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Conservation laws for multidimensional systems and related linear
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SERGEI IGONIN

Abstract. We consider multidimensional systems of PDEs of generalized evolution
form with t-derivatives of arbitrary order on the left-hand side and with the right-hand
side dependent on lower order t-derivatives and arbitrary space derivatives. For such
systems we find an explicit necessary condition for existence of higher conservation
laws in terms of the system’s symbol. For systems that violate this condition we give
an effective upper bound on the order of conservation laws. Using this result, we
completely describe conservation laws for viscous transonic equations, for the Brusse-
lator model, and the Belousov-Zhabotinskii system. To achieve this, we determine the
conditions for a quadratic matrix A with entries from an arbitrary field to be similar
(conjugate) to its transpose At or to the matrix −At, which is of independent interest.

Mathematics Subject Classification (2000): Primary 37K05, 37K10; Secondary 15A24,
76H05, 35K57.

1. Introduction

It is well known that conservation laws are of fundamental importance for clarifying
the structure of PDEs. In particular, a common feature of soliton equations is to have
conservation laws of arbitrarily high order. Existence of higher order conservation laws
imposes very strong conditions on a system of PDEs. Explicit formulation of these
conditions would help to classify integrable systems of a given type.

The straightforward study of the conserved current condition is hampered by the fact
that one is interested in equivalence classes of conserved currents modulo trivial ones.
Therefore, it is convenient to switch from a conserved current to its characteristic, which
is the same for equivalent currents and satisfies the equation adjoint to the linearization
of the initial system [1, 2, 8, 12].

Thus a part of the problem is to determine conditions for the adjoint linearized
equation to have higher order solutions χ. In the present article we perform the first
natural step in this direction. For determined, possibly multidimensional, systems of
PDEs we find the conditions imposed on the symbol of the system by the fact that
some higher order vector-functions satisfy the adjoint linearized equation modulo lower
order terms.

Key words and phrases. Multidimensional systems, conservation laws, adjoint equation, character-
istic polynomial, invariant factors, viscous transonic equations, Brusselator.

Revised version, minor mistakes corrected.
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2 SERGEI IGONIN

More precisely, we consider systems of generalized evolution form

∂hui

∂th
= F i(xj, t,

∂sua

∂ts
,

∂i1+···+inub

∂xi1
1 . . . ∂xin

n

),(1)

i, a, b = 1, . . . , m, j = 1, . . . , n, s = 0, . . . , h − 1, i1 + · · · + in ≤ N,

with t-derivatives of fixed order h > 0 on the left-hand side and with the right-hand
side dependent on lower order t-derivatives and arbitrary space derivatives.

To any m-component vector-function χ of the variables xj, t, ui and their derivatives
we associate its symbol with respect to the space variables xj, which is an m×m matrix,
whose entries are homogeneous polynomials in n variables of degree equal to the order
o(χ) of χ with respect to xj.

Let A be the symbol of the right-hand side of (1) and S be the symbol of the
characteristic χ of a conservation law for (1). It turns out that if o(χ) > O, where
O ≤ N is some constant associated to (1), then the adjoint linearized equation implies
the matrix equation

(2) SA = (−1)N+hAtS.

Here and below At is the transpose of A.
A linear algebra problem arises naturally: for what matrices A does there exist a

nonzero matrix S such that (2) holds? In addition, since for known integrable systems
there are normally higher conservation laws with nonsingular S, one is also interested
for which A the matrix S can be taken nonsingular, i.e., when the matrices A and ±At

are similar (conjugate).
In solving these problems there is a difference for the cases n = 1 and n > 1. If

n = 1, one can switch from homogeneous polynomial in one variable matrices A and S
to the corresponding matrices of coefficients and, allowing the coefficients to be complex,
make use of the Jordan normal form [3]. While if n > 1 then the entries of the matrices
belong to the field of rational functions in several variables, which is essentially not
algebraicly closed, hence the Jordan normal form is not generally applicable. Using
more sophisticated algebraic technique, we prove the following effective criteria.

