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Abstract

We present a criterion of reducibility of a zero curvature representation to a
solvable subalgebra, hence to a chain of conservation laws. Namely, we show that
reducibility is equivalent to the existence of a section of the generalized Riccati
covering. Results are applied to conversion between Guthrie’s and Olver’s form
of recursion operators.

1 Introduction

To establish integrability of a nonlinear partial differential equation in the sense of
soliton theory [1, 37], at least in two dimensions, one usually looks for a zero curvature
representation (ZCR) [43], possibly in the form of a Lax pair [17]. If depending on a
non-removable (spectral) parameter, a ZCR may serve as a starting point of methods to
derive infinitely many independent conservation laws and large classes of exact solutions.

However, certain ZCR’s do not imply integrability because of specific degeneracy,
which does not even rule out possible dependence on one or more nonremovable param-
eters. E.g., Calogero and Nucci [3] gave a formula to assign a Lax pair to any nonlinear
system possessing a single conservation law, arguing that such systems are too abundant
to be all integrable. Recently Sakovich [33] observed that the Calogero–Nucci examples
can be singled out by properties of their associated cyclic bases. In particular, the ‘bad’
ZCR’s fail to generate an integrable hierarchy.

In this paper we postulate that a ZCR is degenerate if it takes values in a solvable Lie
algebra or is gauge equivalent to such. Even though some researchers are inclined to
admit the relevance of such ZCR’s to integrability, our results below seem to support
the opposite opinion.
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ZCR’s taking values in an abelian algebra are well known to be equivalent to a set of
local conservation laws (see [1, Sect. 3.2.c]). Using the Lie theorem on finite-dimensional
representations of solvable algebras, we show in Sect. 4 rather easily that every ZCR
that takes values in a solvable algebra is equivalent to a ‘chain’ of nonlocal conservation
laws. This simple result renders, e.g., attempts to generate infinitely many independent
conservation laws out of a degenerate ZCR rather unrealistic.

In Sect. 5 we address the problem of detecting reducibility of a ZCR to a subalge-
bra, in particular, to a solvable one. Purely algebraic criteria are insufficient since the
Lie algebra a ZCR takes values in may be altered by gauge transformation. On the
other hand, when trying to find the reducing gauge matrix directly, we face a rather
large underdetermined differential system. Our idea is to employ an appropriate matrix
decomposition, namely, the Gram or Gauss decomposition. Earlier these decomposi-
tions were applied by Dodd and Paul [6, 7] in the context of Bäcklund transformations.
A remarkable connection between decompositions and integrable systems emerged in
numerical analysis [4, 5, 41].

The last section is devoted to recursion operators, direct and inverse, for symmetries
of integrable systems [2, 14, 28, 39]. In Olver’s [27, 28] formalism, a recursion operator
is a linear integro-differential operator Ψ, which maps symmetries to symmetries. The
standard way of inverting Ψ consists in finding differential operators K,L such that
Ψ = L ◦K−1; then Ψ−1 = K ◦ L−1. However, one encounters the problem of writing
the inverse L−1 as an integro-differential operator. In the scalar case, L may be put in
the form L = qnDqn−1D · · · q1Dq0, where the coefficients qi are expressible as quotients
of wronskians of independent solutions vi of L(v) = 0 (see [31] for a simple derivation
of this classical result, equivalent to decomposability into first-order factors; see [44]
for the matrix case). In our context, qi are nonlocal functions and finding them is
considered to be the most difficult part of the whole procedure. Once qi are found, one
can invert L simply as L−1 = q−1

0 D−1q−1
1 · · ·D−1q−1

n−1D
−1q−1

n . This is essentially the
general scheme behind the works [12, 18, 19, 20, 29, 32].

Guthrie’s [11] recursion operators resemble Bäcklund autotransformations for the lin-
earized system and indeed can be interpreted this way (see [22]); their inversion is quite
straightforward and does not require the introduction of new nonlocalities. Moreover,
Guthrie’s operators do not suffer from the known abnormities, related to the fact that
D−1 ◦ D = id fails to hold ([10, 34]). Let us also remind the reader that computing
the ‘inverse’ Guthrie operator starting from a known ZCR may turn out to be easier
than computing the ‘direct’ one (see [24]). The conversion from Olver’s to Guthrie’s
form was explained by Guthrie [11] himself, the result being further strengthened by
Sergyeyev [35]. Concerning the backward conversion, the x-part of a Guthrie opera-
tor can be written as an integro-differential operator if the ZCR underlying it is lower
triangular. A non-parametric ZCR can be made lower triangular at the cost of the
introduction of appropriate nonlocalities. To introduce only few (respected) nonlocali-
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ties, we take into account a particular observation (already exploited in [24]) about the
structure of Guthrie’s recursion operators of integrable systems.

2 Preliminaries

Let E be a system of nonlinear partial differential equations (PDE)

F l = 0 (1)

on a number of functions uk in two independent variables x, y. Here each F l is a smooth
function depending on a finite number of variables x, y, uk, ukx, u

k
y, . . . , u

k
I ,. . . , where I

stands for a symmetric multiindex over the two-element set of indices {x, y}. Besides the
local variables x, y, uk, ukI , we shall also need non-local variables or pseudopotentials [40],
which may be introduced as additional variables satisfying a system of equations

zix = f i, ziy = gi, (2)

where f i, gi are functions depending on a finite number of local variables as well as the
pseudopotentials zj; we require that the system (2) be compatible as a consequence of
(1).

Within their geometric theory of systems of PDE’s, Krasil’shchik and Vinogradov [15]
introduced the notion of a covering, which separates the invariant content of nonlocality
from its coordinate presentation. Pseudopotentials then correspond to a particular but
arbitrary choice of coordinates along the fibres of the covering in question. We recall
the basic facts below; details we had to leave aside may be found in [15] and also in [16,
Ch. 6]. Readers interested mainly in practical computations may skip the rest of this
section.

Let J∞ be an infinite jet space equipped with local jet coordinates x, y, uk, ukI ; the
functions F l then may be interpreted as functions defined on J∞. Since all our consid-
erations are local, we simply let J∞ be the space of jets of sections of the trivial fibred
manifold Y ×M →M , where M = R2, with x, y being coordinates on R2 and uk being
coordinates on Y . On J∞, we have two distinguished commuting vector fields

Dx =
∂

∂x
+
∑

k,I

ukIx
∂

∂ukI
, Dy =

∂

∂y
+
∑

k,I

ukIy
∂

∂ukI
,

which are called total derivatives.
The equation manifold E associated with system (1) is defined to be the submanifold

in J∞ determined by the infinite system of equations F l = 0 and DIF l = 0 for I running
through all symmetric multiindices in x, y. The total derivatives Dx,Dy are tangent to
E, therefore they admit a restriction to E. In what follows, equations will be identified

3



with equation manifolds equipped with the restricted total derivatives; this approach is
indeed very practical and suitable for all needs to be encountered below.

