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The N = 1 supersymmetric KdV equation: (non)local Hamiltonian and symplectic

structures, recursions, and hierarchies

P. KERSTEN, I. KRASIL′SHCHIK, AND A. VERBOVETSKY

Abstract. Using methods of [4] and [5], we accomplish an extensive study of the N = 1 supersym-

metric Korteweg-de Vries equation. Our results generalize the ones obtained previously and include:

a description of local and nonlocal Hamiltonian and symplectic structures, five hierarchies of symme-

tries (including a new one), the corresponding hierarchies of conservation laws, recursion operators

for symmetries and generating functions of conservation laws.

Introduction

There exists a number of super extensions of the classical KdV equation

ut = −uxxx + 6uux

(see [9] and the references therein). One of them, the so-called N = 1 supersymmetric extension, is

ut = −uxxx + 6uux + ϕxxϕ,

ϕt = −ϕxxx + 3uϕx + 3uxϕ, (1)

where ϕ is an odd (fermionic) variable. To deal with this system, it is convenient to introduce a new
independent odd variable θ such that D2

θ = Dx (here D denotes the total derivative operator; see
below) and a new odd function

Φ = ϕ + θu.

Then (1) will acquire the form

Φt = −Φxxx + 3ΦθΦx + 3ΦxθΦ. (2)

This equation is linear in θ and reduces to (1) if we equal to each other the corresponding coefficients
at the left- and right-hand sides. System (1) (or equation (2)) was studied before (see, e.g., [8]) and a
number of results related to its integrability were obtained. The aim of our paper is twofold: (1) to fill
in a number of gaps in the existing picture (for example, we describe local and nonlocal Hamiltonian
and symplectic structures, construct recursion operators for symmetries and generating functions of
conservation laws, obtain a new hierarchy of symmetries) and to represent the known results in a more
convenient form; (2) to demonstrate the efficiency of new methods of analysis of integrable systems
described in [4, 5] and based on a general geometric approach to nonlinear PDE [1, 7].

This paper is organized as follows. In Section 1, we present the essential definitions and results
needed for applications paying main attention to the computational aspects rather than to theoretical
ones. All the proofs can be found in [1, 7, 4, 5]. In Section 2, the results for the N = 1 supersymmetric
KdV equation are described. Finally, in the last section we briefly discuss the results and perspectives.

Key words and phrases. Super KdV equation, symmetry, conservation law, Hamiltonian structure, symplectic

structure.
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1. Description of the computational scheme

Here we deal with evolution systems E of the form

vt = F (y, t, v1, . . . , vk), (3)

where both the unknown variable v = (v1, . . . , vm) and the right-hand side F = (F 1, . . . , Fm) are
vector-functions and vi = ∂iv/∂yi, y and t being the independent variables.

Remark 1. In applications, some of the variables vj , as well as y, may be odd. In particular, in
equation (2) θ and Φ are odd and x is even. Nevertheless, for the sake of simplicity, we expose the
general theory for purely even equations. Necessary corrections needed for the super case the reader
will find in Subsection 1.10.

Two basic operators related to (3),

Dy =
∂

∂y
+
∑

i,j

vj
i+1

∂

∂vj
i

,

Dt =
∂

∂t
+
∑

i,j

Di
y(F j)

∂

∂vj
i

,

are called the total derivatives.

Remark 2. Note that the above expressions for total derivatives contain infinite number of terms. To
make the action of these operators (as well as of similar operators introduced below) well defined, we
introduce the space F(E) of functions smoothly depending on y, t and a finite number of variables

vj
i , and assume Dy and Dt to act in this space. Similarly, we shall consider the spaces Fm(E) of

vector-functions of length m that depend on y, t and vj
i in the same way.

1.1. Symmetries. A symmetry of equation (3) is a vector field

S =
∑

i,j

Sj
i

∂

∂vj
i

, Sj
i ∈ F(E),

such that

[S,Dy] = [S,Dt] = 0.

Any symmetry is of the form

¤f =
∑

i,j

Di
y(f j)

∂

∂vj
i

, (4)

where the vector-function f = (f 1, . . . , fm) ∈ Fm(E) satisfies the system of equations

Dt(f
l) =

∑

i,j

∂F l

∂vj
i

Di
y(f j), l = 1, . . . ,m. (5)

The operator at the right-hand side of (5) is called the linearization of F and is denoted by `F . Thus,
equation (5) acquires the form

Dt(f) = `F (f). (6)

There exists a one-to-one correspondence between symmetries (4) and the corresponding functions
f ∈ Fm(E), hence we shall identify symmetries with such functions and use the term ‘symmetry’ for
any function that satisfy (6).
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1.2. Conservation laws and generating functions. A conservation law of system (3) is a pair
Ω = (Y, T ), Y , T ∈ F(E), such that

Dt(Y ) = Dy(T ). (7)

The function Y is called the density of Ω. A conservation law is called trivial if Y = Dy(P ), T = Dt(P )
for some function P ∈ F(E).

To any conservation law there corresponds its generating function defined by

gΩ =
δY

δv
=

(
δY

δv1
, . . . ,

δY

δvm

)
,

where
δ

δvj
=
∑

i≥0

(−Dy)i ◦
∂

∂vj
i

is the variational derivative with respect to vj . Generating functions of conservation laws satisfy the
system of equations

Dt(g) = −`∗F (g), (8)

or

Dt(g
l) = −

∑

i,j

(−Dy)i

(
∂F j

∂vl
i

gj

)
, l = 1, . . . ,m, (9)

where `∗F is adjoint to the operator `F .
Any conservation law is uniquely determined by its generating function and, in particular, Ω is

trivial if and only if gΩ = 0. Stress that equation (9) may possess solutions that do not correspond to
any conservation law of (3).