Theorem. For any m×m matrix A with the entries from an arbitrary field F and the
characteristic polynomial d(λ) ∈ F [λ] we have the following.

(1) The matrices A and At are always similar.
(2) A nonzero m × m matrix S such that SA = −AtS exists if and only if the

polynomials d(λ) and d(−λ) have a common divisor of positive degree.
(3) The matrices A and −At are similar if and only if all the invariant fac-

tors di(λ) of A (certain divisors of the characteristic polynomial [4]) satisfy
di(−λ) = (−1)degdi(λ)di(λ). In particular, d(λ) = (−1)degd(λ)d(λ), which in the
case charF �= 2 implies tr A = 0 and, if m is odd, det A = 0.

Statements 2 and 3 of the theorem give a necessary condition for existence of higher
conservation laws for systems (1) with odd N + h. In particular, a scalar equation
(m = 1) of the form (1) with odd N +h can not have conservation laws of order greater
than O. For different ways to write system (1) in the generalized evolution form the
symbols A and the resulting conditions are generally different. In order to have higher
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conservation laws a system of PDEs must satisfy all conditions obtained from various
ways to write it in the generalized evolution form.

Let us discuss the previous research on this theme. It seems that only evolution
systems (h = 1) in one space variable (n = 1) were studied in this respect. For such
systems equation (2) was obtained by a similar technique in [6] and rediscovered in
[3]. In [6] it is noticed that SA = −AtS for nonsingular S implies det(A + λI) =
(−1)m det(A − λI), which is a weaker version of our Statement 3. Here and below
I is the unity matrix. In [3] Statement 2 is proved for complex matrices, and the
corresponding necessary condition for existence of conservation laws of order greater
than the order of the evolution system is formulated. Even in this simplest case our
result is stronger, since the upper bound O is normally much smaller than the order of
the system (see the examples in Section 7).

The paper is organized as follows. In Section 2 the method of characteristics of
conservation laws is recalled. We specify the method for systems of generalized evo-
lution form in Section 3 and derive equation (2) in Section 4. The above theorem on
quadratic matrices is proved in Section 5. In Section 6 we explicitly formulate the
obtained necessary conditions for existence of higher conservation laws. Finally, Sec-
tion 7 contains some mathematical physics equations of the form (1), which violate
these conditions and, therefore, do not have conservation laws of order greater than
O. This result allows us to describe all conservation laws for two basic equations in
the theory of viscous transonic gas flows (see, for example, [5, 7, 9, 11] and references
therein) and for two popular reaction-diffusion systems: the Brusselator model and the
Belousov-Zhabotinskii system [10, Section 15.4].

2. Characteristics of conservation laws

This is a brief review of the method of characteristic for computation of conservation
laws. We refer to [1, 2, 8, 12] for more details.

Consider a system E of differential equations

(3) Fs(yi, v
j, . . . , vk

I , . . . ) = 0, s = 1, . . . , p,

with independent variables y1, . . . , ya, unknown functions v1, . . . , vb, and

vk
I =

∂ |I|vk

∂yi1
1 . . . ∂yia

a

, I = (i1, . . . , ia) ∈ Z
a
+,

being their derivatives. Here and below Z+ is the set of nonnegative integers and
|I | = i1 + · · · + ia.

Let F be the algebra of smooth functions of the variables yi, uj, and uj
I. Although the

whole set of the variables is infinite, each function is supposed to depend only on a finite
subset. Denote by FE the quotient algebra with respect to the ideal I generated by the
left-hand sides of equations (3) and their differential consequences Dyi1

. . .Dyik
(Fs) ∈ F .

Here

Dyi =
∂

∂yi
+

∑
j,I

uj
I+1i

∂

∂uj
I
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is the total derivative with respect to yi, where 1i is the multi-index with 1 at the
i-th place, the other indices of 1i being zero. For two equivalent functions f1, f2 ∈
F , f1 − f2 ∈ I, one has f1(yi, vj(yi)) = f2(yi, vj(yi)) for any local solution vj(yi) to (3).