Mappings between equation manifolds that commute with projections to the base
manifold M and preserve the total derivatives will be called morphisms of equations;
they map solutions to solutions (we shall not use the general morphisms of diffieties
which need not commute with the projections and only preserve the distributions gen-
erated by the total derivatives). Bijective morphisms are called isomorphisms; their
inverses are isomorphisms, too.

A covering over an equation E consists of another equation E ′ and a surjective mor-
phism E ′ → E.

The system formed by Equation (1) and the 2k additional equations (2) generates a
covering, where E ′ is the trivial vector bundle E ×Rk and z1, . . . , zk provide coordinates
along Rk. In particular, the projection preserves the coordinates x, y. If f i, gi are
functions defined on E ′ such that the vector fields

D′x = Dx +

k∑

i=1

f i
∂

∂zi
, D′y = Dy +

k∑

i=1

gi
∂

∂zi
(3)

commute (which is a geometric way of saying that Equations (2) are compatible), then
E ′ equipped with the vector fields (3) is a k-dimensional covering over E. Recall from [15]
that every finite-dimensional covering is locally of this form.

Two coverings E ′ and E ′′ are said to be isomorphic over E if there exists an isomor-
phism of the equations E ′ ∼= E ′′ that commutes with the projections to E. Isomorphic
coverings result from invertible transformations of nonlocal variables. A k-dimensional
covering is said to be trivial if it is isomorphic to one with f i = gi = 0; such a covering
is essentially a family of identical copies of E.

The simplest yet useful covering (2) may be associated with a single nontrivial con-
servation law α = f dx + g dy, i.e., a pair of functions f, g defined on E and satisfying
Dyf = Dxg on E:

Definition 1 A one-dimensional abelian covering associated with a conservation
law α = f dx+ g dy is defined to be the trivial vector bundle E ×R→ E, equipped with
total derivatives

D′x = Dx + f
∂

∂z
, D′y = Dy + g

∂

∂z
,

where z denotes the coordinate along R.

As f, g do not depend on z, the vector fields D′x,D
′
y on E ′ commute if and only if

Dyf = Dxg. The variable z is called the potential of the conservation law α. We have
D′xz = f , D′yz = g or briefly zx = f , zy = g.
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Recall that a conservation law is said to be trivial if there exists a (local) function h
on E such that f = Dxh, g = Dyh. A covering associated to a trivial conservation law
is isomorphic to a trivial covering through the invertible change of variables z = z ′+h.

A covering Ē → E is said to be trivializing for a conservation law α = f dx + g dy,
if the pullback ᾱ of α along the projection Ē → E is a trivial conservation law on Ē .
Obviously, the one-dimensional abelian covering associated with the conservation law
α trivializes α.

A general n-dimensional abelian covering is obtained by repeating the construction
of the one-dimensional abelian covering (cf. [40, Sect. IV]):

Definition 2 An n-dimensional covering Ẽ over E is said to be abelian, if
(1) either n = 1 and Ẽ is a one-dimensional abelian covering over E in the sense of

Definition 1;
(2) or Ẽ is a one-dimensional abelian covering over an (n − 1)-dimensional abelian

covering E ′ over E.

Let us remark that Khorkova [13] introduced the universal abelian covering, which
need not be finite-dimensional.

3 Zero-curvature representations

Simplest pseudopotentials that are not potentials are associated with non-degenerate
zero-curvature representations. Let g be a matrix Lie algebra (recall that according
to the Ado theorem every finite-dimensional Lie algebra has a matrix representation).
By a g-valued zero-curvature representation (ZCR) for E we mean a g-valued one-form
α = Adx+B dt defined on E such that

DyA−DxB + [A,B] = 0 (4)

holds on E, which means that (4) holds as a consequence of system (1) (we do not insist
that (4) necessarily reproduces system (1), which is normally required in integrability
theory).

Let G be the connected and simply connected matrix Lie group associated with g.
Then for an arbitrary G-valued function S, the form αS = AS dx+BS dt, where

AS = DxSS
−1 + SAS−1, BS = DySS

−1 + SBS−1 (5)

is another ZCR, which is said to be gauge equivalent to the former.
A ZCR is said to be trivial if it is gauge equivalent to zero, i.e., if A = DxSS−1,

B = DySS−1. A covering Ē → E is said to trivialize a ZCR α = Adx + B dy if the
pullback ᾱ of α along the projection Ē → E is a trivial ZCR.

A trivializing covering for the ZCR α can be obtained in the following way.
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Proposition 3 For every g-valued ZCR α on E there exists a covering πα : Ẽα → E
that trivializes α.

Proof Let α = Adx +B dy be a ZCR, where A and B are n× n matrices belonging
to the algebra g. Put Ẽα = E ×G, where G is the matrix Lie group associated with g.
Given an element C ∈ g, let us denote by ξC the right-invariant vector field on G
corresponding to C. Given a g-valued function C on E, let us denote by ΞC the unique
vector field on Ẽα with the E-component zero and the G-component equal to ξC , at each
point of Ẽα. Considering the vector fields

D̃x = Dx + ΞA, D̃y = Dy + ΞB

on Ẽα, where Dx,Dy are the total derivatives on E, let us show that D̃x, D̃y are the
total derivatives for a trivializing covering πα : Ẽα → E of α.

Let A = (aij), B = (bij). Let us first consider G = GLn with its natural parametriza-
tion GLn = {(zij) | det zij 6= 0}. We have

ΞA =
∑

i,j,l

aijzjl
∂

∂zil
, ΞB =

∑

i,j,l

bijzjl
∂

∂zil
.

Then D̃x, D̃y commute since

[D̃x, D̃y] = [Dx,Dy] + [Dx,ΞB]− [ΞA,Dy] + [ΞA,ΞB]

= ΞDxB−DyA−[A,B]

= 0.

The same holds for arbitrary G ⊆ GLn, since the vector fields ΞA,ΞB are tangent to G
whenever A,B belong to g.

Now denote by Θ the projection Ẽα = E ×G→ G viewed as a matrix-valued function
on Ẽα. Then DxΘ = 0 and therefore

(D̃xΘ)µν = (ΞAΘ)µν =
∑

i,j,l

aijzjl
∂

∂zil
zµν =

∑

j

aµjzjν = (AΘ)µν.

Thus, D̃xΘ ·Θ−1 = A and similarly D̃yΘ ·Θ−1 = B, whence the pullback of α on Ẽα is
trivial.

The system (2) corresponding to Ẽα can be compactly written in terms of a single
matrix Θ as

Θx = AΘ, Θy = BΘ. (6)

Under the gauge transformation (5), the matrix Θ becomes SΘ. The coverings Ẽα
and ẼαS are isomorphic via Θ 7→ SΘ.

The trivializing covering πα just constructed has the following factorization property:
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Proposition 4 Let p : E ′ → E over M be a trivializing covering for a ZCR α on E.
Then there exists a morphism p] : E ′ → Ẽα such that πα ◦ p] = p.