1.3. Nonlocal variables. Let us introduce a set of variables w1, . . . , wj , . . . satisfying the equations

wj
y = Aj(y, t, . . . , vα

i , . . . , wβ , . . . ), wj
t = Bj(y, t, . . . , vα

i , . . . , wβ , . . . ), (10)

that are compatible modulo equation (3), where Aj , Bj are some smooth functions depending on a
finite number of arguments. Consider the operators

D̃y = Dy +
∑

j

Aj ∂

∂wj
, D̃t = Dt +

∑

j

Bj ∂

∂wj
.

Due to the compatibility conditions, one has

[D̃y, D̃t] = 0

modulo (3). The variables wj are called nonlocal.

Using the operators D̃y, D̃t instead of Dy and Dt in formulas (5), (7), and (9), we can introduce
the notions of nonlocal symmetries, nonlocal conservation laws, and nonlocal generating functions

depending on the new variables wj . We shall denote the spaces of such symmetries and generating
functions by sym(E) and gf(E), respectively.

Remark 3. An invariant geometric way to introduce nonlocal variables is based on the notion of
covering, see [6, 1, 5, 7].

1.4. `- and `∗-extensions. There are two canonical ways to extend the initial system (3). The first
one is related to the operator `F and is called the `-extension. Namely, let us introduce the nonlocal
variables ωj

i (we shall also denote ωj
0 by ωj), j = 1, . . . ,m, i = 0, 1, . . . , satisfying the relations

(ωj
i )y = ωj

i+1, (ωj
i )t = D̃i

y

(∑

s,l

∂F j

∂vl
s

ωl
s

)
.

Clearly, these equations are consistent modulo (3) and are the consequences of the following ones

ωj
t =

∑

i,l

∂F j

∂vl
i

ωl
i. (11)
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In a similar way we construct the `∗-extension: the nonlocal variables are pj
i (pj

0 will also be denoted
by pj) and the defining relations are

(pj
i )y = pj

i+1, (pj
i )t = −D̃i

y

(∑

s,l

(−D̃y)s

(
∂F l

∂vj
s

pl

))
,

that reduce to the equations

pj
t = −

∑

s,l

(−D̃y)s

(
∂F l

∂vj
s

pl

)
(12)

and their differential consequences.

Remark 4. The parities of the variables ωj and pj are opposite to that of vj : if vj is even, then ωj

and pj are odd and vice versa.

If the initial equation E was extended by nonlocal variables wj , we can associate to these variables,
in a canonical way, the corresponding ω’s and p’s whose ‘behavior’ is governed by linearization or,
respectively, adjoint linearization of equations (10) in the corresponding nonlocal setting.

Associating operators to functions on the `- and `∗-extensions. Let Fm(E) be the space of vector-valued
functions of length m (see Remark 2). Consider the case when E is not extended by nonlocal variables

first. Let a = (a1, . . . , am), ai =
∑

jl a
ij
l ωj

l , aij
l ∈ F(E), be a linear in ω vector-function. Then we put

into correspondence to this function a differential operator ∆a = ‖∆ij
a ‖ : Fm(E) → Fm(E), where

∆ij
a =

∑

l

aij
l Dl

y.

If F(E) contains nonlocal variables, the situation becomes more complicated. We shall consider here
the simplest case when the functions Aj in (10) are independent of ωβ . Let ω̄β be the variable in the
`-extension associated to the nonlocal variable wβ and b = (b1, . . . , bm), bi =

∑
β biβω̄β , be a linear in

ω̄ vector-function. Then the corresponding operator ∆b = ‖∆ij
b ‖ : Fm(E) → Fm(E) is of the form

∆ij
b =

∑

α

biαD−1
y ◦

∑

l

∂Aα

∂vj
l

Dl
y. (13)

For the `∗-extension the construction is completely similar.
Below we shall use the notation Lm(`E) and Lm(`∗E) for the spaces of vector-functions linear in ω,

ω̄ and p, p̄, respectively.

1.5. Recursion operators for symmetries. Let Ω ∈ Lm(`E) be a function that satisfies the equation

D̃t(Ω) = ˜̀
F (Ω).

Then the corresponding operator ∆Ω maps sym(E) to sym(E) and thus is a recursion operator for
(nonlocal) symmetries of E .

1.6. Recursion operators for generating functions. Let G ∈ Lm(`∗E) be a function that satisfies
the equation

D̃t(G) = −˜̀∗F (G).

Then the corresponding operator ∆G maps gf(E) to gf(E) and thus is a recursion operator for (non-
local) generating functions of E .
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1.7. Hamiltonian structures. Let A ∈ Lm(`∗E) be a function that satisfies the equation

D̃t(A) = ˜̀
F (A).

Then the corresponding operator ∆A maps gf(E) to sym(E). We call such maps pre-Hamiltonian

structures. In order ∆A to be a true Hamiltonian structure, it has to satisfy two conditions: skew-
symmetry (∆∗

A = −∆A) and the Jacobi identity for the corresponding Poisson bracket (that amounts
to [[∆A,∆A]] = 0, where [[ , ]] is the variational Schouten bracket, see [2, 4]). Both these conditions are
easily checked in terms of the function A.

Namely, if A =
∥∥∑

jl a
ij
l pj

l

∥∥ then we consider the function WA =
∑

ijl aij
l pj

l p
i and in terms of WA

the first condition reads ∑

i

δWA

δpi
pi = −2WA, (14)

while the second one is (
δ

δv
,

δ

δp

)∑

i

(
δWA

δvi

δWA

δpi

)
= 0, (15)

(δ/δv, δ/δp) = (δ/δv1, . . . , δ/δvm, δ/δp1, . . . , δ/δpm) Note also that the compatibility condition for two
Hamiltonian structures A and B amounts to(

δ

δv
,

δ

δp

)∑

i

(
δWA

δvi

δWB

δpi
+

δWB

δvi

δWA

δpi

)
= 0. (16)

The equation E itself is in the Hamiltonian form if it possesses a Hamiltonian structure A and may
be presented as

vt = ∆A

δY

δv
(17)

for some Y = (Y 1, . . . , Y m).

1.8. Symplectic structures. Let S ∈ Lm(`E) be a function that satisfies the equation

D̃t(S) = −˜̀∗F (S).

