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Homogeneous spaces associated with Miura transformations

SERGEI IGONIN

Abstract. For scalar evolution equations, we prove that a zero-curvature represen-
tation with values in a Lie algebra g and a certain type homogeneous space of g

determine a Miura type transformation. Using this result, we show how to construct
and classify Miura type transformations for a given equation.

Recall that an action of a Lie algebra g on a manifold W is a homomorphism ρ : g →
D(W ) to the Lie algebra D(W ) of vector fields on W . The action is said to be transitive
if for each point a ∈ W the mapping

g → TaW, v �→ ρ(v)a

is surjective. In this case W is called a homogeneous space of g. Two actions ρi : g →
D(Wi), i = 1, 2, are said to be isomorphic if there is a diffeomorphism ϕ : W1 → W2

such that ρ2 = ϕ∗ρ1.
Below our considerations are always local. The results are valid in both categories

of smooth and analytic manifolds. Depending on the category considered, all functions
are supposed to be smooth or analytic.

Consider two scalar evolution equations

ut = P (u, u1, . . . , up), uk =
∂ku

∂xk
,(1)

vt = R(v, v1, . . . , vr), vk =
∂kv

∂xk
.(2)

and a transformation

(3) u = S(v, v1, . . . , vn)

such that for any solution v(x, t) of (2) function (3) satisfies (1). Such transformations
are called Miura type transformations (MT in short) by analogy with the famous Miura
transformation connecting the KdV and the modified KdV equations. The maximal
integer n such that (3) depends nontrivially on vn is called the order of the MT.

In this paper we develop a description of MTs in terms of homogeneous spaces of Lie
algebras.

Introduce new variables

(4) wi = ∂i−1v/∂xi−1, i = 1, . . . , n,
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and rewrite system (2), (3) as follows

(5)

∂wi

∂x
= wi+1, i = 1, . . . , n − 1,

∂wn

∂x
= a(w1, . . . , wn, u),

∂wi

∂t
= bi(w1, . . . , wn, u, . . . , up−1), i = 1, . . . , n.

where p is the order of (1). And vice versa, it is easily seen that any consistent system
of this form with

(6)
∂

∂u
a(w1, . . . , wn, u) �= 0

determines a MT of order n for (1) as follows:

• substitute (4) to (5),
• from equation (5) express u = S(v, v1, . . . , vn),
• let D =

∑
i≥0 vi+1∂/∂vi, then equation (2) is given by

vt = b1(v, v1, . . . , vn−1, S, D(S), . . . , Dp−1(S)).

Consider the total derivative operators

Dx =
∂

∂x
+

∑
j≥0

uj+1
∂

∂uj

,

Dt =
∂

∂t
+

∑
j≥0

Dj
x

(
P (u, u1, . . . , up)

) ∂

∂uj
,

and more general overdetermined systems

(7)

∂wi

∂x
= ai(w1, . . . , wn, u), i = 1, . . . , n,

∂wi

∂t
= bi(w1, . . . , wn, u, . . . , up−1), i = 1, . . . , n.

consistent modulo (1). Clearly, an invertible change of variables

wi �→ f i(w1, . . . , wn)

leads to a new system of the form (7). Two systems related by such a change of variables
are said to be equivalent.

System (7) is completely determined by the vector fields

A =
n∑

i=1

ai(w1, . . . , wn, u)
∂

∂wi
, B =

n∑
i=1

bi(w1, . . . , wn, u, . . . , up−1)
∂

∂wi
.

Consistency of (7) modulo (1) is equivalent to the equation

(8) [Dx + A, Dt + B] = 0.
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Remark 1. Coordinate-independent study of such objects is performed in [1, 6] in the
framework of the theory of coverings of PDEs. Our results are considerably inspired
by this theory. Another source of the present ideas is the paper [3], which announces
some remarkable results on MTs for the KdV equation.

Recall that two functions

(9) M(u), N(u, . . . , up−1)

with values in a Lie algebra g constitute a zero-curvature representation (ZCR in short)
for (1) if

(10) [Dx + M, Dt + N ] = DxN − DtM + [M, N ] = 0

Then each action ρ : g → D(W ) and a choice of local coordinates w1, . . . , wn in W
determine a consistent system of the form (7) with A = ρ(M) and B = ρ(N), since
equation (8) follows from (10). Clearly, different choices of coordinates in W or isomor-
phic actions determine equivalent systems (7).

For each k ∈ N we define the subalgebra gk of g by induction on k as follows:

• g0 = 0,
• g1 is the subalgebra generated by all the elements

M(u) − M(u′) ∈ g,

• gk+1 is generated by the subspaces gk and [gk, M(u)].

