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Abstract. We construct the long exact sequence of C -cohomology associated to a
covering over a differential equation E and use this sequence to solve the following
problems: (1) infinitesimal description of smooth irreducible families of coverings; (2)
reconstruction of nonlocal symmetries by their shadows; (3) description of action of
recursion operators on (nonlocal) symmetries.

Introduction

Cohomological methods proved to be quite useful and fruitful in studying invariant
properties of PDE’s [5, 6, 9]. Here we want to demonstrate the power of these tech-
niques by applying a very simple cohomological construction to three problems arising
in nonlocal theory of PDE’s. These problems are (more detailed statements see below):

(1) How to describe smooth families of coverings?
(2) Can a nonlocal symmetry be reconstructed by its shadow?
(3) What happens when we apply a recursion operator to a nonlocal symmetry?

The first question was answered in [1] and here we just repeat the corresponding con-
struction (Subsection 2.1). Problem 2 was solved by N. Khor′kova long ago and a
solution given in local coordinate language can be found in [7]. In Subsection 2.2 we
give a new, very short cohomological proof. Finally, there were no general answer to
the last question and we give a solution in Subsection 2.3.

1. The long exact sequence of a covering

Let E ⊂ J∞(π) be an infinitely prolonged differential equation understood as a
submanifold in the manifold of infinite jets, π∞ : E → M be the natural projection.
Consider a covering τ : Ẽ → E and the structure element Uτ ∈ Dv(Λ1(Ẽ )) ⊂ D(Λ1(Ẽ )),

where (and below) D(Λi(Ẽ )) denotes the module of Λi(Ẽ )-valued derivations C∞(Ẽ ) →
Λi(Ẽ ) while Dv(Λi(Ẽ )) consists of π∞-vertical derivation. Then (see [3]) the C -complex

0 → Dv(Ẽ )
∂τ−→ Dv(Λ1(Ẽ )) → · · · → Dv(Λi(Ẽ ))

∂τ−→ Dv(Λi+1(Ẽ )) → · · · (1)

arises, where the differential ∂τ = [[Uτ , · ]] is defined by the Frölicher-Nijenhuis bracket.

The corresponding cohomology is denoted by Hi
C (Ẽ ) and called the C -cohomology of

the covering τ .
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Consider in Dv(Λi(Ẽ )) the submodule

Dg(Λi(Ẽ )) = {X ∈ Dv(Λi(Ẽ ) | X(C∞(E )) = 0},
where C∞(E ) is understood as a subalgebra in C∞(Ẽ ). Let also

Ds(Λi(Ẽ )) = Dv(Λi(Ẽ ))/Dg(Λi(Ẽ ))

be the quotient module. By basic properties of the Frölicher-Nijenhuis bracket, ∂τ(Dg(Λi(Ẽ ))) ⊂
Dg(Λi+1(Ẽ )) and thus the short exact sequence of complexes

. . . . . . . . .�
�

�
0 −−−→ Dg(Λi(Ẽ )) −−−→ Dv(Λi(Ẽ )) −−−→ Ds(Λi(Ẽ )) −−−→ 0�∂τ

�∂τ

�∂τ

0 −−−→ Dg(Λi+1(Ẽ )) −−−→ Dv(Λi+1(Ẽ )) −−−→ Ds(Λi+1(Ẽ )) −−−→ 0�
�

�
. . . . . . . . .

(2)

is defined (we preserve the notation ∂τ for the differential in both quotient and sub-

complexes). Denote by Hi
s(Ẽ ) and Hi

g(Ẽ ) the cohomology groups of the quotient and
subcomplexes, respectively.

Definition 1. The groups Hi
s(Ẽ ) and Hi

g(Ẽ ) are called shadow and gauge C -cohomolo-
gies of the covering τ , respectively. The cohomological sequence

0 → H0
g (Ẽ )

α−→ H0
C (Ẽ )

β−→ H0
s (Ẽ )

∂−→ H1
g(Ẽ ) → · · ·

· · · → Hi
g(Ẽ )

α−→ Hi
C (Ẽ )

β−→ Hi
s(Ẽ )

∂−→ Hi+1
g (Ẽ ) → · · · (3)

corresponding to (2) is called the long exact sequence of the covering τ .