Then the corresponding operator ∆S maps sym(E) to gf(E) and may be called a presymplectic structure

on E . A presymplectic structure is called symplectic if it enjoys in addition the following properties.
Let S =

∥∥∑
jl b

ij
l ωj

l

∥∥. Similar to Subsection 1.7, we consider the function WS =
∑

ijl b
ij
l ωj

l ω
i and

impose the conditions
∑

i

δWS

δωi
ωi = −2WS , (18)

i.e., the operator ∆S is skew-adjoint, and
(

δ

δv
,

δ

δω

)∑

i

δWS

δvi
ωi = 0 (19)

that means that the ‘form’ WS s is closed.

1.9. Canonical representation. As it will be seen below, all the operators constructed in our study
are presented in the form ∑

α≥0

cα
ijD

α
y +

∑

β

dβ
j D−1

y ◦ eβ
i ,

where
∥∥cα

ij

∥∥ is an m×m-matrix,
∥∥dβ

j

∥∥ is an m× l-matrix, and
∥∥eβ

i

∥∥ is an l ×m-matrix for some l > 0

(matrix-valued functions, to be more precise). In the table it is shown how the matrices d and e look
for different types of operators.

Type of operator Lines of matrix d Columns of matrix e
Recursions for symmetries Symmetry Generating function
Recursions for generating funct. Generating function Symmetry
Hamiltonian structures Symmetry Symmetry
Symplectic structures Generating function Generating function
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1.10. Super case. We shall now assume that all objects under consideration belong to the super
setting, i.e., may be either even or odd, which means that they obey the rule

AB = (−1)ABBA.

Here and below, symbols used at the exponents of (−1) stand for the corresponding parity. General-
ization of the above exposed theory to the super case is carried out along the line of [10, 7].

Then the basic formulas to be used in the calculus described above are:

(1) for evolutionary derivations

¤ϕ =
∑

ij

(−1)ϕv
j
i Di

y(ϕj)
∂

∂vj
i

(naturally, the parity of vj
i equals that of vj plus parity of y times i);

(2) for the linearization one has `f (ϕ) = (−1)fϕ¤ϕ(f) that amounts to

(`f )β
α =

∑

i

(−1)(f
α+1)vβ

i
∂fα

∂vβ
i

Di
y;

(3) for the operator adjoint to ∆ =
∑

i aiD
i
y one has

∆∗ =
∑

i

(−1)i+iaiy+
i(i−1)

2 yDi
y ◦ ai.

2. Main results for the N = 1 supersymmetric KdV equation

Here we apply the theory described above to equation (2)

Φt = −Φxxx + 3ΦθΦx + 3ΦxθΦ.

We use the notation

Φk for
∂2kΦ

∂θ2k
=

∂kΦ

∂xk

and

Φk 1
2

for
∂2k+1Φ

∂θ2k+1
=

∂k+1Φ

∂xk∂θ
.

The functions Φk are odd while Φk 1
2

are even, the function Φ = Φ0 itself being odd.

Gradings. We assign the following gradings [·] to the variables on our equation:

[θ] = −1/2, [x] = −1, [t] = −3, [Φ] = 3/2.

Respectively, we have

[Φk] = (2k + 3)/2, [Φk 1
2
] = k + 2.

With these gradings, equation (2) becomes homogeneous (of grading 9/2) and all constructions below
can be considered to be homogeneous as well.

2.1. Nonlocal functions. Here we extend the equation E by four groups of nonlocal variables. We
present here their θ-components only; the x- and t-components are given in [3] (they are found from
the compatibility conditions).

2.1.1. Group 1. This group includes the even variables q1, q3, q5, defined by

(q1)θ = Φ0,

(q3)θ = Φ0Φ 1
2
,

(q5)θ = Φ 1
2
(−Φ2 + 2Φ0Φ 1

2
)/2.

Gradings: [q1] = 1, [q3] = 3, [q5] = 5.
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2.1.2. Group 2. This group includes the odd variables Q 1
2
, Q 5

2
, Q 9

2
defined by

(Q 1
2
)θ = q1,

(Q 5
2
)θ = q3

1 − 6q3,

(Q 9
2
)θ = −60Φ0Φ1q1 + q5

1 − 60q2
1q3 + 240q5.

Gradings: [Q 1
2
] = 1/2, [Q 5

2
] = 5/2, [Q 9

2
] = 9/2.

2.1.3. Group 3. This group includes the odd variables Q 3
2
, Q 7

2
, Q 11

2
defined by

(Q 3
2
)θ = Φ0Q 1

2
,

(Q 7
2
)θ = (12Φ2Q 1

2
+ 18Φ1Q 1

2
q1 + Φ0Q 5

2
)/3,

(Q 11
2

)θ = (360Φ4Q 1
2

+ 5280Φ3Q 1
2
q1 − 760Φ2Q 5

2
+ 4680Φ2Q 1

2
Φ 1

2
+ 1200Φ2Q 1

2
q2
1

+ 60Φ1Q 5
2
q1 + Φ0Q 9

2
)/60.

Gradings: [Q 3
2
] = 3/2, [Q 7

2
] = 7/2, [Q 11

2
] = 11/2.

2.1.4. Group 4. This group includes the even variables q̄1, q̄3, q̄5 defined by

(q̄1)θ = Q 3
2
,

(q̄3)θ = −(Q 7
2

+ Q 3
2
q2
1),

(q̄5)θ = (12Q 11
2

+ 42Q 7
2
Φ 1

2
+ 6Q 7

2
q2
1 + 12Q 3

2
Φ1 1

2
q1 + Q 3

2
q4
1 − 24Q 3

2
q1q3)/3.

Gradings: [q̄1] = 1, [q̄3] = 3, [q̄5] = 5.

Remark 5. The last three variables are not used directly in the subsequent computations, but clarify
the nonlocal picture and enter in the expressions for the higher terms of hierarchies of symmetries and
generating functions.