Set also g̃ = ∪k≥0gk.
Let us present the main result of this paper.

Theorem 1. Consider ZCR (9) with values in g and an action ρ : g → D(W ), where
dimW = n. The corresponding system (7) is equivalent to a system of the form (5)
with (6) (i.e., determines a MT for (1)) if and only if the following conditions hold.

(1) The subalgebra ρ(g̃) acts on W transitively.
(2) The subalgebra ρ(gn−1) acts on W nontransitively.

In this case a nonconstant function w on W invariant under ρ(gn−1) is unique up to a
change w �→ g(w). The functions

(11) wi = ρ
(
M(u)

)i−1
(w), i = 1, . . . , n,

do not depend on u and are local coordinates in which system (7) constructed by ρ takes
the desired form (5), (6).

Proof. If the system constructed by ρ is of the form (5), (6) then by the definition of gk

we obtain that the image of gk in each tangent space is spanned by ∂/∂wn−k+1, . . . , ∂/∂wn.
This obviously implies Conditions 1 and 2.

Conversely, let ρ satisfy Conditions 1, 2. Consider a generic point a ∈ W and the
local orbits Ok ⊂ W of this point under the action of ρ(gk). Conditions 1, 2 say that

(12) dimOn−1 < n, ∃ c : Ok is open in W ∀ k ≥ c.

On the other hand, from the definition of gk it follows easily that if U ∩Om = U ∩Om+1

for some m ≥ 0 and some neighbourhood U of a then U ∩ Ok = U ∩ Om for all k ≥ m.
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Combining this with (12), we obtain

(13) a = O0 � O1 � · · · � On, dimOk = k, k = 0, 1, . . . , n.

Therefore, there is a nonconstant function w invariant under ρ(gn−1), and it is unique
up to a change w �→ g(w). Consider now functions (11). Using (13) and the definition
of gk, by induction on k one proves

(14) ρ(gn−k)(w
k) = 0, ρ(gn−k+1)(w

k) �= 0, k = 1, . . . , n.

In particular, w1, . . . , wn−1 are invariant under ρ(g1), which implies that w1, . . . , wn do
not depend on u. Combining (13) and (14), we obtain that w1, . . . , wn form a system
of local coordinates in W . It is easily seen that system (7) constructed by ρ is of the
form (5), (6) in these coordinates. �
Corollary 1. If gm = gm+1 for some m ≥ 0 then ZCR (9) cannot produce MTs of
order greater than m.

Proof. By Theorem 1, a MT of order n is determined by a transitive action ρ of g̃ such
that ρ(gn−1) is not transitive. Since in our case g̃ = gk for any k ≥ m, there are no
such actions for n > m. �

It can be shown that for any equation (1) there is a universal ZCR with values in the
(possibly infinite-dimensional) Wahlquist-Estabrook Lie algebra we of (1) such that any
consistent system (7) arises from an action of we (see [2, 8, 6] and references therein).
In particular, by Theorem 1, all MTs of (1) are determined by some transitive actions
of we.

There is an algorithmic procedure to find the universal ZCR for a given equation (1),
see [2, 6]. However, in this way the Lie algebra we is described in terms of generators
and relations, which makes it difficult to study transitive actions of we. Using heavy
computations, for a number of equations the explicit structure of we in terms of well-
known Lie algebras was described (see [8] and references therein). It is shown in [5]
how these computations can be simplified.

Example 1. According to [8], for the KdV equation ut = u3 + u1u we have

we ∼= H ⊕ sl2(C) ⊗C C[λ]

where H is the 5-dimensional nilpotent Heisenberg algebra with the basis ri, i =
−2,−1, 0, 1, 2 and the commutator table

[r−1, r1] = [r2, r−2] = r0, [ri, rj] = 0 ∀ i + j �= 0.

The universal ZCR is M(u) = X1 + 1
3
uX2 + 1

6
u2X3, where

X1 = r1 −
1

2
y +

1

2
λz, X2 = r−1 + z, X3 = r−2,

and h, y, z is a basis of sl2 with the relations [h, y] = 2y, [h, z] = −2z, [y, z] = h. Here
the form of N(u, u1, u2) in (9) is not important for us.

