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ON THE INTEGRABILITY CONDITIONS FOR SOME STRUCTURES RELATED

TO EVOLUTION DIFFERENTIAL EQUATIONS

P. KERSTEN, I. KRASIL′SHCHIK, A. VERBOVETSKY

Abstract. Using the result by D. Gessler [2], we show that any invariant variational bivector (resp.,

variational 2-form) on an evolution equation with nondegenerate right-hand side is Hamiltonian (resp.,
symplectic).

Introduction

In [4], we described a method to construct Hamiltonian and symplectic structures on nonlinear
evolution equations. The method was essentially based on the notions of variational multivector [3]
and variational differential form. From technical viewpoint, for a given evolution equation E , it
consisted of two steps: (1) solving the linearized equation `Eϕ = 0 in the so-called `∗

E
-covering (resp.,

the equation `∗
E
ψ = 0 in the `E -covering) and (2) checking the Hamiltonianity condition [[ϕ,ϕ]] = 0,

where [[· , ·]] denotes the variational Schouten bracket [3] (resp., the condition for ψ to be symplectic,
i.e., closed with respect to a certain differential in the Vinogradov C -spectral sequence [6]).

Surprisingly enough, it was found out in particular computations that the second condition always
holds true “by default” and we still do not know counterexamples (except for the case of first order

equations). On the other hand, a rather old result by D. Gessler [2] states that all terms Ep,n−1
1 (E ) of

the Vinogradov C -spectral sequence vanish in the nondegenerate case for p ≥ 3 (here n is the number of
independent variables). This fact means exactly that all variational 2-forms on nondegenerate evolution
equations are closed and thus symplectic. Since Gessler’s proof almost literary works in the case of
multivectors, we immediately obtain that all bivectors on such equations are Hamiltonian. These facts
explain our experimental results.

We expose the details below. In Section 1, necessary introduction to the geometry of jet bundles
and evolution equations is presented. Section 2 deals with the calculus of variational multivectors
and forms on evolution equations. To make our exposition self-contained, we repeat Gessler’s proof
from [2]. Finally, in Section 3 we derive our main results on the integrability of Hamiltonian and
symplectic structures on nondegenerate evolution equations of order > 1.

1. Generalities: Jet bundles and evolution equations

Let us fix notation and recall briefly some definitions and results we will use. For explanations we
refer to [1, 5, 3].

Let π : E → M be a vector bundle over an n-dimensional base manifold M and π∞ : J∞(π) → M
be the infinite jet bundle of local sections of the bundle π.

In coordinate language, if x1, . . . , xn, u1, . . . , um are coordinates on E such that xi are base coordi-
nates and uj are fiber ones, then π∞ : J∞(π) →M is an infinite-dimensional vector bundle with fiber
coordinates uj

σ, where σ = i1 . . . i|σ| is a symmetric multi-index.
The basic geometric structure on J∞(π) is the Cartan distribution. In coordinate language, the

Cartan distribution is spanned by the total derivatives

Di =
∂

∂xi

+
∑

j,σ

uj
σi

∂

∂uj
σ

.
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A differential operator on J∞(π) is called C -differential operator (or horizontal operator) if it can
be written as a sum of compositions of C∞(J∞(π))-linear maps and vector fields that belong to the
Cartan distribution. In coordinates, C -differential operators are total derivatives operators.

Let P and Q be C∞(J∞(π))-modules of sections of some vector bundles over J∞(π). All C -
differential operators from P to Q form a C∞(J∞(π))-module denoted by C Diff(P,Q). More generally,
a map ∆: P1 × · · · × Pk → Q is called a multidifferential operator (of degree k) if it is a C -differential
operator in each argument. Choose elements pi ∈ Pi, i = 1, . . . , k, and consider the operators

∆i = ∆(p1, . . . , pi−1, · , pi+1, . . . , pk) : Pi → Q.