Proof Let α = Adx + B dy. Since p is over M , we have p∗α = p∗Adx + p∗B dy.
By assumption this is a trivial ZCR, whence p∗A = D′xSS

−1 and p∗B = D′ySS
−1

for a suitable G-valued function S on E ′. Recall that fibres of the covering Ẽα are
diffeomorphic to the Lie group G. Therefore we can define a mapping p] : E ′ → Ẽα by
the formula Θ ◦ p] = S, where, as above, Θ denotes the projection Ẽα = E × G → G.
The mapping p] is a morphism, since (Θ ◦ p])x = Sx = AS = AΘ ◦ p].

4 Lower triangular ZCR’s

Let tn denote the algebra of matrices




a11 0 · · 0
a21 a22 0 · ·
a31 a32 a33 · ·
· · · · 0
an1 an2 an3 · ann



. (7)

Denote by t
(k)
n , k ≥ 1, the derived algebra formed by matrices satisfying aij = 0 when-

ever i− j < k.
ZCR’s with values in tn are, in a sense, equivalent to an abelian covering.

Proposition 5 Every tn-valued ZCR can be trivialized by means of an abelian covering
of dimension ≤ 1

2
n(n + 1).

Proof Let α = Adx+B dy be a ZCR such that matrices A and B are lower triangular.
We shall construct an abelian covering E (n−1) in n steps.

It follows from Equation (4) that γ1 = a11 dx + b11 dy, γ2 = a22 dx + b22 dy, . . . ,
γn = ann dx+ bnn dy are conservation laws. Let us denote by E (0) the associated abelian
covering with potentials h1, . . . , hn satisfying

hi,x = aii, hi,y = bii for i = 1, . . . , n.

Then

H =




e−h1 0 0 · 0
0 e−h2 0 · 0
0 0 e−h3 · 0
· · · · ·
0 0 0 · e−hn



,
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is a matrix defined on E (0), with the property that all diagonal entries of the gauge
equivalent matrix A′ = AH vanish:

A′ =




0 · · 0 0
a′21 0 · · 0
a′31 a′32 0 · ·
· · · · ·
a′n1 a′n2 · a′n,n−1 0



, (8)

and similarly for B ′. Hence, A′, B ′ take values in t
(1)
n .

By the same Equation (4), γ ′2 = a′21 dx + b′21 dy, γ ′3 = a′32 dx + b′32 dy, . . . , γ ′n =
a′n−1,n dx + b′n−1,n dy are conservation laws on E (0). Let us introduce a covering E ′ over

E(0) with potentials h′2, . . . , h
′
n satisfying

h′i,x = a′i,i−1, h′i,y = b′i,i−1 for i = 2, . . . , n.

Denoting

H ′ =




1 0 · 0 0
−h′2 1 · · 0

0 −h′3 1 · ·
· · · · ·
0 · 0 −h′n 1



,

we see that the gauge equivalent matrices A′′ = A′H
′

and B ′′ = B ′H
′

take values in t(2)
n

now. Compared with (8), A′′ and B ′′ have one more subdiagonal of zeroes. The next
step is similar: γ ′′3 = a′′31 dx+ b′′31 dy, γ ′′4 = a′′42 dx+ b′′42 dy, . . . , γ ′′n = a′′n−2,n dx+ b′′n−2,n dy
are conservation laws on E ′. Let us introduce a covering E ′′ over E ′ with potentials
h′′2, . . . , h

′′
n satisfying

h′′i,x = a′′i,i−2, h′′i,y = b′′i,i−2 for i = 3, . . . , n.

Denoting

H ′′ =




1 0 · 0 0 0
0 1 · · 0 0
−h′′3 0 1 · · 0

0 −h′′4 0 1 · ·
· · · · · ·
0 · 0 −h′′n 0 1




we observe that A′′′ = A′′H
′′
, B ′′′ = B ′′H

′′
take values in t(3)

n , and so on. Continuing
the process until A(n), B(n) become zero, we end up with a sequence of 1

2
n(n + 1)
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conservation laws
γ1 γ2 γ3 . . . γn

γ ′2 γ ′3 . . . γ ′n
γ ′′3 . . . γ ′′n

. . .

γ(n−2)
n−1 γ(n−2)

n

γ(n−1)
n ,

(9)

where (a) γ1, . . . , γn are conservation laws on E; (b) γ(n−ι)
n−ι+1, . . . , γ

(n−ι)
n are conservation

laws defined on the abelian covering E (n−ι−1) associated with the conservation laws of
all the previous levels.

Finally, αHH
′···H(n−1)

= α(n) = 0, where each H (ι) is defined on E (ι). Summing up, the
covering E (n−1) trivializes α.

The sequence (9) will be called an n-fold chain of conservation laws.

Proposition 6 Let α be a tn-valued ZCR, then the associated covering πα is isomorphic
to an abelian covering of dimension ≤ 1

2
n(n + 1).

Proof According to Proposition 5, there is an abelian covering p : E (n−1) → E that
is trivializing for α; namely, we have αK = 0, where K = HH ′ · · ·H(n−1) (see proof of
Proposition 5). Hence, α = 0K

−1
and, according to Proposition 4, there is a morphism

p] : E(n−1) → Ẽα, given by Θ = K−1. Here Θ represents the totality of coordinates along
the fibres of the covering Ẽα, while K is parametrised by coordinates h

(ι)
s along the fibres

of the covering E (n−1). It follows that p] is bijective on the fibres, hence isomorphism.

5 Reducibility

A g-valued ZCR is said to be reducible if it is gauge equivalent to a ZCR taking values
in a proper subalgebra h ⊂ g; otherwise it is said to be irreducible.

Let h ⊂ g be a subalgebra. We present a simple criterion for reducibility of a g-valued
ZCR to h. Let H ⊂ G be the Lie subgroup corresponding to the subalgebra h. We call
H a right factor if there exists a submanifold K ⊂ G (possibly with singularities) such
that the multiplication map

µ : K ×H → G, (K,H) 7→ KH (10)

is a surjective local diffeomorphism. The manifold K will be called a cofactor. By
surjectivity, every element S ∈ G can be decomposed as a product S = KH, where
K ∈ K and H ∈ H, possibly non-uniquely. The map µ being a local diffeomorphism,
K has the minimal possible dimension dimK = dimG −dimH. If H is closed, then the
assignment K 7→ KH defines a local diffeomorphism of K onto the homogeneous space
G/H.
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Proposition 7 Under the above notation, a g-valued ZCR α on E is reducible to the
subalgebra h if and only if there exists a local K-valued matrix function K on E such
that αK lies in h.

Proof The gauge equivalence with respect to H ∈ H preserves the subalgebra h.
Therefore, the gauge-equivalent ZCR αS = (αK)H lies in h if and only if αK lies in h.

Otherwise said, if a ZCR is reducible to h, then the corresponding gauge matrix can
be found in K. Understandably, different choices of the cofactor K may lead to different
reducibility criteria.