By definition, the ideal I is invariant under the action of Dyi , which, therefore, defines
a derivation D̄yi of FE . A conserved current for (3) is an a-tuple J = (J1, . . . , Ja), where
Jk ∈ FE , that satisfies the equation

(4)
a∑

i=1

D̄yi (Ji) = 0.

A conserved current is called trivial, if it has the form

Jk =
∑
l<k

D̄l(Llk) −
∑
k<l

D̄l(Lkl)

for some functions Lkl ∈ FE , 1 ≤ k < l ≤ a. Two conserved currents are said to
be equivalent if they differ by a trivial one. Conservation laws are defined to be the
equivalent classes of conserved currents.

Let J̃k ∈ F be such that Jk = J̃k + I. Identity (4) means that

(5)

a∑
i=1

Dyi(J̃i) =
∑
s,I

gs
ID

I
y(Fs)

for some functions gs
I ∈ F , only a finite number of which is nonzero. Here and in what

follows for each multi-index I = (i1, . . . , ia) we denote DI
y = Di1

y1
. . . Dia

ya
. Consider the

functions

(6) χ̃s =
∑

I

(−1)|I|DI
y(g

s
I), s = 1, . . . , p.

Generally speaking, representation (5) and functions χ̃s are not uniquely defined by the
conserved current J . Assume that system (3) is non-overdetermined and nondegener-
ated [1, 8], then the corresponding elements χs = χ̃s + I of FE are well-defined by J
and are all zero if and only if J is trivial. The p-tuple χ = (χ1, . . . , χp) is the same for
equivalent conserved currents and is called the characteristic (or generating function
[1, 12]) of the corresponding conservation law.

In addition, χ satisfies the adjoint linearized equation

(7) K(χ) = 0,

where K is the b × p matrix differential operator with the entries

(8) [K]ij =
∑

I

(−1)|I|D̄I
y ◦

∂Fj

∂vi
I

.

The homological interpretation of these concepts can be found in [1, 2, 12].

3. Formulas for systems of generalized evolution form

Consider a system E of m partial differential equations in n+1 independent variables
t, x1, . . . , xn and m unknown functions u1, . . . , um of the form

(9)
∂hui

∂th
= F i, i = 1, . . . , m,
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where F i are smooth functions of the variables xj, t, ua and the following derivatives

(10)
∂i1+···+inub

∂xi1
1 . . . ∂xin

n

, i1, . . . , in ∈ Z+,
∂sua

∂ts
, s < h.

For each multi-index I = (i1, . . . , in) ∈ Zn
+ and integer s ≥ 0 we denote

(11) ui
s,I =

∂ |I|+sui

∂ts∂xi1
1 . . . ∂xin

n

.

Let us describe the algebra FE for this system. By induction on s, it follows from (9)
that the derivatives ui

s,I with s ≥ h are expressed in terms of

(12) t, xj, ui
s,I , s < h.

Therefore, for each function of t, xj, ui and arbitrary derivatives (11) there is a unique
equivalent modulo (9) function of variables (12). Thus we can identify FE with the
algebra of smooth functions of variables (12). Below all functions are supposed to be
from FE .

The restrictions D̄xi , D̄t : FE → FE of the total derivatives are written in coordinates
(12) as follows

D̄xi =
∂

∂xi
+

∑
a,I,s

ua
s,I+1i

∂

∂ua
s,I

,

D̄t =
∂

∂t
+

∑
s<h−1

ua
s+1,I

∂

∂ua
s,I

+
∑

DI
x(F

a)
∂

∂ua
h−1,I

.(13)

The equation D̄tJ0+
∑n

i=1 D̄xiJi = 0 for a conserved current J = (J0, J1, . . . , Jn) implies
the identity

DtJ0 +
n∑

i=1

DxiJi =
∑
i,I

∂J0

∂ui
h−1,I

DI
x(u

i
h,0 − F i),

which is the specification of (5) for system (9). According to general formula (6), the
characteristic χ = (χ1, . . . , χm) is computed as follows

(14) χi =
∑

I

(−1)|I|D̄I
x

( ∂J0

∂ui
h−1,I

)
.