Let li be the order1 of ∆i. We define the symbol

smbl(∆): Sl1(Λ1(M)) ⊗ P1 × · · · × Slk(Λ1(M)) ⊗ Pk → Q,

where Sl denotes the symmetric power, of ∆ as follows. For any f ∈ C∞(M), let us set

(δ
(i)
f ∆)(p1, . . . , pk) = f∆(p1, . . . , pk) − ∆(p1, . . . , pi−1, fpi, pi+1, . . . , pk)

and δ
(i)
f1,...,fl

= δ
(i)
f1

◦ · · · ◦ δ
(i)
fl

. If now ωi = df i
1 . . . df

i
li
, i = 1, . . . , l, are symmetric forms on M , we set

(smbl ∆)(ω1 ⊗ p1, ω
2 ⊗ p2, . . . , ω

k ⊗ pk) = δ
(1)

f1
1

,...,f1
l1

◦ · · · ◦ δ
(k)

fk
1

,...,fk
lk

(∆)(p1, . . . , pk).

Let ρ ∈ J∞(π) and x = π∞(ρ) ∈M . Then the value of the symbol at ρ is the map

smbl(∆)|ρ : T ∗
xM ⊗ P1,ρ × · · · × T ∗

xM ⊗ Pk,ρ → Qρ

polynomially dependent on points of T ∗
xM (Pi,ρ and Qρ denote here the fibers of the corresponding

vector bundles at the point ρ).
The lift of the de Rham complex on M to J∞(π) is called horizontal de Rham complex and is

denoted by

0 −→ C∞(J∞(π))
d̄
−→ Λ̄1(π)

d̄
−→ · · ·

d̄
−→ Λ̄n(π) −→ 0.

The cohomology of the horizontal de Rham complex are called horizontal cohomology and denoted by
H̄q(π).

The adjoint operator to a C -differential operator ∆: P → Q we denote by ∆∗ : Q̂ → P̂ , where
P̂ = HomC∞(J∞(π))(P, Λ̄

n(π)).
In coordinates,

∥

∥

∥

∥

∑

σ

aσ
ijDσ

∥

∥

∥

∥

∗

=

∥

∥

∥

∥

∑

σ

(−1)|σ|Dσ ◦ aσ
ji

∥

∥

∥

∥

,

where aσ
ij ∈ C∞(J∞(π)), and Dσ = Di1 ◦ · · · ◦Di|σ|

for σ = i1 . . . i|σ|.

Denote by C Diff sk-ad
(k) (P,Q) the module of k-linear skew-symmetric and skew-adjoint in each argu-

ment C -differential operators P × · · · × P → Q.
A π∞-vertical vector filed on J∞(π) is called evolutionary if it preserves the Cartan distribution. The

Lie algebra of evolutionary field is denoted by κ(π). It is known that κ(π) is naturally isomorphic to
the set of sections of the bundle π∗

∞(π); thus κ(π) is endowed with a structure of C∞(J∞(π))-module.
In local coordinates, the evolutionary field that corresponds to a section ϕ = (ϕ1, . . . , ϕm) has the

form

¤ϕ =
∑

j,σ

Dσ(ϕj)
∂

∂uj
σ

.

We shall call elements of κ(π) variational vectors. Elements of the module C Diff sk-ad
(k−1)(κ̂,κ) will be

called variational k-vector, while elements of C Diff sk-ad
(k−1)(κ, κ̂) will be called variational k-forms.

One knows that standard constructions and formulas of the calculus of vector fields and forms on
manifolds (the de Rham differential, inner product, the Lie derivative, the Schouten bracket) are also
valid for their “variational” counterparts, with elements of H̄n(π) being regarded as “functions”.

In particular, the Lie derivative on variational vectors L¤ϕ
: κ → κ takes the form L¤ϕ

= ¤ϕ − `ϕ,
where the linearization operator `p is defined by the equality `p(α) = ¤α(p), α ∈ κ.