2.2. Seeding symmetries. Solving equation (5), which in our case is of the form

D̃t(f) = −D̃6
θ(f) + 3D̃θ(f)Φ1 + 3Φ 1

2
D̃2

θ(f) + 3D̃3
θ(f)Φ + 3Φ1 1

2
f,

where D̃t and D̃θ are the total derivative operators extended to the nonlocal setting (see Subsection 2.1),
we found a number of solutions that serve as seeding symmetries for constructing infinite hierarchies
and are used to construct nonlocal vectors (see Subsection 2.4 below).

These symmetries are:

The Yk series.

Y1 = Φ1,

Y3 = Φ3 − 3Φ1Φ 1
2
− 3Φ0Φ1 1

2
,

Y5 = Φ5 − 5Φ3Φ 1
2
− 10Φ2Φ1 1

2
+ 10Φ1Φ

2
1
2
− 10Φ1Φ2 1

2
+ 20Φ0Φ 1

2
Φ1 1

2

− 5Φ0Φ3 1
2
.
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The Yk 1
2

series.

Y 3
2

= −2Φ1Q 1
2
− Φ 1

2
q1 + Φ1 1

2
,

Y 7
2

= −12Φ3Q 1
2
− 2Φ1Q 5

2
+ 36Φ1Q 1

2
Φ 1

2
+ 36Φ0Q 1

2
Φ1 1

2
+ 12Φ0Φ2

− 6Φ0Φ1q1 + 12Φ2
1
2
q1 − 36Φ 1

2
Φ1 1

2
− Φ 1

2
q3
1 + 6Φ 1

2
q3 + 3Φ1 1

2
q2
1 − 6Φ2 1

2
q1

+ 6Φ3 1
2
,

Y 11
2

= 240Φ5Q 1
2

+ 40Φ3Q 5
2
− 1200Φ3Q 1

2
Φ 1

2
− 2400Φ2Q 1

2
Φ1 1

2

+ 2Φ1Q 9
2
− 120Φ1Q 5

2
Φ 1

2
+ 2400Φ1Q 1

2
Φ2

1
2
− 2400Φ1Q 1

2
Φ2 1

2
− 600Φ1Φ3

+ 240Φ1Φ2q1 − 120Φ0Q 5
2
Φ1 1

2
+ 4800Φ0Q 1

2
Φ 1

2
Φ1 1

2
− 1200Φ0Q 1

2
Φ3 1

2

− 480Φ0Φ4 + 360Φ0Φ3q1 + 1920Φ0Φ2Φ 1
2
− 120Φ0Φ2q

2
1 − 720Φ0Φ1Φ 1

2
q1

+ 1680Φ0Φ1Φ1 1
2

+ 20Φ0Φ1q
3
1 − 120Φ0Φ1q3 + 660Φ3

1
2
q1 − 3540Φ2

1
2
Φ1 1

2

− 40Φ2
1
2
q3
1 + 240Φ2

1
2
q3 + 360Φ 1

2
Φ1 1

2
q2
1 − 960Φ 1

2
Φ2 1

2
q1 + 1200Φ 1

2
Φ3 1

2

+ Φ 1
2
q5
1 − 60Φ 1

2
q2
1q3 + 240Φ 1

2
q5 − 720Φ2

1 1
2
q1 + 2400Φ1 1

2
Φ2 1

2
− 5Φ1 1

2
q4
1

+ 120Φ1 1
2
q1q3 + 20Φ2 1

2
q3
1 − 120Φ2 1

2
q3 − 60Φ3 1

2
q2
1 + 120Φ4 1

2
q1 − 120Φ5 1

2
.

The Zk series.