Remark 1. Recall (see [3]) that the modules Λi(Ẽ ) split into the direct sum

Λi(Ẽ ) = ⊕p+q=iΛ
p,q(Ẽ ), Λp,q(Ẽ ) = C Λp(Ẽ ) ⊗ Λq

h(Ẽ ), (4)

where C Λp(Ẽ ) and Λq
h(Ẽ ) are modules of Cartan and horizontal forms, respectively.

To (4) there correspond the splitting

Dv(Λi(Ẽ )) = ⊕p+q=iD
v(Λp,q(Ẽ ))

and the differential ∂τ takes elements Dv(Λp,q(Ẽ )) to Dv(Λp,q+1(Ẽ )). This leads to the

cohomology groups Hp,q
C (Ẽ ), Hp,q

s (Ẽ ) and Hp,q
s (Ẽ ) and (3) actually splits into the series

of the following sequences

0 → Hp,0
g (Ẽ )

α−→ Hp,0
C (Ẽ )

β−→ Hp,0
s (Ẽ )

∂−→ Hp,1
g (Ẽ ) → · · ·

· · · → Hp,q
g (Ẽ )

α−→ Hp,q
C (Ẽ )

β−→ Hp,q
s (Ẽ )

∂−→ Hp,q+1
g (Ẽ ) → · · ·

for all p ≥ 0. The groups Hp,q
C (Ẽ ) are identified with the horizontal cohomology of Ẽ

with coefficients in Dv(C Λp(Ẽ )), [8].
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2. Applications

Before discussing particular applications of the above constructions, let us describe
the geometrical meaning of some of the groups in (3) that we shall need below.

H0
C (Ẽ ): elements of this group are identified with nonlocal τ -symmetries ;

H0
g (Ẽ ): these are gauge symmetries in τ , i.e., τ -vertical symmetries (the corre-
sponding diffeomorphisms, if they exist, are automorphisms of τ );

H0
s (Ẽ ): this cohomology group consists of τ -shadows of nonlocal symmetries, i.e.,

π∞-vertical derivations X : C∞(E ) → C∞(Ẽ ) preserving the Cartan distribu-
tions. In local coordinates, shadows are described by vector-functions ϕ =
(ϕ1, . . . ϕm), ϕl ∈ C∞(Ẽ ), m = dimπ, satisfying the equation �̃E (ϕ) = 0, where

�̃E is the linearization of E naturally lifted to Ẽ ;
H1

C (Ẽ ): these are equivalence classes of nontrivial infinitesimal deformations of Uτ ,

i.e., of the element defining the basic geometrical structure on Ẽ ; a deformation
is infinitesimally trivial if and only if its cohomological class in H1

C (Ẽ ) vanishes.

On the other hand, elements of H1
C (Ẽ ) act on H0

C (Ẽ ) = symτ E by contraction:

R(X) = iX(R), X ∈ H0
C (Ẽ ), R ∈ H1

C (Ẽ ). Nontrivial actions may correspond to

elements of H1,0
C (Ẽ ) only;

H1
g (Ẽ ): those cohomological classes are τ -vertical, or gauge, deformations. They
deform the covering structure itself only and do not change the structure of the
underlying equation E ;

H1
s (Ẽ ): similar to H0

s (Ẽ ), these are also shadows of H1
C (Ẽ ), i.e., classes of π∞-

vertical derivations C∞(E ) → Λ1(Ẽ ) that preserve the Cartan distributions.

Elements of H1,0
s (Ẽ ) have the following local description: µ = (µ1, . . . , µm),

µl ∈ C Λ1(Ẽ ) lies in H1,0
s (Ẽ ) if and only if �E (µ) = 0.