From (7) and (8) we see that the characteristic regarded as a column vector satisfies
the equation

(15) (−)hD̄h
t (χ) = L(χ),

where L is the m × m matrix differential operator with the entries

(16) [L]ij =
∑

I

(−1)|I|D̄I
x ◦

∂F j

∂ui
0,I

+

h−1∑
s=0

(−1)sD̄s
t ◦

∂F j

∂ui
s,0

.
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4. Solving the adjoint equation for the highest order terms

For a (vector-)function f the maximal integer k such that ∂f/∂ui
s,I �= 0 for some

0 ≤ s < h, 1 ≤ i ≤ m, |I | = k is called the order of f and denoted by o(f). If
∂f/∂ui

s,I = 0 for all s, i, I then we set o(f) = −1. The maximal integer s < h such

that ∂f/∂ui
s,I �= 0 for some 1 ≤ i ≤ m, |I | = o(f) is denoted by t(f). The order of the

characteristic of a conservation law for (9) is called the order of the conservation law.
Consider the ring F [q1, . . . , qn] of polynomials in n variables with F as the ring of

coefficients. For each multi-index I = (i1, . . . , in) denote by qI the monomial qi1
1 . . . qin

n ∈
F [q1, . . . , qn]. For any k-component vector-function χ = (χ1, . . . , χk) and two integers
a, b ≥ 0 let Sa,b

χ be the k × m matrix with the entries

[Sa,b
χ ]ij =

∑
|I|=a

∂χi

∂uj
b,I

qI ∈ F [q1, . . . , qn].

We call the nonzero matrix So(χ),t(χ)
χ the symbol of χ and denote it by Sχ.

Let A be the symbol of the right-hand side (F 1, . . . , F m) of (9) and set N =
o(F 1, . . . , F m) > 0. By assumption (10), one has t(F 1, . . . , F m) = 0. Therefore, by
definition,

(17) [A]ij =
∑
|I|=N

∂F i

∂uj
0,I

qI.

Applying the Leibniz rule, differential operators (16) can be uniquely rewritten in
the usual form

[L]ij =
∑
|I|≤N

f ij
I D̄I

x +
∑
s<h

gij
s D̄s

t .

In particular, from definition (16) one has

(18) f ij
I = (−1)N ∂F j

∂ui
0,I

∀ I : |I | = N.

We set

(19) O = max
i,j,I,s

{−1, o(f ij
I ) − N, o(gij

s ) − N}.

From definition (16) it follows that O ≤ N .

Theorem 1. Let χ be the characteristic of a conservation law for (9). If o(χ) > O
then we have

(20) SχA = (−1)N+hAtSχ.

Proof. Set a = N + o(χ), b = t(χ). Equation (15) implies, in particular,

(21) (−1)hSa,b

D̄h
t (χ)

= Sa,b
L(χ).

By formula (13) and assumption (10), for any vector-function χ with o(χ) ≥ 0 the
vector-function D̄h

t (χ) does not depend on the coordinates uj
s,I with |I | > a or |I | =

a, s > b. Moreover, by formula (17), it is easily seen that

(22) Sa,b

D̄h
t (χ)

= SχA.
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In the case o(χ) > O only the part
∑

|I|=N f ij
I D̄I

x of L contributes to Sa,b
L(χ), since D̄s

t (χ)

for s < h does not depend on uj
p,I with |I | = a, p ≥ b and the number a is greater than

the order of any coefficient f ij
I or gij

s . Therefore, taking into account formulas (18) and
(17), we obtain

Sa,b
L(χ) = (−1)NAtSχ.

Combining this with (22) and (21), one gets (20). �
In the next section we study the conditions imposed on A by equation (20).

5. Linear algebra problems

For a ring R we denote by Mk(R) the ring of k × k matrices with entries from R.
Consider an arbitrary field F and denote by F̃ its algebraic closure, i.e., the minimal
algebraicly closed extention of F .

