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1. Introduction

In this paper we describe in an exact form local solutions (metrics) of the vacuum
Einstein equations assuming that they admit a Lie algebra G of Killing vector fields
such that:

I.: the distribution D, generated by the vector fields belonging to G, is bidimen-
sional,
II.: the distribution D⊥, orthogonal to D, is completely integrable and transversal
to D.

Global, in a sense, solutions of the Einstein equations constructed on the basis of the
local solutions found in this paper are discussed in the subsequent one. There can occur
two qualitatively different cases according to whether the dimension of G is 2 or 3. Both
of them, however, have an important feature in common, which makes reasonable to
study them together. Namely, all manifolds satisfying the assumptions I and II are in
a sense fibered over ζ-complex curves (see section 7 and [12]).

dimG = 2 Recall that, up to isomorphisms, there are two bidimensional Lie algebras: Abelian
and non-Abelian, which in what follows will be denoted by A2 and G2 respectively.

A metric g satisfying the assumptions I and II, with G = A2 or G2, will be called
G-integrable.

The study of A2-integrable metrics were started by Belinsky, Geroch, Khalat-
nikov, Zakharov and others [3], [4], [7]. Some remarkable properties of the reduced,
accordingly with the above symmetry assumptions, vacuum Einstein equations
were discovered in 1978. In particular, a suitable generalization of the Inverse
Scattering Transform, allowed to integrate the equations and to obtain solitary
wave solutions [4]. Some physical consequences of these reduced equations were
analyzed in a number of works (see for instance [5, 2]). This paper will be devoted
to the analysis of G2-integrable solutions, for which some partial results can be
found in [8, 1, 6].

In this case, the Killing fields ”interact” non-trivially one another (for instance,
[X, Y ] = Y , for a suitable choice of the basis vectors in G), while in the Abelian
case these fields are absolutely free (i.e., [X, Y ] = 0). Hence, it is natural to expect
that the former case is more rigid, with respect to the latter, and, as such, it allows
a more complete analysis. It occurs to be the case, namely, metrics in question are
parametrized by solutions of a linear equation in two independent variables, which,
in its turn, depends linearly on a choice of a ζ-harmonic function. Thus, this class
of solutions has a ”bilinear structure” and, hence, is subjected to two superposition
laws.

dimG = 3 In this case, assumption II follows automatically from I and the local structure of
this class of Einstein metrics can be explicitly described. Some well known exact
solutions [10], such as, for instance, that of Schwarzschild, belong to this class.

Geometrical properties of solutions described in the paper will be discussed with more
details separately.

In the paper, as it is usual, everything is assumed to be of C∞ class and the following
terminological and notational convention are adopted.

• manifolds are assumed to be connected and C∞,
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• metric refers to a non-degenerate symmetric (0, 2) tensor field,
• k-metric refers to a metric on a k-dimensional manifold,
• the Lie algebra of all Killing fields of a metric g is denoted by Kil(g) while the

term Killing algebra refers to a subalgebra of Kil(g),
• integral submanifolds of the distribution, generated by vector fields of a Killing

algebra G, are called Killing leaves,
• A2 stands for a bidimensional Abelian Lie algebra, while G2 for a non-Abelian one,
• a G-integrable metric is a metric satisfying the assumptions I and II, with G = A2

or G2.
• the elements of a matrix will be denoted with the corresponding lower case letter,

for instance A = (aij).

2. Metrics admitting a bidimensional Lie algebra G2 of Killing fields.

For a given s ∈ R, s �= 0, we fix a basis {e, ε} in G2 such that [e, ε] = sε. It is defined
uniquely up to transformations of the form

e 
→ λe + µε, ε 
→ λ−1ε, λ, µ ∈ R, λ �= 0.

The parameter s is introduced in order to include, into our subsequent analysis, the
Abelian case (s = 0 ) as well.

In what follows, it will be useful the following general fact.

Lemma 1. Let g be a metric on a differential manifold M . If X �= 0 and fX, f ∈
C∞ (M), are two of its Killing fields, then f is constant.

Proof. The proof results from the formula

LfX (g) = fLX (g) + iX (g) df,(1)

where the second term in the right hand side is the symmetric product of two differential
1 -forms, and iX (g) the natural insertion of X in g. Indeed, LX (g) = 0 and LfX (g) = 0
imply, in view of relation (1), iX (g) df = 0. This shows that df vanishes at those points
where iX (g) �= 0. Since g is non-degenerate, iX (g) vanishes exactly at the same points

where X does. Therefore, df = 0, on suppX = {a ∈ M |Xa �= 0}. On the other hand, if
a Killing field vanishes on an open subset of M , then, obviously, it vanishes everywhere
on M . For this reason suppX is dense on M and, so, df = 0 on M .

Let g be a metric on a manifold M admitting G2 as a Killing algebra. Then, for the
Killing vector fields X and Y corresponding, respectively, to e and ε, one has

[X, Y ] = sY.(2)

Denote by D the Frobenius distribution, possibly with singularities, generated by X
and Y .

Proposition 2. The distribution D is bidimensional and in a neighborhood of a non-
singular point of D there exists a local chart (xα) in M such that

X = ∂n−1 , Y = esxn−1∂n.
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Proof. First of all, show that dimD = 2. Indeed, in view of the above lemma if locally
X = φY , then φ is constant and X and Y commute, in contradiction with Eq.(2). Thus,
the vector Ya and Xa are independent for almost all points a ∈ M , i.e. in an everywhere
dense open subset M0 of M . Choose now a function φ such that the fields X and φY
commute. In view of Eq. (2), this is equivalent to X (φ)+sφ = 0. This equation admits,
obviously, a solution in a neighborhood of any point a ∈ M0. In a local chart (yµ) in

which X = ∂
∂yn−1

, φY = ∂
∂yn

, the equality X (φ) + sφ = 0 looks as ∂φ
∂yn−1

+ sφ = 0 and

hence, φ = e−syn−1+λ where the function λ does not depend on yn−1. By passing now
to coordinates (xα) with xα = yα, α < n, and xn = β (y1, · · · , yn−2, yn) one finds the
desired result with β such that ∂β

∂yn
= e−λ. Indeed, since λ does not depend on yn−1, the

last equation admits a solution not depending on yn−1.