In this paper we are primarily interested in detecting reducibility to a solvable sub-
algebra. By the well-known Lie theorem ([9, Sect. 9.2]), every finite-dimensional repre-
sentation of a solvable Lie algebra is equivalent to a representation by lower triangular
matrices. Hence, every ZCR reducible to a solvable subalgebra is reducible to tn (and
can be trivialized using an abelian covering according to Proposition 5).

Let us therefore apply Proposition 7 to h = tn. There are two standard ways to make
tn a right factor in gln.

The QR or Gram decomposition is an alternative formulation of the famous
Gram–Schmidt ortogonalization algorithm. Namely, every n×n complex matrix A can
be decomposed as a product A = QR, where Q ∈ SUn and R ∈ tn [25, Ch. 6, Sect.
1.9]. Proposition 7 then yields

Proposition 8 A real (complex) ZCR α on E is reducible to lower triangular if and
only if there exists an SOn-valued (SUn-valued) function K on E such that αK is lower
triangular.

However, the factors Q and R are unique up to a unimodular diagonal multiplier:
QR = QΘ · Θ−1R, where Θ = diag(θ1, . . . , θn) ∈ S(U1 × · · · × U1), i.e., |θι| = 1 and∏n

ι=1 θι = 1. Thus, the mapping (10) is not a local diffeomorphism unless it is restricted
to a suitable immersion of the orbit space SUn/S(U1 × · · · ×U1) into SUn. In the real
case we have θι = ±1 and we get a 2n−1-to-one local diffeomorphism (10) with K = SOn.

The LU or Gauss decomposition can be derived from the Gaussian elimination
algorithm. The following result is well known ([25, Ch. 6, Sect. 1.8]):

Proposition 9 For every non-singular matrix A there exist matrices P,U,L such that
A = PUL, L is lower triangular, U is upper triangular with diagonal entries equal to 1,
and P is a permutation matrix. The matrix P can be omitted if and only if all principal
minors of the matrix A are nonzero.
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(Recall that Gaussian elimination may require row swapping, which is where the
permutation matrix P comes from.) Let K denote the set of all products PU where
P is a permutation matrix and U is an upper triangular matrix with diagonal entries
equal to 1. Then K is a union of n! intersecting submanifolds, labelled by permutation
matrices P . Compared to the QR-decomposition, each of the n! submanifolds is easier
to parametrize than SO or SU.

Proposition 10 A ZCR α on E is reducible to lower triangular if and only if there
exists a permutation matrix P and a matrix-valued function

H =




1 h12 h13 · ·
0 1 h23 · ·
0 0 1 · ·
· · · · ·
0 · · 0 1




(11)

on E such that αPH is lower triangular.

Before looking more closely at low values of n, we make a general remark to the effect
that every gln-valued ZCR is reducible to sln:

Remark 11 A gln-valued ZCR is decomposable into an sln-valued ZCR (traceless sum-
mand) and a conservation law (the trace).

5.1 The case of n = 2

When n = 2, the reducibility condition corresponding to the QR decomposition is:

Proposition 12 A gl2-valued ZCR

α = Adx+B dy =

(
a11 a12

a21 a22

)
dx+

(
b11 b12

b21 b22

)
dy

is reducible to lower triangular if and only if there exists a function φ on E that is a
solution of the system

Dxφ = −a12 cos2 φ+ (a11 − a22) sinφ cos φ+ a21 sin2 φ,

Dyφ = −b12 cos2 φ+ (b11 − b22) sin φ cosφ+ b21 sin2 φ.
(12)
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Proof An arbitrary SO2 matrix is

K =

(
cos φ sinφ
− sinφ cos φ

)
.

By Proposition 8, the ZCR α is reducible to lower triangular if and only if αK is lower
triangular, which is exactly the meaning of conditions (12).

The reducibility conditions corresponding to the LU decomposition are:

Proposition 13 A gl2-valued ZCR

α = Adx+B dy =

(
a11 a12

a21 a22

)
dx+

(
b11 b12

b21 b22

)
dy

on E is reducible to lower triangular if and only if
1. either there exists a local function p on E such that

Dxp = −a12 + (a11 − a22)p+ a21p2,

Dyp = −b12 + (b11 − b22)p+ b21p2;
(13)

2. or A,B are upper triangular:

a21 = b21 = 0.

Proof An arbitrary K-valued function is K = PU , where

U =

(
1 p
0 1

)

and P is one of the two 2 × 2 permutation matrices

P12 =

(
1 0
0 1

)
, P21 =

(
0 1
1 0

)
.

Subcases 1 and 2 correspond to the choices P = P12 and P = P21, respectively, and
express the conditions that APU , BPU be lower triangular.

Recall that a quadratic or Riccati pseudopotential p associated to an gl2-valued ZCR
α is defined by the compatible system

px = −a12 + (a11 − a22)p+ a21p2,

py = −b12 + (b11 − b22)p+ b21p2,
(14)

which are essentially Equations (13). The system (14) being compatible, let us introduce
the corresponding one-dimensional Riccati covering. Proposition 13 then says that a
non-upper-triangular ZCR is reducible to lower triangular if and only if the Riccati
covering has a local section.
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Remark 14 Obviously, Equations (13) and (12) are not independent, the explicit map-
ping of their solutions being p = tan φ for φ 6= (2k+1)π/2. Recently Reyes [30] pointed
out a geometric interpretation of the same correspondence in terms of pseudospherical
equations.

Example 15 The Burgers equation ut = uxx + uux is well known to be integrable
via the Cole–Hopf transformation, which relates its solutions with those of the heat
equation [1, Sect. 3.1]. Of the several Lax pairs that have been found all turn out
to be degenerate. Let us consider one example [26, 42], where the lower triangular
representation could not be obtained by purely Lie algebraic methods:

α =

(
0 1

−1
4
ux + 1

16
(u+ λ)2 0

)
dx

+

(
−1

4
ux

1
2
(u− λ)

−1
4
uxx − 1

8
(u− λ)ux + 1

32
(u− λ)(u+ λ)2 1

4
ux

)
dt

In this case, Equations (13) have a local solution p = 4/(u + λ), hence
(

1 4/(u+ λ)
0 1

)

is a gauge matrix to make the ZCR α lower triangular.

That the Burgers equation has no irreducible gl2-valued ZCR follows from the recent
classification of second-order evolution equations possessing an sl2-valued ZCR [23] and
Remark 11. The non-existence of an irreducible ZCR of Wahlquist–Estabrook type for
arbitrary n was proved Dodd and Fordy [8] who established solvability of the Wahlquist–
Estabrook prolongation algebra of the Burgers (and also of the Kaup) equation.