Z1 = Q 1
2
Φ 1

2
+ θ(−2Φ1Q 1

2
− Φ 1

2
q1 + Φ1 1

2
),

Z3 = (3Q 3
2
Φ 1

2
q1 − 3Q 3

2
Φ1 1

2
+ Q 5

2
Φ 1

2
− 12Q 1

2
Φ2

1
2
− 3Q 1

2
Φ1 1

2
q1 + 6Q 1

2
Φ2 1

2

+ 6Φ1Q 1
2
Q 3

2
+ 6Φ0Φ1Q 1

2
+ θ(−12Φ3Q 1

2
− 2Φ1Q 5

2
+ 36Φ1Q 1

2
Φ 1

2

+ 36Φ0Q 1
2
Φ1 1

2
+ 12Φ0Φ2 − 6Φ0Φ1q1 + 12Φ2

1
2
q1 − 36Φ 1

2
Φ1 1

2

− Φ 1
2
q3
1 + 6Φ 1

2
q3 + 3Φ1 1

2
q2
1 − 6Φ2 1

2
q1 + 6Φ3 1

2
)/3,

Z5 = (−15Q 7
2
Φ 1

2
q1 + 15Q 7

2
Φ1 1

2
+ 120Q 3

2
Φ2

1
2
q1 − 360Q 3

2
Φ 1

2
Φ1 1

2

− 10Q 3
2
Φ 1

2
q3
1 + 60Q 3

2
Φ 1

2
q3 + 30Q 3

2
Φ1 1

2
q2
1 − 60Q 3

2
Φ2 1

2
q1 + 60Q 3

2
Φ3 1

2

− Q 9
2
Φ 1

2
+ 40Q 5

2
Φ2

1
2
− 5Q 5

2
Φ 1

2
q2
1 + 15Q 5

2
Φ1 1

2
q1 − 20Q 5

2
Φ2 1

2
− 660Q 1

2
Φ3

1
2

+ 90Q 1
2
Φ2

1
2
q2
1 − 390Q 1

2
Φ 1

2
Φ1 1

2
q1 + 960Q 1

2
Φ 1

2
Φ2 1

2
+ 5Q 1

2
Φ 1

2
q4
1

− 30Q 1
2
Φ 1

2
q1q3 + 660Q 1

2
Φ2

1 1
2
− 10Q 1

2
Φ1 1

2
q3
1 − 30Q 1

2
Φ1 1

2
q3 + 60Q 1

2
Φ3 1

2
q1

− 120Q 1
2
Φ4 1

2
+ 12Φ5 − 120Φ3Q 1

2
Q 3

2
− 60Φ3Φ 1

2
− 120Φ2Φ1 1

2

− 20Φ1Q 5
2
Q 3

2
− 30Φ1Q 1

2
Q 7

2
+ 360Φ1Q 1

2
Q 3

2
Φ 1

2
− 10Φ1Q 1

2
Q 5

2
q1

− 240Φ1Φ2Q 1
2
− 60Φ1Φ 1

2
q2
1 + 60Φ1Φ1 1

2
q1 − 120Φ1Φ2 1

2
+ 360Φ0Q 1

2
Q 3

2
Φ1 1

2

− 360Φ0Φ3Q 1
2

+ 120Φ0Φ2Q 3
2

+ 120Φ0Φ2Q 1
2
q1 + 60Φ0Φ1Q 3

2
q1

− 20Φ0Φ1Q 5
2

+ 720Φ0Φ1Q 1
2
Φ 1

2
− 180Φ0Φ1Q 1

2
q2
1 + 300Φ0Φ 1

2
Φ1 1

2

− 90Φ0Φ 1
2
q3
1 + 90Φ0Φ1 1

2
q2
1 − 60Φ0Φ3 1

2
+ θ(240Φ5Q 1

2
+ 40Φ3Q 5

2

− 1200Φ3Q 1
2
Φ 1

2
− 2400Φ2Q 1

2
Φ1 1

2
+ 2Φ1Q 9

2
− 120Φ1Q 5

2
Φ 1

2
+ 2400Φ1Q 1

2
Φ2

1
2

− 2400Φ1Q 1
2
Φ2 1

2
− 600Φ1Φ3 + 240Φ1Φ2q1 − 120Φ0Q 5

2
Φ1 1

2
+ 4800Φ0Q 1

2
Φ 1

2
Φ1 1

2

− 1200Φ0Q 1
2
Φ3 1

2
− 480Φ0Φ4 + 360Φ0Φ3q1 + 1920Φ0Φ2Φ 1

2
− 120Φ0Φ2q

2
1

− 720Φ0Φ1Φ 1
2
q1 + 1680Φ0Φ1Φ1 1

2
+ 20Φ0Φ1q

3
1 − 120Φ0Φ1q3 + 660Φ3

1
2
q1

− 3540Φ2
1
2
Φ1 1

2
− 40Φ2

1
2
q3
1 + 240Φ2

1
2
q3 + 360Φ 1

2
Φ1 1

2
q2
1 − 960Φ 1

2
Φ2 1

2
q1

+ 1200Φ 1
2
Φ3 1

2
+ Φ 1

2
q5
1 − 60Φ 1

2
q2
1q3 + 240Φ 1

2
q5 − 720Φ2

1 1
2
q1 + 2400Φ1 1

2
Φ2 1

2
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− 5Φ1 1
2
q4
1 + 120Φ1 1

2
q1q3 + 20Φ2 1

2
q3
1 − 120Φ2 1

2
q3 − 60Φ3 1

2
q2
1 + 120Φ4 1

2
q1

− 120Φ5 1
2
))/5.

The Zk 1
2

series.

Z 1
2

= −2θΦ1 + Φ 1
2
,

Z 5
2

= −2Φ1Q 3
2

+ Φ1Q 1
2
q1 + 2Φ0Φ1 − 4Φ2

1
2

+ Φ 1
2
q2
1 − 2Φ1 1

2
q1 + 2Φ2 1

2

+ θ(−4Φ3 + 12Φ1Φ 1
2

+ 12Φ0Φ1 1
2
),

Z 9
2

= −24Φ3Q 3
2

+ 24Φ3Q 1
2
q1 − 6Φ1Q 7

2
+ 72Φ1Q 3

2
Φ 1

2
+ 2Φ1Q 5

2
q1

− 36Φ1Q 1
2
Φ 1

2
q1 + 24Φ1Q 1

2
Φ1 1

2
− 36Φ1Q 1

2
q3 + 48Φ1Φ2 + 72Φ0Q 3

2
Φ1 1

2

− 72Φ0Q 1
2
Φ1 1

2
q1 + 72Φ0Φ3 − 48Φ0Φ2q1 − 144Φ0Φ1Φ 1

2
+ 48Φ0Φ1q

2
1

+ θ(−48Φ5 + 240Φ3Φ 1
2

+ 480Φ2Φ1 1
2
− 480Φ1Φ

2
1
2

+ 480Φ1Φ2 1
2

− 960Φ0Φ 1
2
Φ1 1

2
+ 240Φ0Φ3 1

2
) + 132Φ3

1
2
− 24Φ2

1
2
q2
1 + 144Φ 1

2
Φ1 1

2
q1

− 192Φ 1
2
Φ2 1

2
+ Φ 1

2
q4
1 − 24Φ 1

2
q1q3 − 144Φ2

1 1
2
− 4Φ1 1

2
q3
1 + 24Φ1 1

2
q3

+ 12Φ2 1
2
q2
1 − 24Φ3 1

2
q1 + 24Φ4 1

2
.

Gradings. There are two points of view on symmetries: as on functions and as on vector fields ¤f (see
Subsection 1.1). For functions we have:

[Y1] = 5/2, [Y3] = 9/2, [Y5] = 13/2, odd;

[Y 3
2
] = 3, [Y 7

2
] = 5, [Y 11

2
] = 7, even;

[Z1] = 5/2, [Z3] = 7/2, [Z5] = 13/2, odd;

[Z 1
2
] = 2, [Z 5

2
] = 4, [Z 9

2
] = 6, even.

For vector fields we have:

[¤Y1
] = 1, [¤Y3

] = 3, [¤Y5
] = 5, even;

[¤Y 3
2

] = 3/2, [¤Y 7
2

] = 7/2, [¤Y 11
2

] = 11/2, odd;

[¤Z1
] = 1, [¤Z3

] = 3, [¤Z5
] = 5, even;

[¤Z 1
2

] = 1/2, [¤Z 5
2

] = 5/2, [¤Z 9
2

] = 9/2, odd.