1Of course, this number depends on the choice of p’s; so we define the order as the maximum over all possible choices.
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The Lie derivative on variational forms L¤ϕ
: κ̂ → κ̂ is of the form L¤ϕ

= ¤ϕ + `∗ϕ.
The Lie derivative on variational k-vectors or k-forms satisfies the equality

L¤ϕ
(A)(ξ1, . . . , ξk−1) = L¤ϕ

(A(ξ1, . . . , ξk−1)) −
∑

i

A(ξ1, . . . , ξi−1, L¤ϕ
(ξi), ξi+1, . . . , ξk−1),

where A is a multivector or a form, while ξ1, . . . , ξk−1 are elements of κ̂ in the former case and elements
of κ in the latter one.

Consider a determined evolution equation

u1
t = f1(t, x, uj

σ),

. . . . . . . . . . . . . . . .

um
t = fm(t, x, uj

σ),

where x = (x1, . . . , xn). We shall interpret it in a geometric way as the space E ∞ = J∞(π) × R with
the Cartan distribution generated by the Cartan fields on J∞(π) and the vector field Dt = ∂/∂t+¤f ,
where t is the coordinate along R.

The linearization of E ∞ is of the form `E = Dt−`f , while the adjoint linearization is `∗
E

= −Dt−`
∗
f .

Note, that from the above we have

`E = LDt
: κ → κ,

`∗E = −LDt
: κ̂ → κ̂. (1)

2. Variational multivectors and forms on evolution equations

Let A be a (possibly dependent on t) variational multivector or form on J∞(π). If LDt
(A) = 0 then

A is called a variational multivector or form on the equation E ∞.

Remark 1. Variational bivectors on evolution equations were considered in [4].

Remark 2. From (1) it follows that the set of variational 1-forms on E ∞ coincides with the term

E1,n−1
1 (E ) = ker `∗

E
of the Vinogradov spectral sequence. Similarly, the terms Ep,n−1

1 (E ) consist of
variational p-forms.

The set of variational multivectors and forms on E ∞ is closed with respect to all operations that are
defined on jet spaces whenever they are applicable: the differential on variational forms, inner product,
the Schouten bracket, Lie derivative.

Proposition 1. Let E ∞ be an evolution equation ut = f . For an operator A to be a variational

k-vector or k-form on E ∞ it is necessary and sufficient to have

∇(A(ξ1, . . . , ξk−1)) +
∑

i

A(ξ1, . . . , ξi−1,∇
∗(ξi), ξi+1, . . . , ξk−1) = 0, (2)

where ∇ = `E if A is a multivector and ∇ = `∗
E

if A is a form; here ξ1, . . . , ξk−1 are elements of κ̂ in

the case of multivectors and elements of κ in the case of forms.

Proof. We have

LDt
(A)(ξ1, . . . , ξk−1) = LDt

(A(ξ1, . . . , ξk−1)) −
∑

i

A(ξ1, . . . , ξi−1, LDt
(ξi), ξi+1 . . . , ξk−1) = 0.

Using (1), we get the result. ¤

Proposition 2. Let E ∞ be an evolution equation ut = f . If operators A, A1, . . . , Ak−1 satisfy the

equation

∇(A(ξ1, . . . , ξk−1)) +
∑

i

Ai(ξ1, . . . , ξi−1,∇
∗(ξi), ξi+1, . . . , ξk−1) = 0, (3)

where ∇ = `E or `∗
E
, then A1 = A2 = · · · = Ak−1 = A.
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Proof. Denote the left-hand side of (3) by Ω(ξ1, . . . , ξk−1). Then we get

Ω(ξ1, . . . , ξi−1, tξi, ξi+1 . . . , ξk−1) − tΩ(ξ1, . . . , ξk−1) = ±(A(ξ1, . . . , ξk−1) −Ai(ξ1, . . . , ξk−1)) = 0.

¤

Remark 3. The last proposition shows that computing variational multivectors and forms on an equa-
tion amounts to solving equation ∇(s) = 0 on the ∇∗-covering (see [4] for the definition of ∆-coverings
associated to a C -differential operator ∆).

Theorem 1. Suppose that the symbol of the C -differential operator `f is nonsingular on a dense open

subset of E ∞ and the order of the operator `f is greater than 1. Then there are no nonzero operators A
that satisfy equation (2) for k ≥ 3.