Example 16 The Calogero–Nucci example [3] of a ZCR that exists for every equation
possessing a conservation law ft = gx:




0 1

η
fx
f

+ λf2 + ηµf − η2 fx
f

+ µf − 2η


 dx

+




η
g

f
+ ν

g

f
ηgx
f

+ λfg + ηµg − η2 g

f

gx
f

+ µg − η g
f

+ ν


 dy

(15)

where η, λ, µ, ν are arbitrary constants. This ZCR is reducible, which follows from
Proposition 13 along with explicit formulas for its reduction. Indeed, we have Subcase
1 again and one easily finds a local solution

p =
1

2

(µ+
√
µ2 + 4λ)f − 2η

λf2 + ηµf − η2

13



of Equations (13). Hence, the above ZCR is reducible to lower triangular.
Continuing the reduction further, one finally arrives at an abelian subalgebra. Namely,

if p is as above and

q =
λf2 + ηµf − η2

√
µ2 + 4λ f

,

r =
(λf2 + ηµf − η2)

(
2λf + (µ −

√
µ2 + 4λ)η

)

2λf + (µ +
√
µ2 + 4λ)η

,

then the product of gauge matrices

(√
r/f 0
0 1/

√
r

)(
1 0
q 1

)(
1 p
0 1

)

takes the ZCR to the diagonal form

(
1
2
(µ−

√
µ2 + 4λ)f − η 0

0 1
2
(µ+

√
µ2 + 4λ)f − η

)
dx

+

(
1
2
(µ −

√
µ2 + 4λ)g + ν 0

0 1
2
(µ+

√
µ2 + 4λ)g + ν

)
dy,

which is manifestly equivalent to the conservation law f dx+ g dt.

5.2 The case of n ≥ 3

For n ≥ 3, the QR approach is impractical due to relative clumsiness of the parametri-
sation of SOn by generalized Euler angles. On the other hand, the LU criteria come out
subdivided into as much as n! subcases, one for each of the n! permutation matrices P .

For every n, the case of general position occurs when all principal minors of the gauge
matrix K are nonzero. Then the permutation matrix P equals the identity matrix and
we can derive explicit formulas that generalize (13) to arbitrary n.

Proposition 17 A gln-valued ZCR α = Adx+B dy, where A = (aij) and B = (bij), is
reducible to lower triangular by means of a gauge matrix with nonzero principal minors

14



if and only if the system

Dxpkl = −
∑

0≤r≤n−1
i0<i1<···<ir=l

(−1)raki0pi0i1pi1i2 . . . pir−1ir

−
∑

0≤r≤n−1
k<j
i0<i1<···<ir=l

(−1)rpkjaji0pi0i1pi1i2 . . . pir−1ir ,

Dypkl = −
∑

0≤r≤n−1
i0<i1<···<ir=l

(−1)rbki0pi0i1pi1i2 . . . pir−1ir

−
∑

0≤r≤n−1
k<j
i0<i1<···<ir=l

(−1)rpkjbji0pi0i1pi1i2 . . . pir−1ir

(16)

on 1
2
(n− 1)n unknown functions pkl, k < l, has a local solution.

Proof According to Proposition 9, every gauge matrix S with nonzero principal minors
decomposes as S = LU , with L lower triangular and

U =




1 p12 p13 . . . p1n

0 1 p23 . . . p2n

0 0 1 . . . p3n
...

...
...

...
0 0 0 . . . 1



.

The inverse of U is

U−1 =




1 q12 q13 . . . q1n

0 1 q23 . . . q2n

0 0 1 . . . q3n
...

...
...

...
0 0 0 . . . 1



,
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where

qij =
∑

1≤r≤n−1

i=i0<i1<···<ir=j

(−1)rpi0i1pi1i2 . . . pir−1ir

= (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣

pi,i+1 pi,i+2 · · pi,j−1 pi,j
1 pi+1,i+2 pi+1,i+3 · · pi+1,j

0 1 pi+2,i+3 pi+2,i+4 · ·
· · 1 · · ·
0 · · · pj−2,j−1 pj−2,j

0 0 · · 1 pj−1,j

∣∣∣∣∣∣∣∣∣∣∣∣

,

since qkl +
∑

k<i<l pkiqil + pkl = 0 whenever k < l. Let us consider the gauge equivalent
matrix AU = UxU−1 + UAU−1. Terms that contain total derivatives Dxpij can occur
only in the first summand, which is

UxU
−1 =




0 z12 z13 . . . z1n

0 0 z23 . . . z2n

0 0 0 . . . z3n
...

...
...

...
0 0 0 . . . 0



,

where

zkl =
∑

1≤r≤n−1

k=i0<i1<···<ir=l

(−1)r−1Dxpi0i1 · pi1i2 . . . pir−1ir

= (−1)k+l+1

∣∣∣∣∣∣∣∣∣∣

Dxpk,k+1 Dxpk,k+2 · Dxpk,l−1 Dxpk,l
1 pk+1,k+2 pk+1,k+3 · pk+1,l

0 1 pk+2,k+3 · ·
· · · · ·
0 0 · 1 pl−1,l

∣∣∣∣∣∣∣∣∣∣

for all k < l. Denoting AU =: A′ = (a′ij), we have

a′kl := zkl + akl +
∑

j<l

akjqjl +
∑

k<ij<l

pkiaijqjl +
∑

k<i

pkiail.

The condition of A′ being lower triangular, a′kl = 0 for all k < l, constitutes a system
of equations in total derivatives Dxpij . The equivalent system resolved with respect to
the derivatives is a′kl+

∑
k<h<l a

′
khphl = 0, since derivatives occur only in the summands

containing zij, which are zkl +
∑

k<h<l zkhphl = Dxpkl. The remaining summands then
simplify to the expressions given in the statement of the proposition.
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5.3 The generalized Riccati covering

A tedious computation shows that Equations (16) are compatible, meaning that there
are no integrability conditions resulting from the equalities Dxypkl = Dyxpkl. This
implies the existence of a covering associated with a ZCR which naturally generalizes
the Riccati covering. Similar result holds for more general types of decomposition, too.

Let a subalgebra k ⊆ g be a direct complement to the subalgebra h ⊆ g considered
throughout this section. Let prk : g → k be the corresponding projection. Then the
condition αK ∈ h (Proposition 7) can be equivalently written as prkα

K = 0.
Denoting by K the Lie connected and simply connected matrix Lie group associated

with the subalgebra k, we have

Proposition 18 Under the above notation, the differential equations

prk(KxK−1 +KAK−1) = 0,

prk(KyK−1 +KBK−1) = 0
(17)

on a matrix K ∈ K are compatible.

Proof Since K ∈ K, matrices KxK−1,KyK−1 belong to k and are mapped identically
under the projection prk. Hence Equations (17) are differential equations on K and,
moreover, can be resolved with respect to Kx,Ky. Let us consider their derivatives

0 = Dyprk(KxK
−1 +KAK−1)

= prk(KxyK
−1 −KBAK−1 +KAyK

−1),

0 = Dxprk(KyK
−1 +KBK−1)

= prk(KyxK
−1 −KABK−1 +KBxK

−1),

where we have made substitutions prkKxK−1 ; −prkKAK
−1 and prkKyK−1 ;

−prkKBK
−1 according to (17). These equations can also be resolved with respect to

Kxy and Kyx, respectively. Now one can perform the standard check that Kxy coincides
with Kyx:

prk(Kxy −Kyx)K−1 = prk(Ay −Bx +AB −BA) = 0.