2.1. Irreducible families of coverings. Essentially, we repeat here the main result
given in [1]. Let us first recall the following construction, [7]. Let τ : Ẽ → E be a cov-
ering and X be a symmetry of E possessing a one-parameter group of transformations
At : E → E . Consider an arbitrary lift of At to Ẽ such that the diagram

Ẽ
Ãt−−−→ Ẽ

τ

�
�τ

E
At−−−→ E

(5)

is commutative. Let us define on Ẽ a t-parameter family of distributions C̃t by setting

(C̃t)θ̃ = (Ãt)
−1
∗ C̃Ã−1

t θ̃, θ̃ ∈ Ẽ .

All distributions C̃t are integrable, i.e., [C̃t, C̃t] ⊂ C̃t, and thus Ẽt = (Ẽ , C̃t) covers E
by means of τ . Denote this covering by τt : Ẽt → E and notice that if Ã′

t is another lift
satisfying (5) then for all t the covering τt is either equivalent to τ ′

t or not. If for all t
(sufficiently small) τt and τ ′

t are equivalent then this means that X can be lifted to a

symmetry of Ẽ . Thus we obtain
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Proposition 1. Let τ : Ẽ be a covering and X be a symmetry of E possessing a one-
parameter group of transformations and such that it cannot be lifted to a symmetry
of Ẽ . Then X generates a one-family of (equivalence classes of ) coverings τt : Ẽt → Ẽ
such that

(1) Ẽt and Ẽt′ isomorphic as manifolds with distributions;
(2) τt and τt′ are pair-wise inequivalent for sufficiently small t and t′.

We say that a family τt satisfying Properties 1 and 2 above is irreducible.

Remark 2. Let g be a finite-dimensional Lie subalgebra in the algebra of classical sym-
metries of E . Then we obtain a G/H-irreducible family, where G is the Lie group
corresponding to g and H is the stabilizer of τ under the above described action.

Remark 3. Proposition 1 means that if we have a covering τ and a shadow that cannot
be reconstructed to a symmetry in this covering1 then, under certain conditions, this
shadow generates an irreducible family of coverings. As we shal see below, this is, in a
sense, a general way to obtain irreducible families.

Consider an irreducible family of coverings τt : Ẽ → E , τ0 = τ : Ẽ → E , and the
following part of (3)

H0
C (Ẽ )

β−→ H0
s (Ẽ )

∂−→ H1
g (Ẽ )

α−→ H1
C (Ẽ ).

The family τt may be considered as a deformation of τ ; hence its infinitesimal part µ
lies in H1

g (Ẽ ). By Property 1 from Proposition 1, the corresponding deformation of Ẽ is

trivial and thus α(µ) = 0. By the exactness, µ = ∂(ϕ), ϕ ∈ H0
s (Ẽ ). The deformation τt

is infinitesimally nontrivial if and only if µ �= 0 and again by the exactness if and only
if ϕ �= β(X), X ∈ H0

C (Ẽ ), i.e., if and only if ϕ is not reconstructible to a τ -symmetry.
To state the final result, it remains to note that the action of ∂ is given by [[Uτ , · ]].

Theorem 1. Any irreducible family of coverings τt, τ0 = τ , must be infinitesimally
generated by a τ -shadow that cannot be reconstructed to a nonlocal τ -symmetry.

Remark 4. Of course, not to any shadow ϕ there corresponds an irreducible family of
coverings. Anyway, we can construct a formal deformation exp(tϕ)Uτ and use it in
some applications.

2.2. Reconstruction of shadows. Consider again a covering τ : Ẽ → E and a shadow
ϕ : C∞(E ) → C∞(Ẽ ). We say that ϕ is reconstructible in τ if there exists a symmetry

X : C∞(Ẽ ) → C∞(Ẽ ) such that X
∣∣
C∞(E ) = ϕ. Of course, given a covering τ , not

any shadow can be reconstructed in this covering, but a weaker result was found by
N. Khor′kova and proved in [7]:

Theorem 2. Let τ : Ẽ → E be a covering and ϕ be a τ -shadow. Then there exists a

covering τ̃ :
˜̃
E → Ẽ such that ϕ is reconstructible in the composition covering τ ◦ τ̃ :

˜̃
E →

E .