We have
g1 = 〈X2, X3〉, g2 = 〈r−2, r−1, z, 2r0 − h〉,

and
g3 = gk = g̃ = 〈sl2 ⊗ C[λ], r−2, r−1, r0, r1〉 ∀ k ≥ 3.
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By Corollary 1, any MT of the KdV equation is of order not greater than 3. A weaker
fact that each MT is reduced to a MT of order not greater than 3 ‘by introduction of
a potential’ was announced in [3].

Let us explain how our method of constructing MTs includes the one of [3].
Consider the part of this ZCR with values in f = sl2(C) ⊗C C[λ]. We have

f1 = 〈z〉, f2 = 〈z, h〉, f3 = f̃ = f.

By Theorem 1, each homogeneous space of f of dimension ≤ 3 determines a MT for the
KdV equation. Conditions 2 is satisfied, since dim fk = k for k = 0, 1, 2.

According to [5], for a transitive action ρ : f → D(W ) the image ρ(f) is finite-
dimensional and is of the form

(15) sl2 ⊗ C[λ]/(f(λ)), f(λ) ∈ C[λ].

Let

f(λ) = a
k∏

s=1

(λ − es)
ks , a, es ∈ C, a �= 0, ei �= ej ∀ i �= j.

Then Lie algebra (15) is isomorphic to

(16)
k⊕

s=1

sl2 ⊗ C[λ]/(λks).

The Lie groups ∏
s

SL2

(
C[λ]/(λks)

)
.

that appear in [3] have (16) as their Lie algebras. Thus construction of MTs is reduced
to local description of homogeneous spaces of dim ≤ 3 of these Lie groups. This
description and the corresponding MTs are presented in [3].

Example 2. The equation

(17) ut = u5 + 10uu3 + 25u1u2 + 20u2u1

admits the following Lax pair [4]

Lt = [L, A],(18)

L = D3
x + 2uDx + u1,

A = 9D5
x + 30uD3

x + 45u1D
2
x + (20u2 + 35u2)Dx + (10u3 + 20uu1).

Let us show how this Lax pair leads to a ZCR and MTs for (17). As usual, equation
(18) is equivalent to consistency of the following system

(19) Lψ = λψ, ψt = −Aψ,

where λ is a parameter. Introduce new variables

(20) q1 = ψ, q2 = ψx, q3 = ψxx + uψ

and rewrite (19) as follows

(21) Qx = −MQ, Qt = −NQ,
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where

Q =




q1

q2

q3


 , M =




0 −1 0
−u 0 −1
λ −u 0


 ,

N =




u3 + 8uu1 + 3uλ −u2 − 4u2 9λ
f + 3u1λ −6uλ −u2 − 4u2

5u2λ + 2u2λ f − 3u1λ 3uλ − u3 − 8uu1


 ,

f = u4 + 8u2
1 + 9uu2 + 9λ2 + 4u3.

Let us treat λ as a formal variable. Then the matrices M, N constitute a ZCR (9)
with values in sl3(C) ⊗C C[λ]. More precisely, M and N take values in the subalgebra
g ⊂ sl3 ⊗ C[λ] generated by the two matrices

(22) U =




0 0 0
1 0 0
0 1 0


 , V =




0 1 0
0 0 1
−λ 0 0


 .

The subalgebra g1 is spanned by the matrix U , the subalgebra g2 has the basis

U, [U, V ] =




1 0 0
0 0 0
0 0 −1


 ,

and g3 = g. By Corollary 1, this ZCR leads to MTs of order not greater than 3. By
Theorem 1, every homogeneous space W of g with dimW ≤ 3 indeed determines a MT
of order dimW . Conditions 2 is satisfied, since dim gk = k for k = 0, 1, 2.

For example, substituting λ = 0 we obtain an epimorphism ϕ : g → sl2(C). The
canonical transitive action of sl2 on the projective line determines the MT [4]

u = −v1 −
1

2
v2, vt = v5 − 5(v1v3 + v2

2 + v3
1 + 4vv1v2 + v2v3 − v4v1).

Remark 2. It is easily seen that for any Lax pair Lt = [L, A] such that L depends on
u, u1 only and is linear in u1 there is a similar to (20) change of variables that transforms
(19) to a ZCR (21) of the form (9). Therefore, each Lax pair of the described type leads
to MTs.

Remark 3. A ZCR of the form (9) with values in a Lie algebra g is equivalent to a
homomorphism from the Wahlquist-Estabrook algebra to g. Therefore, we have a ho-
momorphism from the Wahlquist-Estabrook algebra of (17) onto the algebra generated
by (22). We conjecture that the kernel of this homomorphism is nilpotent. Then any
MT of (17) is obtained from the MTs described here by introduction of a potential in
the sense of [3].
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