Definition 19 Given a ZCR α of an equation E and the decomposition g = h + k as
above, we define the associated generalized Riccati covering as E × K → E, assuming
that the corresponding matrix of pseudopotentials K ∈ K satisfies Equations (17).

Summing up, we obtain:

17



Corollary 20 A gln-valued ZCR α is reducible to lower triangular by means of a gauge
matrix from K if and only if the generalized Riccati covering associated with the decom-
position gln = tn + k has a local section.

Choosing k to be the Lie algebra of strictly upper triangular matrices, we have:

Corollary 21 A gln-valued ZCR α is reducible to lower triangular by means of a gauge
matrix with nonzero principal minors if and only if there exists a local solution to
Equations (16).

6 Guthrie’s formulation of recursion operators

In 1994, G.A. Guthrie [11] suggested a general definition of a recursion operator, free
of some weaknesses of the then standard definition in terms of integro-differential op-
erators. Geometrically, Guthrie’s recursion operator for an equation E is a Bäcklund
autotransformation for the linearized equation V E ([22]).

In geometrical terms, the linearization V E can be introduced as the vertical vector
bundle V E → E with respect to the projection E →M on the base manifold.

At the level of systems of PDE, the linearized system is

F l = 0, `F l [U ] = 0, (18)

where

`F [U ] =
∑

k,I

∂F

∂ukI
Uk
I (19)

(cf. the Fréchet derivative [28]), where Uk are coordinates along the fibres of the
projection V E → E and serve as additional dependent variables (‘velocities’ of the uk’s).
We assume summation over all k, I such that the functions F l depend on ukI .

Morphisms E → V E that are sections of the bundle V E → E are in one-to-one corre-
spondence with local symmetries of the equation E. Recall that nonlocal symmetries
(more precisely, their shadows [15]) correspond to morphisms Ẽ → V E over E, where

Ẽ is a covering of the original equation. In full generality, Guthrie’s definition includes
such a covering.

Let us denote by Ṽ E → Ẽ the pullback of the vertical bundle V E → E along the
covering projection Ẽ → E. Then nonlocal symmetries correspond to morphisms Ẽ →
Ṽ E that are sections of the projection Ṽ E → Ẽ . In coordinates, if the covering Ẽ is
determined by equations zjx = f j, zjy = gj, then its linearization Ṽ E corresponds to the
system

F l = 0, zjx = f j , zjy = gj , `F l[U ] = 0. (20)
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Definition 22 ([11]) A recursion operator for the system (1) consisting of equations
F l = 0, l = 1, . . . , s, is given by the following data:

(1) a gln-valued zero-curvature representation ᾱ = Ā dx+ B̄ dy for Ẽ ;

(2) two n-vector-valued functions A◦ = (Aj
◦), B◦ = (Bj

◦) on Ṽ E linear on the fibres
(i.e., linear in the variables U k

I ) and satisfying

(Dy − B̄)A◦ = (Dx − Ā)B◦; (21)

(3) an s× n-matrix-valued function C̄ on Ẽ;

(4) an s-vector-valued function C◦ on Ṽ E linear on the fibres (i.e., linear in the
variables Uk

I ).
The following condition is supposed to hold: If U = (U k) satisfies the linearized

equation Ṽ E , then so does U ′ = L(U), where L(U)l = C̄ l
jW

j + C l
◦ and W j, j = 1, . . . , n,

are nonlocal variables of the covering

W j
x = Āj

iW
i +Aj

◦, W j
y = B̄j

iW
i +Bj

◦, (22)

The recursion operator defined by these data will be denoted as LK−1.

Once ᾱ is a ZCR and (21) holds, Equations (22) determine a covering; see [11,
Eq. (3.2)].

Recursion operators exhibit the following form of gauge invariance: If S is a function
on E with values in GL(n), then the data

Ā′ = ĀS = D̃xSS
−1 + SĀS−1, A′◦ = SA◦,

B̄ ′ = B̄S = D̃ySS
−1 + SB̄S−1, B ′◦ = SB◦, (23)

C̄ ′ = C̄S−1, C ′◦ = C◦

(we assume matrix operations) determine the same recursion operator as a mapping
U 7→ U ′.

Remark 23 One can put the definitions in a more compact form. Let us consider
(1 + n)× (1 + n) matrices

Â =




0 0

A◦ Ā


 , B̂ =




0 0

B◦ B̄


 . (24)

Then
α̂ = Â dx+ B̂ dy
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is a ZCR for Ṽ E ; this follows easily from formulas (21). Moreover, let us introduce the
s× (1 + n)-matrix

Ĉ =


C◦ C̄


 .

Then the above formulas (23) of gauge invariance assume the compact form

Â′ = ÂŜ = D̃xŜŜ
−1 + ŜÂŜ−1,

B̂ ′ = B̂Ŝ = D̃yŜŜ
−1 + ŜB̂Ŝ−1, (25)

Ĉ ′ = ĈŜ−1

where

Ŝ =




1 0

0 S


 .

It is even possible to define a generalized recursion operator of the system (1) as
consisting of a glN -valued zero-curvature representation α̂ = Â dx+ B̂ dy for Ṽ E along
with an s×N -matrix-valued function Ĉ on Ṽ E , subject to the following condition: If

Ŵ j
x = Âj

iŴ
i, Ŵ j

y = B̂j
i Ŵ

i, (26)

then U ′l = Ĉ l
jŴ

j satisfies the linearized equation Ṽ E .
For Â, B̂ given by formulas (24), the correspondence between Ŵ and W is

Ŵ =




γ

γW


 ,

where γ satisfies D̃xγ = D̃yγ = 0. With Ŝ being an arbitrary matrix, formulas (25)
define a generalized gauge invariance of generalized recursion operators.

Coverings (22) with ᾱ = 0 are associated with conservation laws, since for them
Eq. (21) reads DyA◦ = DxB◦. Examples are provided by recursion operators that can
be written in the traditional integro-differential form ([27])

U ′l =
r∑

i=0

Rli
kD

i
xU

k + C l
jD
−1
x pjkU

k.
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Upon the obvious identification DI
xU

k = Uk
I and introduction of nonlocal variables

W j = D−1
x pjkU

k, the Guthrie form of this operator is

W j
x = pjIk U

k
I ,

W j
y = qjIk U

k
I ,

U ′l = C l
jW

j +RlI
k U

k
I ,

where pjIk U
k
I dx+qjIk U

k
I dy is a conservation law of the linearized equation V E (typically

a linearized conservation law of the equation E; [22]).

Example 24 The Lenard recursion operator Dxx+ 4u+ 2uxD−1
x for the KdV equation

ut = uxxx + 6uux has the following Guthrie form (with Ẽ = E and Ṽ E = V E):

Wx = U,

Wt = Uxx + 6uU, (27)

U ′ = Uxx + 4uU + 2uxW.

Indeed, if U satisfies the linearized equation V E, i.e.,

Ut = Uxxx + 6uUx + 6uxU, (28)

then so does U ′ (for the same u).
Here W is a potential of the conservation law U dx + (Uxx + 6uU) dt of V E, which is

a linearization of the conservation law u dx+ (uxx + 3u2) dt of E.