Theorem 2. Let A ∈ Mk(F ) and let d(λ) = det(A−λI) be the characteristic polynomial
of A. A nonzero matrix S ∈ Mk(F ) such that

(23) SA = −AtS

exists if and only if the polynomials d(λ) and d(−λ) have a common divisor of positive
degree. Equivalently, there are two roots λ1, λ2 ∈ F̃ of d(λ) such that λ1 + λ2 = 0.

Proof. The polynomials d(λ) and d(−λ) have a common divisor of positive degree if
and only if they have a common root λ in F̃ , i.e., both λ and −λ are roots of d(λ).

If (23) holds then for any similar to A matrix A′ = CAC−1, C ∈ Mk(F ), one has

S ′A′ = −A′tS ′ with S ′ = C−1t
SC−1. Let us regard A as a matrix from Mk(F̃ ) ⊃ Mk(F ).

Then we can assume A to be in the Jordan normal form. For such A one can easily
show that the linear map

Mk(F̃ ) → Mk(F̃ ), S 	→ SA + AtS,

has a nontrivial kernel if and only if there are two eigenvalues λ1, λ2 ∈ F̃ of A such
that λ1 + λ2 = 0 (see [3] for F = C).

It remains to prove that if (23) holds for some S ∈ Mk(F̃ ) then there is nonzero
S ′ ∈ Mk(F ) such that S ′A = −AtS ′. Consider a (possibly infinite) basis {ai} of F̃
regarded as a vector space over F . One has S =

∑
i aiSi, where Si ∈ Mk(F ). Since

A ∈ Mk(F ), equation (23) implies SiA = −AtSi. �
Recall some criteria for two matrices A, B ∈ Mk(F ) to be similar (see, for example,

[4, Chapter 13]). Consider the ring F [λ] of polynomials in one variable. A matrix
C ∈ Mk(F [λ]) is said to be unimodular if detC is nonzero and belongs to F . For any
matrix A ∈ Mk(F ) the matrix A − λI ∈ Mk(F [λ]) admits a canonical decomposition

(24) A − λI = C1DC2, C1, D, C2 ∈ Mk(F [λ]),

such that C1, C2 are unimodular, while D is diagonal. Moreover, the polynomials di =
[D]ii have the leading coefficient 1, and di+1 is divisible by di for each i = 1, . . . , k − 1.
Then the k polynomials di are defined uniquely by A and are called the invariant factors
of A. Note that there is a simple procedure to compute the invariant factors [4, Chapter
13].
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Proposition 1 ([4, Chapter 13]). Two matrices A, B ∈ Mk(F ) are similar if and only
if they have the same invariant factors.

We call a polynomial d(λ) =
∑

i aiλi ∈ F [λ] skew if d(−λ) = (−1)degd(λ)d(λ), i.e.,
for all i ≡ deg d(λ) + 1 mod 2 one has ai = 0.

Theorem 3. For any A ∈ Mk(F ) we have the following.

(1) The matrices A and At are similar.
(2) The matrices A and −At are similar if and only if each invariant factor of A is

skew. In this case the characteristic polynomial is also skew. In particular, in
the case charF �= 2 we have trA = 0 and, if k is odd, detA = 0.

Remark. Note that in the case charF = 2 the second statement of this theorem as well
as Theorem 2 are trivial.

Proof. Consider canonical decomposition (24) for A. Taking the transpose, we obtain

(25) At − λI = C2
tDC1

t,

which is a canonical decomposition for At, since C1
t, C2

t are clearly unimodular. There-
fore, the invariant factors of At are the same, which, by Proposition 1, implies that A
and At are similar.

Multiplying (25) by −1 and substituting −λ in place of λ, we obtain

(26) −At − λI = −C2
t(−λ)D(−λ)C1

t(−λ).