Note also that the symmetries Yα do not depend on θ, while Zα are linear functions with respect
to θ.

2.3. Seeding generating functions. Solving equation (5), which in our case is of the form

D̃t(f) = −D̃6
θ(f) + 6Φ 1

2
D̃2

θ(f) − 3Φ0D̃
3
θ(f),

we found a number of solutions that serve as seeding generating functions for constructing infinite hi-
erarchies and used to construct nonlocal forms ( see Subsection 2.5 below). These generating functions
are:

The Fk series.

F0 = 1,

F2 = Φ 1
2
,

F4 = (−2Φ0Φ1 + 3Φ2
1
2
− Φ2 1

2
)/3 .
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The Fk 1
2

series.

F 1
2

= Q 1
2
,

F 5
2

= (Q 5
2
− 12Q 1

2
Φ 1

2
+ 6Φ1 + 6Φ0q1)/6,

F 9
2

= (Q 9
2
− 40Q 5

2
Φ 1

2
+ 720Q 1

2
Φ2

1
2
− 240Q 1

2
Φ2 1

2
+ 120Φ3 + 120Φ2q1

− 480Φ1Φ 1
2

+ 60Φ1q
2
1 − 480Φ0Φ1Q 1

2
− 420Φ0Φ 1

2
q1 − 240Φ0Φ1 1

2
+ 20Φ0q

3
1

− 120Φ0q3)/20.

The Gk series.

G0 = θQ 1
2
,

G2 = (3Q 1
2
Q 3

2
+ 6Φ0Q 1

2
+ θQ 5

2
− 12θQ 1

2
Φ 1

2
+ 6θΦ1 + 6θΦ0q1)/3,

G4 = (−10Q 5
2
Q 3

2
+ 15Q 1

2
Q 7

2
+ 120Q 1

2
Q 3

2
Φ 1

2
− 5Q 1

2
Q 5

2
q1 − 120Φ2Q 1

2

− 60Φ1Q 3
2
− 60Φ0Q 3

2
q1 − 20Φ0Q 5

2
+ 420Φ0Q 1

2
Φ 1

2
+ 90Φ0Q 1

2
q2
1

− 120Φ0Φ1 − θQ 9
2

+ 40θQ 5
2
Φ 1

2
− 720θQ 1

2
Φ2

1
2

+ 240θQ 1
2
Φ2 1

2
− 120θΦ3

− 120θΦ2q1 + 480θΦ1Φ 1
2
− 60θΦ1q

2
1 + 480θΦ0Φ1Q 1

2
+ 420θΦ0Φ 1

2
q1

+ 240θΦ0Φ1 1
2
− 20θΦ0q

3
1 + 120θΦ0q3)/90.

The Gk 1
2

series.

G− 1
2

= θ,

G 3
2

= −Q 3
2

+ Q 1
2
q1 + 2Φ0 − 4θΦ 1

2
,

G 7
2

= (3Q 7
2
− 24Q 3

2
Φ 1

2
− Q 5

2
q1 + 6Q 1

2
Φ 1

2
q1 − 12Q 1

2
Φ1 1

2
+ 18Q 1

2
q3 − 24Φ2

− 12Φ1q1 + 84Φ0Φ 1
2

+ 6Φ0q
2
1 + 96θΦ0Φ1 − 144θΦ2

1
2

+ 48θΦ2 1
2
)/6.

Gradings. These generating functions have the following gradings and parities:

[F0] = 0, [F2] = 2, [F4] = 4, even;

[F 1
2
] = 1/2, [F 5

2
] = 5/2, [F 9

2
] = 9/2, odd;

[G0] = 0, [G2] = 2, [G4] = 4, even;

[G− 1
2
] = −1/2, [G 3

2
] = 3/2, [G 7

2
] = 7/2, odd.

Note again that the generating functions Fα do not depend on θ, while Gα are linear functions with
respect to θ.

2.4. Nonlocal vectors. We pass now to the `∗-extension of equation (2). The additional coordinates
on this extension are denoted by P = P0, P 1

2
, P1, etc.

Now we introduce nonlocal variables in the `∗-extension that we call nonlocal vectors and which are
defined by

(PY1
)θ = Y1P0, (PY3

)θ = Y3P0, (PY5
)θ = Y5P0;

(PY 3
2

)θ = Y 3
2
P0, (PY 7

2

)θ = Y 7
2
P0, (PY 11

2

)θ = Y 11
2

P0;

(PZ1
)θ = Z1P0, (PZ3

)θ = Z3P0, (PZ5
)θ = Z5P0;

(PZ 1
2

)θ = Z 1
2
P0, (PZ 5

2

)θ = Z 5
2
P0, (PZ 9

2

)θ = Z 9
2
P0,

where the symmetries Yα and Zα were described in Subsection 2.2.
The x- and t-components of these variables are given in [3].
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Gradings. The variable P0 is even and we assign grading 0 to it. Then Pk are also even variables with
[Pk] = k while Pk 1

2
are odd and [Pk 1

2
] = (2k + 1)/2. Consequently,

[PY1
] = 2, [PY3

] = 4, [PY5
] = 6, even;

[PY 3
2

] = 5/2, [PY 7
2

] = 9/2, [PY 11
2

] = 13/2, odd;

[PZ1
] = 2, [PZ3

] = 4, [PZ5
] = 6, even;

[PZ 1
2

] = 3/2, [PZ 5
2

] = 7/2, [PZ 9
2

] = 11/2, odd.

2.5. Nonlocal forms. Passing now to the `-extension of equation (2), we introduce the additional
coordinates on this extension that are denoted by Ω = Ω0, Ω 1

2
, Ω1, etc.