6.1 Inversion of recursion operators

A recursion operator is said to be invertible if the morphism L of Definition 22 is
a covering. The recursion operator LK−1 is then simply a pair of linear coverings
K,L : R → Ṽ E , its inverse being the recursion operator KL−1. Noninvertible recursion
operators do exist, see Remark 27(2).

One immediately sees that a recursion operator and its inverse are built upon one and
the same covering Ẽ . In practice usually Ẽ = E (hence the covering Ẽ is almost obsolete
in Definition 22); however, one can simplify the ZCR ᾱ with the aid of a suitably chosen
covering. Namely, given a recursion operator

R
K↙ ↘L

V E V E
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associated with a ZCR ᾱ, the obvious pullback along a covering p : Ẽ → E yields a
recursion operator

p∗R
p∗K ↙ ↘ p∗L

Ṽ E = p∗V E p∗V E = Ṽ E,
which is associated with the pullback p∗ᾱ.

For instance, let Ẽ → E be the trivializing covering for ᾱ. Then, after suitable
transformation (23), we have p∗ᾱ = 0, whence the recursion operator becomes integro-
differential of first order in D−1. Hence a possible way of conversion of recursion opera-
tors from Guthrie’s to Olver’s form, mentioned in the Introduction. This approach was
used in the work by Guthrie and Hickman [12] who, by using formal power series in the
spectral parameter λ, were able to describe large algebras of nonlocal symmetries of the
KdV equation resulting from iterated application of the inverse recursion operator.

Alternatively, Ẽ → E can be a covering such that p∗ᾱ is strictly lower triangular
(belongs to t(1)). Then the covering (22) will be abelian by a similar argument as in
Proposition 5 and the recursion operator will be integro-differential of order ≤ s in D−1.

Let us now turn back to recursion operators LK−1 with a general covering ᾱ. One
usually observes that for systems E integrable in the sense of soliton theory the covering
K is of a very special form, which is described in the following proposition:

Proposition 25 Let α = Adx+B dy be a g-valued ZCR of equation E. Then the trivial
vector bundle g × V E → V E carries a covering structure determined by the condition
that an arbitrary element W of the Lie algebra g be subject to equations

Wx = [A,W ] + `A[U ], Wy = [B,W ] + `B[U ]. (29)

Otherwise said, the associated ZCR ᾱ coincides with the adjoint representation of the
ZCR α, while A◦ = `A[U ], B◦ = `B[U ].

Proof The validity of formulas (21) follows from the fact that A 7→ `A[U ] is a differ-
entiation.

Taking account of the last proposition, we arrive at the following construction, which
converts a recursion operator from Guthrie’s form to Olver’s form provided the covering
K is of the type (29).

Construction 26 Step 1. Construct the generalized Riccati covering (Definition 19)
E ′ over E such that α′ := αH is lower triangular, where H is the matrix (11).

Step 2. Let a′ii, b
′
ii be the diagonal entries of the lower triangular matrices AH , BH,

respectively. Then a′ii dx + b′ii dy are conservation laws; if they are nontrivial, then
construct the abelian covering E ′′ over E ′ with the corresponding potentials zi.
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Step 3. Compute S = ZH, where Z is the diagonal matrix diag(e−zi). Obviously,
α′′ := αS is then strictly lower triangular, and so is its adjoint representation

α′′ = ᾱS̄ ,

where S̄ is the image of S in the adjoint representation of the group G. The x-part of
the resulting recursion operator given by formulas (23) will be expressible in terms of
inverse total derivatives D−1

x .
Step 4 (optional). Let us consider the compact form (24) of the recursion operator,

which now takes values in the algebra t
(1)
n+1 of strictly lower triangular matrices of di-

mension n + 1. Choosing appropriately a lower triangular gauge matrix Ŝ with units
on the diagonal, one can, in principle, further simplify the formulas.

If omitting Step 2, the recursion operator will be expressible in terms of inverses
(Dx − a′ii)−1.

Remark 27 (1) Let R be a conventional recursion operator of an integrable system,
let id denote the identity map. As a rule, the inverse recursion operator (R + λ id)−1

in the Guthrie form includes a λ-dependent ZCR ᾱ. The parameter λ can be usually
identified with the spectral parameter of the standard ZCR of the system.

(2) Let us recall that the formulas (29) can serve as a starting point of a method to find
the inverse recursion operator of an integrable system without finding the conventional
recursion operator first. One simply computes all morphisms R → V E, where R
is the covering determined by (29). Recently the procedure has been applied to the
stationary Nizhnik–Veselov–Novikov equation, see [24]. Remarkably enough, the so
obtained recursion operator turned out to be noninvertible for the zero value of the
spectral parameter λ. Two examples of such computation can be found below.

7 Examples

Example 28 Continuing Example 24, let us invert the Lenard operator. The result is,
of course, well known (Guthrie and Hickman [12], Lou [20, 21]).

Instead of tedious inversion of the operator given by formulas (27) and (28), we
compute it from scratch. We start with the standard sl2-valued ZCR

α =

(
0 u
−1 0

)
dx+

(
ux uxx + 2u
−2u −ux

)
dy

of the KdV equation with the spectral parameter set to zero. Using (22) and (29) with
sl2 parametrized as (

Q P
R −Q

)
,
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we get the following formulas for the covering K:


P
Q
R



x

=




0 −2u 0
1 0 u
0 −2 0





P
Q
R


+



U
0
0


,



P
Q
R



t

=




2ux −2uxx − 4u2 0
2u 0 uxx + 2u2

0 −4u −2ux





P
Q
R


+



Uxx + 4uU

Ux
−2U


.

Here U denotes a symmetry of the KdV equation, i.e., satisfies the linearized KdV
equation (28). Then one easily finds that U ′ = Q satisfies the same linearized KdV
equation (28) as well, i.e., yields a recursion operator for the KdV equation. It is a
matter of routine to check that this operator is the inverse of the Lenard operator.
Moreover, it follows that K : R → V E, originally given by U = U ′xx + 4uU ′ + 2uxW ,
constitutes a three-dimensional covering (with nonlocal variables U,Ux and W ).

According to Construction 26, to express the inverse recursion operator in terms of
D−1
x , all we need is to make the ZCR ᾱ strictly lower triangular. As the first step we

build up a covering E ′ → E with the quadratic pseudopotential h = h11 defined by
Eq. (14), i.e.,

hx = −h2 − u,
ht = −2uh2 + 2uxh− uxx − 2u2.

Then, using the gauge matrix

H =

(
1 h
0 1

)
,

we get the lower triangular ZCR

α′ = αH =

(
−h 0
−1 h

)
dx +

(
ux − 2uh 0
−2u −ux + 2uh

)
dy

with −h, h on the diagonal. As the second step, we construct the abelian covering
E ′′ → E ′ with the potential z satisfying

zx = −h, zy = ux − 2uh.