1For the problem of reconstruction see Subsection 2.2.
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Remark 5. How the theorem works in practice may be seen in the classical example of
the KdV equation

ut = uux + uxxx. (6)

It is known that this equation possesses two infinite series of symmetries: a local one,
independent of x and t and consisting of higher KdV equations, and another, (x, t)-
dependent series whose first two terms are local (the Galilean boost and the scaling
symmetry) while all others are nonlocal. Take the first of the them. It has the form
ψ5 = tuxxxxx + . . . and contains the nonlocal variable w1 defined by the relations

w1
x = u, w1

t =
1

2
u2 + uxx. (7)

Actually, ψ5 is not a symmetry but only a shadow in the covering corresponding to (7).
To reconstruct the symmetry, one needs to find the coefficient at ∂/∂w1. But when
doing this, a new nonlocal variable arises that must satisfy the relation w2

x = u2, etc.
As it was shown in [2], this process “stops” at infinity only: to reconstruct the initial
shadow, one has to add all nonlocal variables of the form wj

x = cj , where cj is the
density of the jth conservation law. As we shall see, this situation is somewhat typical.

Proof of Theorem 2. Consider the following part of (3)

H0
C (Ẽ )

β−→ H0
s (Ẽ )

∂−→ H1
g (Ẽ ).

Let ϕ ∈ H0
s (Ẽ ) be a shadow. It is reconstructible if there exists a symmetry X ∈ H0

C (Ẽ )
such that β(X) = ϕ. Due to the exactness, this is equivalent to ∂(ϕ) = 0. Thus the
element ωϕ = ∂(ϕ) is the obstruction to reconstructibility of the shadow ϕ. So, the
intermediate result is

Proposition 2. A shadow ϕ ∈ H0
s (Ẽ ) is reconstructible in the covering τ if and only

if the obstruction ωϕ ∈ H1
g (Ẽ ) vanishes.

The obstruction ωϕ is a vector-valued horizontal 1-form on Ẽ , the number of its
components ωl

ϕ equals the dimension of the covering τ . Each form ωl
ϕ is closed and

thus determines a 1-dimensional covering τ l over Ẽ , see [7]. This covering is trivial if
and only if this form is exact (with respect to the horizontal de Rham differential) and
ωϕ = 0 if and only if all ωl

ϕ are exact. Thus, if we choose those ωl
ϕ whose horizontal

cohomology classes are nontrivial and take the Whitney product τ̃ : ˜̃E → Ẽ of the
corresponding coverings then the obstruction ωϕ will vanish in this covering, but a
new obstruction of the same nature may arise. If the latter vanishes the shadow is
reconstructible in τ̃ , otherwise we must repeat the construction, etc. Eventually, we
shall either stop at some finite step, or shall arrive to an infinite covering. In both cases,
there will be no obstruction to reconstruct the shadow ϕ. �
Remark 6. From the proof of the theorem it can be seen that the shadow ϕ completely
determines the “minimal” covering, where it reconstructs to a symmetry. In the case of a
two-dimensional base M (i.e., when the equation E is in two independent variables) the
cohomology classes of the forms ωl

ϕ are identified with conservation laws of E , generally
nonlocal. But in some cases (for the KdV and similar equations) the reconstruction
procedure deals with local conservation laws only, [2].
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Remark 7. Though the covering, where the shadow at hand reconstructs, is well defined
(but not unique) algorithmically, the symmetry that corresponds to this shadow is
definitely not unique: even when covering τ̃ is chosen, a symmetry corresponding to ϕ

is defined up to elements of H0
g ( ˜̃E ), i.e., up to gauge symmetries in τ̃ . This means that

to deal with nonlocal symmetries is not the same as to deal with their shadows.