Now we introduce nonlocal variables in the `-extension called nonlocal forms and described by

(ΩF0
)θ = Ω0F0, (ΩF2

)θ = Ω0F2, (ΩF4
)θ = Ω0F4;

(ΩF 1
2

)θ = Ω0F 1
2
, (ΩF 5

2

)θ = Ω0F 5
2
, (ΩF 9

2

)θ = Ω0F 9
2
;

(ΩG0
)θ = Ω0G0, (ΩG2

)θ = Ω0G2, (ΩG4
)θ = Ω0G4;

(ΩG
−

1
2

)θ = Ω0G− 1
2
, (ΩG 3

2

)θ = Ω0G 3
2
, (ΩG 7

2

)θ = Ω0G 7
2
,

where the generating functions Fα and Gα were described in Subsection 2.3.
The x- and t-components of these variables are given in [3].

Gradings. The variable Ω0 is even and we assign grading 0 to it. Then Ωk are also even variables with
[Ωk] = k, while Ωk 1

2
are odd and [Ωk 1

2
] = (2k + 1)/2. Consequently,

[ΩF0
] = −1/2, [ΩF2

] = 3/2, [ΩF4
] = 7/2, odd;

[ΩF 1
2

] = 0, [ΩF 5
2

] = 2, [ΩF 9
2

] = 4, even;

[ΩG0
] = −1/2, [ΩG2

] = 3/2, [ΩG4
] = 7/2, odd;

[ΩG
−

1
2

] = −1, [ΩG 3
2

] = 1, [ΩG 7
2

] = 3, even.

2.6. Recursion operators for symmetries. Using the method described in Subsection 1.5, we found
two nontrivial solutions of the linearized equation in the `-extension enriched with nonlocal variables.
The first one is

Ω1 = −Q 1
2
ΩF0

Φ 1
2
− 2Φ1ΩG0

− Φ1ΩF0
+ 2Φ1Q 1

2
ΩG

−
1
2

− 2Φ0Ω 1
2

+ θΩF0
Φ 1

2
q1 − θΩF0

Φ1 1
2

+ 2θΦ1Q 1
2
ΩF0

+ 2θΦ1ΩF 1
2

− ΩF 1
2

Φ 1
2

+ ΩG
−

1
2

Φ 1
2
q1 − ΩG

−
1
2

Φ1 1
2

− 2Ω0Φ 1
2

+ Ω2.

The operator corresponding to the first solution is

∆Ω1 = D4
θ − 2Φ0Dθ − 2Φ 1

2

− (Y1 + Z1)D
−1
θ ◦ F0 − Z 1

2
D−1

θ ◦ F 1
2
− Y 3

2
D−1

θ ◦ G− 1
2
− 2Y1D

−1
θ ◦ G0.

The second solution is given in [3].

Gradings. The operator Ω1 is even and its grading is 2.

2.7. Recursion operators for generating functions. Using the method described in Subsection
1.6, we found three nontrivial solutions of the adjoint linearized equation in the `∗-extension enriched
with nonlocal variables. The first one is

P 1 = Q 1
2
PZ 1

2

+ 2Φ0P 1
2

+ θPY 3
2

+ 2θQ 1
2
PY1

− 4Φ 1
2
P0 + PY1

+ PZ1
+ P2.
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The operator corresponding to the first solution is

∆P 1 = D4
θ + 2Φ0Dθ − 4Φ 1

2

+ (F0 + 2G0)D
−1
θ ◦ Y1 + G− 1

2
D−1

θ ◦ Y 3
2

+ F0D
−1
θ ◦ Z1 + F 1

2
D−1

θ ◦ Z 1
2
.

The second and third solutions are given in [3].

Gradings. The operator P 1 is even and its grading is 2.

2.8. Hamiltonian structures. Using the method described in Subsection 1.7, we found three non-
trivial solutions of the linearized equation in the `∗-extension enriched with nonlocal variables. The
first one is

H1 = P2 1
2
− P 1

2
Φ 1

2
− 2Φ1P0 − 3Φ0P1.

The operator corresponding to the first solution is

∆H1 = D5
θ − 3Φ0D

2
θ − Φ 1

2
Dθ − 2Φ1.

This operator satisfies criteria (14) and (15) and thus is Hamiltonian. Moreover, there exists a conser-
vation law (corresponding to the nonlocal variable q3)

X = Φ0Φ 1
2
,

T = −2Φ1Φ2 + Φ0Φ3 − 9Φ0Φ1Φ 1
2

+ 4Φ3
1
2
− 2Φ 1

2
Φ2 1

2
+ Φ2

1 1
2

such that our equation can be represented as

Φt = ∆H1

δ

δΦ

(
−

1

2
X
)
,

and so (17) is also satisfied.
The second Hamiltonian structure is of the form

H2 = −PZ 1
2

Φ 1
2
q1 + PZ 1

2

Φ1 1
2
− PY 3

2

Φ 1
2

+ P4 1
2
− 3P2 1

2
Φ 1

2
− 3P1 1

2
Φ1 1

2

+ 3P 1
2
Φ2

1
2
− P 1

2
Φ2 1

2
− 2Q 1

2
Φ 1

2
PY1

− 2Φ3P0 − 7Φ2P1 − 2Φ1Q 1
2
PZ 1

2

+ 9Φ1Φ 1
2
P0 − 2Φ1PZ1

− 9Φ1P2 − Φ0Φ1P 1
2

+ 13Φ0Φ 1
2
P1 + 7Φ0Φ1 1

2
P0

− 5Φ0P3 + 2θΦ1PY 3
2

+ 4θΦ1Q 1
2
PY1

+ 2θΦ 1
2
q1PY1

− 2θΦ1 1
2
PY1

.

The corresponding operator is

∆H2 = D9
θ − 5Φ0D

6
θ − 3Φ 1

2
D5

θ − 9Φ1D
4
θ − 3Φ1 1

2
D3

θ + (13Φ0Φ 1
2
− 7Φ2)D

2
θ

+ (3Φ2
1
2
− Φ2 1

2
− Φ0Φ1)Dθ + (9Φ1Φ 1

2
+ 7Φ0Φ1 1

2
− 2Φ3)

+ Y 3
2
D−1

θ ◦ Z 1
2
− Z 1

2
D−1

θ ◦ Y 3
2
− 2Y1D

−1
θ ◦ Z1 − 2Z1D

−1
θ ◦ Y1.