Denote C ′
1 = −C2

t(−λ), C ′
2 = TC1

t(−λ), and D′ = D(−λ)T , where T ∈ Mk(F ) is the
diagonal matrix with the entries [T ]ii = (−1)deg[D]ii. From (26) we obtain the canonical
decomposition −At − λI = C ′

1D
′C ′

2 for −At. According to Proposition 1, A and −At

are similar if and only if D′ = D, which says that all the invariant factors [D]ii of A
are skew. In this case the characteristic polynomial is also skew, since from (24) it is
evidently equal to the product of the invariant factors multiplied by (−1)k. �

6. Necessary conditions for existence of higher conservation laws

According to Theorem 1, a necessary condition for existence of conservation laws for
(9) of order greater than O is that there is a nonzero m × m matrix Sχ with entries
from F [q1, . . . , qn] such that (20) holds. Let us treat A and Sχ as matrices with entries
from the field F of rational functions in n variables q1, . . . , qn. Then Theorem 2 implies
the following.

Theorem 4. If N+h is odd and system (9) possesses a conservation law of order greater
than O, then the characteristic polynomial d(λ) = det(A−λI) and the polynomial d(−λ)
have a common divisor of positive degree. Equivalently, there are eigenvalues λ1, λ2 of
A (possibly in the algebraic closure of F ) such that λ1 + λ2 = 0.

Remark. Evidently, introducing the new dependent variables

ui,s =
∂sui

∂ts
, i = 1, . . . , m, s = 0, . . . , h − 1,

we can rewrite (9) in the usual evolution form. But if h > 1 then the symbol of the
right-hand side of the obtained evolution system has zero determinant and, therefore,
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automatically satisfies the condition in Theorem 4, even if the initial system does not
meet this condition. Therefore, it is essential to consider the generalized evolution form.

Analyzing examples of known soliton equations, we can conjecture that for (9) to be
integrable there must exist higher order conservation laws with nonsingular matrix Sχ.
Therefore, it is worth formulating a necessary condition for existence of such nonsingular
conservation laws. According to Theorem 3, we obtain the following criterion.

Theorem 5. If (9) has a nonsingular conservation law of order greater than O then all
the invariant factors of the matrix A are skew. In this case its characteristic polynomial
is also skew. In particular, trA = 0 and, if m is odd, detA = 0.

If m = 1 then A is a nonzero 1 × 1 matrix, and Theorem 4 implies the following.

Theorem 6. A scalar equation (m = 1) of the form (9) with odd N + h can not have
conservation laws of order greater than O.

Remark. To obtain stronger conditions, it is sometimes useful to write a system of
PDEs in several ways in the form (9). For example, for a scalar evolution equation
ut = uxxx + uyy + f(u, ux, uy, uxx) the condition is empty, since the sum of h = 1 and
N = 3 is even. But rewriting the equation in the generalized evolution form with respect
to y as follows uyy = −uxxx + ut − f(u, ux, uy, uxx), we see, according to Theorem 6,
that there are no higher conservation laws.

7. Examples

7.1. The viscous transonic equation. The nonlinear viscous transonic equation

(27) utt = −uxxx + uxuxx −
α

t
ut

describes the asymptotic form of a gas flow in the sonic region (see [7, 9] and references
therein). The following conserved currents for (27) were found in [7]

(28) (utt
α, uxxt

α − u2
x

2
tα), (utt + (α − 1)u, uxxt−

u2
x

2
t).

All other conserved currents mentioned in [7] are trivial.
Let us show that (28) span the whole space of conservation laws for (27). We have

L = D̄3
x + D̄2

x ◦ ux − D̄x ◦ uxx + D̄t ◦
α

t
= D̄3

x + uxD̄
2
x + uxxD̄x +

α

t
D̄t −

α

t2
.

According to (19), one has O = −1. By Theorem 6, since N + h = 5 is odd, the
characteristic χ of any conservation law is a function of x, t only. Equation (15) reads

χtt = χxxx + uxχxx + uxxχx +
α

t
χt −

α

t2
χ.

This implies χx = 0 and

(29) χtt =
α

t
χt −

α

t2
χ.