The gauge matrix

Z =

(
e−z 0
0 ez

)

then gives the strictly lower triangular ZCR

α′′ = αZH =

(
0 0
−e2z 0

)
dx+

(
0 0

−2e2zu 0

)
dy.
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In the third step, we combine the above gauge matrices into one and compute its
adjoint representation:

S =

(
e−z he−z

0 ez

)
, S̄ =




e−2z −2he−2z −h2e−2z

0 1 h
0 0 e2z


 .

Acting by S̄ on our operator, we get



P
Q
R



x

=




0 0 0
e2z 0 0
0 −2e2z 0





P
Q
R


+




e−2zU ′

0
0


,



P
Q
R



t

=




0 0 0
2ue2z 0 0

0 −4ue2z 0





P
Q
R




+




e−2zU ′xx − 2e−2zhU ′x + (2h2 + 4u)e−2zU ′

U ′x − 2hU ′

−2e2zU ′


 ,

U = Q− he−2zR.

Rewritting the x-part in terms of inverse total derivativesD−1, we get P = D−1(e−2zU),
Q = D−1(e2zP ), R = −2D−1(e−2zQ), hence

U = D−1e2zD−1e−2zU − he−2zD−1e−2zD−1e2zD−1e−2zU.

This is the well-known result [12, 20, 21], since U ′ = Q− he−2zR = −1
2
Dx(R/h2) and

zxx = z2
x + u.

The optional fourth step does not bring any significant improvement.

Example 29 Let us consider the Tzitzéica equation [38]

uxy = eu − e−2u,

later rediscovered as a member of the Zhiber–Shabat classification [45]. Its ZCR

α =



−ux 0 λ
λ ux 0
0 λ 0


 dx+




0 e−2u/λ 0
0 0 eu/λ

eu/λ 0 0


 dy (30)

as well as the Bäcklund transformation were essentially found by Tzitzéica himself.
One could invert the known recursion operator [36], but it is easier to compute the

inverse recursion operator directly by the procedure outlined in Remark 27(2). Namely,
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we consider the eight-dimensional covering (29), where Ā, B̄, A◦ and B◦ are found from
the formula (30) to be

Ā =




0 −λ 0 0 0 0 λ 0
0 −2ux −λ 0 0 0 0 λ

−2λ 0 −ux 0 −λ 0 0 0
λ 0 0 2ux −λ 0 0 0
0 λ 0 0 0 −λ 0 0
0 0 λ −λ 0 ux 0 0
0 0 0 λ 0 0 ux −λ
λ 0 0 0 2λ 0 0 −ux




,

B̄ =




0 0 −eu/λ e−2u/λ 0 0 0 0
−e−2uλ 0 0 0 e−2u/λ 0 0 0

0 −eu/λ 0 0 0 e−2u/λ 0 0
0 0 0 0 0 −eu/λ eu/λ 0
0 0 0 −e−2u/λ 0 0 0 eu/λ

−eu/λ 0 0 0 −2eu/λ 0 0 0
2eu/λ 0 0 0 eu/λ 0 0 0

0 eu/λ 0 0 0 0 −e−2u/λ 0




,

A◦ =




−Ux
0
0
0
Ux
0
0
0




, B◦ =




0
−2e−2uU/λ

0
0
0

euU/λ
euU/λ

0




,

W being a column (W11,W12,W13,W21,W22,W23,W31,W32)> of pseudopotentials. One
easily finds that W11−W22 is a symmetry of the Tzitzéica equation if so is U . We have
obtained the ‘inverse’ recursion operator of the Tzitzéica equation in the Guthrie form.

Let us express it in terms of D−1
x . As the first step we introduce pseudopotentials

p, q, r satisfying

px = λp2 − 2pux − λq, py =
eu

λ
pq − 1

e2uλ
,

qx = λpq − qux − λ, qy =
eu

λ
(q2 − p),

rx = −λpr + λq + λr2 + uxr, ry =
eu

λ
(−pr2 + qr− 1).
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to make the ZCR (30) lower triangular by providing a solution to Equations (17).
Indeed, acting on α by the gauge matrix

H =




1 p q
0 1 r
0 0 1




we get

αH =



−ux + λp 0 0

λ ux − λp + λr 0
0 λ −λr


 dx

+




euq/λ 0 0
eur/λ −eupr/λ 0
eu/λ −eup/λ eu(pr − q)/λ


 dy.

In the second step we remove the diagonal. To this end we introduce pseudopotentials
s, t by

sx = −ux + λp, sy =
eu

λ
q,

tx = ux − λp + λr, ty = −eu

λ
pr.

Acting on αH by the gauge matrix

Z =




e−s 0 0
0 e−t 0
0 0 es+t




we finally get

αZH =




0 0 0
λes−t 0 0

0 λes+2t 0


dx

+




0 0 0
eu+s−tr/λ 0 0
eu+2s+t/λ −eu+s+2tp/λ 0


 dy.
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Denoting S = ZH, we compute the adjoint representation S̄ to be

S̄ =




e−2s−t −e−2s−tr e−2s−tp e−2s−t(pr − 2q) −e−2s−t(pr + q)
0 e−s+t 0 −e−s+tp e−s+tp
0 0 e−s−2t −e−s−2tr −2e−s−2tr
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

e−2s−tp(pr − q) −e−2s−tqr e−2s−tq(pr − q)
−e−s+tp2 e−s+tq −e−s+tpq

e−s−2t(pr − q) −r2e−s−2t e−s−2t(pr − q)r
p 0 q
−p r −pr
es−t 0 es−tr

0 es+2t −es+2tp
0 0 e2s+t




.

Acting by S̄ on the above recursion operator we get

ĀS̄ =




0 0 0 0 0 0 0 0
−λes+2t 0 0 0 0 0 0 0
λes−t 0 0 0 0 0 0 0

0 −λes−t 0 0 0 0 0 0
0 λes−t −λes+2t 0 0 0 0 0
0 0 0 λes−t −λes−t 0 0 0
0 0 0 λes+2t 2λes+2t 0 0 0
0 0 0 0 0 λes+2t −λes−t 0




and

S̄A◦ =




e−2s−t(−2pr + q)Ux
2e−s+tpUx
−e−s−2trUx
−Ux
Ux
0
0
0




(we omit the matrices B̄S̄ and B◦).
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Thus, the inverse recursion operator for the Tzitzéica equation in terms of D−1 is

V = W21 −W22 − 2e−s+tpW23 + e−s−2trW31 + e−2s−t(2pr − q)W32,

where

W11 = D−1[e−2s−t(−2pr + q)Ux],

W12 = D−1[2e−s+tpUx − es+2tλW11],

W13 = D−1[−e−s−2trUx + es−tλW11],

W22 = D−1[Ux + es−tλW12 − es+2tλW13],

W21 = D−1[−Ux − es−tλW12],

W31 = D−1[es+2tλ(W21 + 2W22)],

W23 = D−1[−es−tλ(−W21 +W22)],

W32 = D−1[λ(es+2tW23 − es−tW31)].
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