Proof ([2, Th. 3]). Equation (2) can be written in the form

±Dt(A)(ξ1, . . . , ξk−1) + ∇′(A(ξ1, . . . , ξk−1)) +
∑

i

A(ξ1, . . . , ξi−1,∇
′∗(ξi), ξi+1, . . . , ξk−1) = 0, (4)

where ∇′ = `f if A is a multivector and ∇′ = `∗f if A is a form. Take a point ρ ∈ E ∞ such that

the symbol λ = smbl(∇′)|ρ is nondegenerate at ρ. Let θ =
∑n

i=1 θi dxi|ρ be a covector, so that,

in coordinates, λ is an m × m matrix λ =
∥

∥λi
j

∥

∥, where λi
j are homogeneous polynomials in θ’s of

degree l = ord(∇′). Denote the components of the symbol a = smbl(A)|ρ by aj
i1...ik−1

(θ1, . . . , θk−1),

θp = (θp
1 , . . . , θ

p
n). Then the symbol of equation (4) takes the form

m
∑

j=1

λi
j(θ

1 + · · · + θk−1)aj
i1...ik−1

+ (−1)l

k−1
∑

p=1

m
∑

j=1

ai
i1...ip−1jip+1ik−1

λ
ip

j (θp) = 0, (5)

where 1 ≤ i, i1, . . . , ik−1 ≤ m.
System (5) can be considered as a linear system of algebraic equations with polynomial coefficients

over C. Let us show that the determinant of this system does not vanish.
Since λ = λ(θ) is nonsingular, there exists v ∈ C

m such that detλ(v) 6= 0. One can assume that
λ(v) has an upper triangular form, λi

j(v) = 0 if i ≥ j and λi
i(v) 6= 0. Then for any α ∈ C the matrix

λ(αv) = αlλ(v) has also an upper triangular form. Since l = ord `f ≥ 2 and k ≥ 3, there exist αp ∈ C,
p = 1, . . . , k − 1, such that for any 1 ≤ i, i1, . . . , ik−1 ≤ m

Aii1...ik−1
= λi

i(v)(α1 + · · · + αk−1)
l + (−1)l

k−1
∑

p=1

λ
ip

ip
(αp)

l 6= 0. (6)

Put θi = αiv. Then system (4) is upper triangular with respect to the lexicographic order of indexes,
with diagonal entries Aii1...ik−1

6= 0. Hence, the determinant of system (4) does not equal to zero, thus
a = 0. Therefore, the symbol of A vanishes on a dense subset of E ∞, so that A = 0. ¤

3. Hamiltonian and symplectic structures

Recall that a bivector A on equation E ∞ is said to be Hamiltonian if [[A,A]] = 0, where [[· , ·]] is the
variational Schouten bracket [3, 4]. Two structures A and B are compatible (or constitute a pencil) if
[[A,B]] = 0. Respectively, a symplectic structure on E ∞ is a closed variational form.

Now, our main result is obtained by reformulating the previous theorem.

Theorem 2. Assume that E = {ut = f} is an evolution equation and `f satisfies the hypothesis of

Theorem 1. Then any variational bivector on E is Hamiltonian, any two Hamiltonian structures are

compatible and any variational 2-form is symplectic.

Proof. Indeed, let A and B be bivectors. Then [[A,B]] is a 3-vector and thus vanishes. Similarly, the
differential of any variational 2-form is a 3-form and therefore equals zero. ¤
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Remark 4. The hypothesis of Theorem 1 comprises two conditions: (1) the order of E is to be > 1;
(2) the symbol of `f is to be nondegenerate. The first one is really essential. As for the second
condition, it seems that it may be weakened. At least in some computation (e.g., for the Boussinesq
equation, see [4]) all bivectors are automatically Hamiltonian.

Remark 5. The proof of Theorem 1 does not use the fact that the operator A is skew-symmetric and
holds also for symmetric C -differential operators. This means that equations satisfying the hypothesis
of the theorem may admit linear Hamiltonian and symplectic structures only.
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