The characteristics tα, t of conserved currents (28) span the space of solutions to (29).
Therefore, (28) span the space of conservation laws.
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7.2. Another equation for viscous transonic flows. The equation

(30) vyy = 2vxt + vxvxx − vzz − µvxxx,

where µ is a nonzero real constant, models nonstationary transonic flows around a thin
body with effects of viscosity and heat conductivity when the velocity of the gas is close
to the local speed of sound, see [5, 11] and references therein.

For this equation we obtain

L = µD̄3
x + 2D̄xD̄t − D̄2

z + vxD̄
2
x + vxxD̄x.

By definition (19), we have O = −1. According to Theorem 6, since N + h = 5 is odd,
the characteristic χ of any conservation law is a function of x, y, z, t only. Equation
(15) implies

(31) χx = 0, χyy + χzz = 0.

Each function χ satisfying (31) is indeed the characteristic of the conserved current

(32) D̄y(χvy − χyv) + D̄z(χvz − χzv) + D̄x(µχvxx −
1

2
χv2

x − 2χvt) = 0.

Therefore, any conserved current for (30) is equivalent to a conserved current of the
form (32).

7.3. The Brusselator model. The Brusselator model governing certain chemical re-
actions is the following multidimensional system

(33)

vt =
n∑

i=1

∂2v

∂x2
i

+ v2w − (b + 1)v + a,

wt = c
n∑

i=1

∂2w

∂x2
i

− v2w + bv,

where a, b, and c �= 0 are real parameters [10, Section 15.4]. By definition (16) we have

L =

( ∑
i D̄

2
xi

+ 2vw − (b + 1) −2vw + b
v2 c

∑
i D̄

2
xi
− v2

)
.

The symbol A is diagonal with [A]11 =
∑

i q
2
i and [A]22 = c

∑
i q

2
i . By definition (19),

we have O = −1. By Theorem 4, since [A]11 �= 0, [A]22 �= 0, and [A]11 + [A]22 �= 0, the
characteristic χ = (χ1, χ2) of any conservation law is a function of xi, t only. For such
χ equation (15) reads

(34)

−∂χ1

∂t
=

∑
i

∂2χ1

∂x2
i

+ (2vw − (b + 1))χ1 − (2vw − b)χ2,

−∂χ2

∂t
= v2χ1 + c

∑
i

∂2χ2

∂x2
i

− v2χ2.
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Evidently, (34) implies χ1 = χ2. Then (34) becomes

(35)

−∂χ1

∂t
=

∑
i

∂2χ1

∂x2
i

− χ1,

−∂χ1

∂t
= c

∑
i

∂2χ1

∂x2
i

.

Clearly, for c = 1 the only solution to (35) is χ1 = 0, while for c �= 1 the general solution
is

(36) χ1 = χ2 = G(xi) exp(
ct

c − 1
),

where G(xi) is an arbitrary solution to the equation

(37) G + (c − 1)
∑

i

∂2G

∂x2
i

= 0.

Each solution (36) is indeed the characteristic of the conserved current

D̄t

(
G exp(

ct

c − 1
)(v + w)

)
+

+

n∑
i=1

D̄xi

(
exp(

ct

c − 1
)
(∂G

∂xi
(v + cw) − G(vxi + cwxi) −

a

n

∫
Gdxi

))
= 0.

Thus if c �= 1 then these conserved currents span the space of conservation laws; while
if c = 1 then there are no nontrivial conservation laws for (33).

7.4. The Belousov-Zhabotinskii system. This system describes certain chemical
reactions and reads [10, Section 15.4]

vt =
∑

i

∂2v

∂x2
i

+ v(1 − v − rw) + Lrw,

wt =
∑

i

∂2w

∂x2
i

− bvw − Mw.

Here r, L, b, M are real constants. Evidently, Theorem 4 implies that this system does
not possess conservation laws of nonnegative order. Similarly to the above examples,
analysis of equation (15) for characteristics of order −1 shows that in the nonlinear case
b �= 0 there are no nontrivial conservation laws at all.
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