ¢;'s are transformed according to formulas (23)
and one can repeat what was already done previously in the case of equation (14). In
particular, equation (17) can be normalized as

(32) ZH X NZ)+6Q2Z* (X ANZ)+4Q3Z(X NZ) + QuX AN Z =0
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with
Qe=q— Z(q) — Z(q1)?,

Qs =qs— Z(Z(q1)) — 31¢2 + 26]{’7
Q1= q —4q1q3 — 341 — Z(Z(Z(q1))) + 3Z(q1)?
+6¢3Z(q1) + 64392 — 6Z(q1) o

This way we obtain the following scalar differential invariants of PMAs

A As.
3 n=hh ne=an

4/37
A3/ 3

(33)

with semi-invariants A;’s defined by
A3 (3 — %Z(Q2)
(35) = Q4 —2Z(Q3) + % (Z2(Q2)) — Q§>
A3 =6A37(Z(A3)) — TZ(A3)? — %QQA?,).
Similarly,
(36) Ny=A"2.
is an invariant vector field.

Remark 2. The observed parallelism in construction of two sets of differential invari-
ants is explained by the fact that in both cases we compute the same tnvariants in two
different PCB, namely, the first and the second ones, associated with the considered
PMA.

Since vector fields Ny and N, are invariant and N; = AN, the factor A = @_1/3/\1/3
is a scalar differential invariant. So,

3 A3
V3= AT = @—3
is a scalar differential invariant of a new “mixed” kind as well as ratios
A A
V4 = 0, 31 = Os,

By applying to already constructed scalar differential invariants

R1, K2, 71, T2, V3, Va, V31

various algebraic operations and arbitrary compositions of invariant vector fields N; and
N5 one can construct many other scalar differential invariants of PMAs. These does not
exhaust all invariants. Nevertheless, various quintuples of (functionally) independent
invariants can be composed from them, and this is the only one need in order to apply
the “principle of n invariants”. For instance, we have
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Theorem 5. Quintuples (K1, k2, T1, To,Y3) and (3, N1(v3), N2(73), k1, k2) are composed
of independent invariants.

Proof. 1t is sufficient to exhibit an example for which invariants composing each of these
two quintuples are independent. For instance, for both quintuples such is the equation
determined by the directing distribution R generated by

Z = q0, +y0, + (¢qp + yq)0, + x0, — x20,.
In this case the corresponding Lagrangian distribution D is generated by
X1 = a1 (8x —l—p@u) —+ agﬁp + agﬁq, X2 = a3 (8y + q@u) + agap + a48q
with
a=zyu—(x—y)g,  a=—(z—y)zr—(u+zp)y’
az = *u + (u+ zp)yq, ay = —(q + zu)ru — (u + zp)q?,
and the corresponding PMA is

(37)  ai(rt — %) + ayaur + 2aya35 — ajast + ray (vyup — xu — Tpq + Yu® — uq) = 0.

Explicit expressions of invariants (r1, k2, 71, T2, ¥3) and (3, N1(73), NZ(73), k1, k2) for
equation (37) are too cumbersome to be reported here. A direct check shows that they
are functionally independent in each of above two quintuples. U

Thus, according to the “principle of n-invariants” (see |1, 10]), the proven existence of
five independent scalar differential invariants solves in principle the equivalence problem
for generic PMA equations. It should be stressed, however, that a practical implemen-
tation of this result could meet some boring computational problems.

8. CONCLUDING REMARKS

Representation of a PMA equation £ by means of the associated PCB makes clearly
visible the nature of its nonlinearities. For example, if all curves of this bundle are
projectively nonequivalent each other, then £ does not admit contact symmetries, etc.
The instance of this can be detected by means of invariants constructed in the previous
section. On the contrary, it may happen that all curves composing a PCB are projec-
tively equivalent, i.e., nonlinearities of the corresponding PMA & are “homogeneous”.
The above constructed invariants are not sufficient to distinguish one homogeneous in
this sense PMA from another, and a need of new finer invariants arises. It is remark-
able that in similar situations PCBs themselves give an idea of how such invariants
can be constructed. For instance, in the above homogeneous case one can observe that
the bundle PT*N — N is naturally supplied with a full parallelism structure which
immediately furnishes the required new invariants. It is not difficult to imagine var-
ious intermediate situations, which demonstrate the diversity and complexity of the
world of parabolic Monge-Ampere equations. In particular, the problem of describing
all strata of the characteristic diffiety (see [10]) for parabolic Monge-Ampere equations
is a task of a rather large scale. Further results in this direction will appear in a series
of forthcoming publications.
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