2.3. Action of recursion operators. We now pass to the last topic of these notes.
Let us first briefly recall the cohomological theory of recursion operators as it was
exposed in [5]. Consider an equation E and the C -complex (1) associated to it2. Then,
as it was already mentioned, the group H0

C (E ) is identified with the Lie algebra sym(E )
of higher symmetries of E . The contraction (or inner product) operation determines an
action of elements of H1

C (E ) on sym(E ) and nontrivial actions may correspond to the
elements of H1,0

C (E ) only3. Locally, these elements are represented as Cartan vector-
forms of degree 1, ω = (ω1, . . . , ωm), ωl ∈ C Λ1(E ), m = dimπ, satisfying the equation

�E (ω) = 0 (8)

and solving (8) and applying these solutions to the known symmetries we, in principal,
can generate new symmetries. The same remains valid for nonlocal symmetries if we
take Ẽ instead of E . It is natural to anticipate that in this way we find recursion
operators for symmetries of the equation at hand.

But in practice the picture is more complicated. If, for example, we realize the above
procedure for the KdV equation (6) we shall obtain trivial solutions only. On the other
hand, this equation possesses the recursion operator

R = D2
x +

2

3
u +

1

3
D−1

x ,

where Dx is the total derivative with respect to x. Of course, this operator could not be
found by the above described method because of the nonlocal term D−1

x . Such a term
may arise in the covering given by (7), but if we try the same in this nonlocal setting
the result will be negative again.

What actually gives nontrivial results is the following (see all the examples in [5]).
Let us show how it works for the KdV equation. Namely, we do the following:

(1) We take the covering τ : Ẽ → E given by (7). Note that Ẽ is isomorphic to the
infinite prolongation of the equation

wt = wxxx +
1

2
u2

x.

(2) Then we consider the module of Cartan 1-forms on Ẽ . It is generated by the
forms

ωk = duk − uk+1 dx − Dk
x(u3 + u1) dt, ω−1 = dw1 − u dx −

(
u2 +

1

2
u2

)
dt,

where k = 0, 1, . . . and uk = ux . . . x︸ ︷︷ ︸
k times

.

2Its terms are Dv(Λi(E )).
3Note also that the contraction determines a structure of an associative algebra with unit on H1

C (E ).
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(3) The next step is to solve the equation

�̃E (Ω) = 0, (9)

where �̃E is the lift of the linearization to τ and Ω =
∑

k≥−1 fkωk.
(4) Solving (9), we obtain two independent solutions: Ω1 = ω0 and Ω2 = ω2 +

2
3
uω0 + 1

3
ω−1. The first one corresponds to the identical action while the second

one gives the classical recursion operator for the KdV equation (see above).

So, from this scheme we see that construction of recursion operators amounts to com-
putation of the group H1,0

1 (Ẽ ). Indeed, we have the following

Theorem 3. Let E be an equation and τ : Ẽ → E be a covering. Then the contraction
operation generates the action

R : H0
C (Ẽ ) → H0

s (Ẽ ),

where R ∈ H1
s (Ẽ ), i.e., elements of H1

s (Ẽ ) take τ -symmetries to τ -shadows4.

Remark 8. The result of this action, in general, is really a shadow. For example,
applying the recursion operator of the KdV equation to the scaling symmetry ψ3 =
tuxxx + . . . , we obtain the element ψ5 (see above) that reconstructs to a symmetry
in the infinite-dimensional covering, where all conservation laws of the equation are
“killed”.

Proof. The proof is very simple: consider the standard contraction

Dv(Λi(Ẽ )) Dv(Λj(Ẽ )) → Dv(Λi+j−1(Ẽ )).

It remains to note that if X ∈ Dv(Λi(Ẽ )) and Y ∈ Ds(Λj(Ẽ )) then X Y ∈ Ds(Λi+j−1(Ẽ ))
and that the differential in (1) preserves the inner product and thus the latter is inher-
ited in the cohomology groups. �
Remark 9. In some cases action of recursion operator on local symmetries leads to local
symmetries again. For example, this is the case for classical hierarchies of integrable
equations. Some remarks on how to establish locality may be found in [4].
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