The third solution is given in [3].

Gradings. The operator ∆H1 is odd and of grading 5/2. The operator ∆H2 is also odd and of grading
9/2.

2.9. Symplectic structures. Using the method described in Subsection 1.8, we found three nontrivial
solutions of the adjoint linearized equation in the `-extension enriched with nonlocal variables. The
first one is

S1 = ΩG0
+ ΩF0

− Q 1
2
ΩG

−
1
2

+ θQ 1
2
ΩF0

+ θΩF 1
2

.

The operator corresponding to the first solution is

∆S1 = (F0 + G0)D
−1
θ ◦ F0 + G− 1

2
D−1

θ ◦ F 1
2
− F 1

2
D−1

θ ◦ G− 1
2

+ F0D
−1
θ ◦ G0.

This operator satisfies criteria (18) and (19) and thus is symplectic.
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The second solution is of the form

S2 = (3ΩG2
− 12ΩG0

Φ 1
2
− 12ΩF2

− 12ΩF0
Φ 1

2
+ 6Ω1 1

2
− 3Q 3

2
ΩF 1

2

− Q 5
2
ΩG

−
1
2

+ 3Q 1
2
Q 3

2
ΩF0

+ 3Q 1
2
ΩF 1

2

q1 + 12Q 1
2
ΩG

−
1
2

Φ 1
2

− 3Q 1
2
ΩG 3

2

− 6Φ1ΩG
−

1
2

+ 6Φ0Q 1
2
ΩF0

+ 6Φ0ΩF 1
2

− 6Φ0ΩG
−

1
2

q1

+ 6Φ0Ω0 + θQ 5
2
ΩF0

− 12θQ 1
2
ΩF2

− 12θQ 1
2
ΩF0

Φ 1
2

+ 6θΦ1ΩF0

+ 6θΦ0ΩF0
q1 − 12θΩF 1

2

Φ 1
2

+ 6θΩF 5
2

)/6.

The corresponding operator is

∆S2 = D3
θ + Φ0 + (

1

2
G2 − 2F2)D

−1
θ ◦ F0

− 2(F0 + G0)D
−1
θ ◦ F2 +

1

2
G 3

2
D−1

θ ◦ F 1
2

+ G− 1
2
D−1

θ ◦ F 5
2

− 2F2D
−1
θ ◦ G0 +

1

2
F0D

−1
θ ◦ G2 − 6F 5

2
D−1

θ ◦ G− 1
2
−

1

2
F 1

2
D−1

θ ◦ G 3
2
.

The third solution is given in [3].

Gradings. The operator ∆S1 is odd and of grading −1/2. The second operator is also odd and its
grading equals 3/2.

2.10. Interrelations. Using the symmetries computed in Subsection 2.2 and applying the recursion
operator obtained in Subsection 2.6, we get four infinite series of (generally, nonlocal) symmetries

Y2k−1, [Y2k−1] = (4k + 1)/2, odd,

Y 4k−1
2

, [Y 4k−1
2

] = 2k + 1, even,

Z2k−1, [Z2k−1] = (4k + 1)/2, odd,

Z 4k−3
2

, [Z 4k−3
2

] = 2k, even,

k = 1, 2, . . .
In a similar war, using the results of Subsections 2.3 and 2.7, we get four infinite series of generating

functions

F2k−2, [F2k−2] = 2k − 2, even,

F 4k−3
2

, [F 4k−3
2

] = (4k − 3)/2, odd,

G2k, [G2k] = 2k, even,

G 4k−5
2

, [G 4k−5
2

] = (4k − 5)/2, odd,

k = 1, 2, . . .
These series are related to each other (up to rational coefficients) by the operators of Subsections

2.6–2.9 in the following way:

Y2k−1

∆Ω1

∆
S1

Y2k+1

∆
S1

F2k−2
∆

P1

∆
H1

F2k
∆

P1

∆
H1

F2k+2

Z2k−1

∆Ω1

∆
S1

Z2k+1

∆
S1

G2k
∆

P1

∆
H1

G2k+2
∆

P1

∆
H1

G2k+4

Y 4k−1
2

∆Ω1

∆
S1

Y 4k+3
2

∆
S1

F 4k−3
2 ∆

P1

∆
H1

F 4k+1
2 ∆

P1

∆
H1

F 4k+5
2

Z 4k−3
2

∆Ω1

∆
S1

Z 4k+1
2

∆
S1

G 4k−5
2 ∆

P1

∆
H1

G 4k−1
2 ∆

P1

∆
H1

G 4k+3
2
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Remark 6. Actually, there exists another hierarchy of symmetries S2k, k = 0, 1, . . . , with the seeding
element

S0 = 6(−Φ3 + 3Φ1Φ 1
2

+ 3ΦΦ1 1
2
)t + 2Φ1x + θΦ 1

2
+ 3Φ

(the scaling symmetry). All these symmetries are odd, linear with respect to x, t, and θ, and have
grading [S2k] = (4k + 3)/2.

3. Conclusion

The study of the N = 1 supersymmetric KdV equation exposed in this paper demonstrates the
power and efficiency of the geometrical methods elaborated in [1] and [4]. In particular, we found
recursion operators for symmetries and generating functions, Hamiltonian and symplectic structures,
constructed five infinite series of symmetries, one of which was not known before.

Our experience shows that the methods applied are of a universal nature and may be used to analyze
a lot of other equations, both classical and supersymmetric. In particular, from technical point of view,
the canonical representation of nonlocal operators (see Subsection 1.9) seems to be quite efficient and
convenient when dealing with such operators. Note that all nonlocal operators constructed in this
paper are represented in the canonical form.

We strongly believe that the majority of the problems formulated in [9] can be solved by our
methods. We plan to demonstrate this in forthcoming publications. Note in particular that the
nonlocal Hamiltonian structure indicated in [9] is inverse to our symplectic structure S1.
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