Definition 1. A chart of the kind introduced in the above proposition will be called
semi-adapted (with respect to X, Y ).

All metrics g admitting the {X, Y }Killing algebra, i.e. such that LY (g) = LX (g) = 0,
are characterized by the following proposition.

Proposition 3. An n-metric g admits the vector fields X and Y as Killing fields iff in
a semi-adapted chart it has the following block matrix form

MC (g) =

 (gij) (smixn + li) (−mi)

(smixn + li)
T

(−mi)
T

s2λx2
n − 2sµxn + ν −sλxn + µ
−sλxn + µ λ


where C = {dxµ} , and gij ,mi, li, λ, µ, ν, are functions of xl, 1 ≤ l ≤ n − 2.

Proof. Indeed, the invariance with respect to X shows that the components of the
metric do not depend on xn−1 while the invariance with respect to Y is equivalent to

∂ngij = 0, ∀i, j ≤ n− 2(3)

∂ngn−1n−1 + sgnn−1 = 0(4)

∂ngn−1n + sgnn = 0(5)

∂ngnn = 0(6)

∂ngin−1 + sgin = 0(7)

∂ngin = 0(8)

Eq. (3) tells that, for i, j < n−1, the components gij do not depend also on xn, while
Eqs. (4), (5) and (6), imply that, for a, b = n− 1, n

(gab) =

(
s2λx2

n − 2sµxn + ν −sλxn + µ
−sλxn + µ λ

)
,(9)

where λ, µ and ν depend only on the coordinates xi.
Eqs. (7) and (8) have the solution(

gin−1, gin
)
=
(
smixn + li (xj) , −mi (xj)

)
.

where li and mi are arbitrary functions.
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For further computations it is more convenient to work with a basis, say {ei}, of
vector fields invariant with respect to the Killing algebra. It is easy to see that all such
fields are linear combinations of

ei = ∂i, en−1 = ∂n−1 + sxn∂n, en = −∂n.(10)

whose coefficients are G2-invariant functions, i.e. not depending on xn−1, xn . So, the set
(10) can be taken as such a basis. Obviously, the basis of differential 1 -forms Θ = {ϑi}
dual to {ei}

ϑi = dxi, ϑn−1 = dxn−1, ϑn = sxndxn−1 − dxn.(11)

is also G2-invariant. The bases (10), (11) are ”slightly” non- holonomic because in the
relations

[eµ, eν] = Cαµνeα, dϑα = −1

2
Cαµνϑ

µ ∧ ϑν,

all the structure constants Cαµν are vanishing, except Cnn−1n, which equals −s. They will
be called non-holonomic semi-adapted.

The expression of the metric of proposition 3 in terms of the basis (11) is

g = gijϑ
iϑj + λϑnϑn + ν ϑn−1ϑn−1 − 2µϑn−1ϑn + 2li ϑ

iϑn−1 + 2miϑ
iϑn.

Corollary 4. An n-metric g admits the vector fields X and Y as Killing fields iff its
components, in a semi-adapted non-holonomic basis Θ, do not depend on xn−1 and xn.
The matrix of g with respect to the basis Θ is

MΘ (g) =

 (gij) (li) (mi)

(li)
T ν −µ

(mi)
T −µ λ

 .

3. Killing leaves

The assumption II of the Introduction imposed on the metrics g considered in this
paper allows, obviously, to construct semi-adapted charts, {xi}, such that the fields
ei =

∂
∂xi

, i = 1, .., n − 2, belong to D⊥. In such a chart, called from now on, adapted,
the components li’s and mi’s vanish. The corresponding non-holonomic semi-adapted
bases will be called non-holonomic adapted.

We will call orthogonal leaf an integral (bidimensional) submanifold of D⊥. Since
D⊥ is assumed to be transversal to D, the restriction of g to any Killing leaf, say S, is
non-degenerate. So, (S, g|S) is a homogeneous bidimensional Riemannian manifold. In
particular, the Gauss curvature K = K (S) of the Killing leaves is constant. It can be
easily computed by noticing that the matrix of the components of g|S with respect to
the chart x̃ = xn−1|S , ỹ = xn|S is

M(dx̃,dỹ) (g|S) =

(
s2λ̃ỹ2 − 2sµ̃ỹ + ν̃ −sλ̃ỹ + µ̃

−sλ̃ỹ + µ̃ λ̃

)
,
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where the symbol ”tilde” refers to the restriction to S and λ̃, µ̃, and ν̃ are constants
according to proposition 3. The result is

K (S) =
λ̃s2

µ̃2 − λ̃ν̃
, λ̃ν̃ − µ̃2 =M(dx̃,dỹ) (g|S) .

This shows that the following cases can occur for (S, g|S).
1. λ̃ > 0, λ̃ν̃ − µ̃2 > 0: (S, g|S) is a non-Euclidean plane, i.e. a bidimensional

Riemannian manifold of negative constant Gauss curvature.

2. λ̃ < 0, λ̃ν̃ − µ̃2 > 0: (S, g|S) is an ”anti” non-Euclidean plane, i.e. is endowed
with the metric of the previous case multiplied by −1.

3. λ̃ν̃ − µ̃2 < 0: (S, g|S) is any indefinite bidimensional metric of constant Gauss
curvature.

Since the Killing leaves are parametrized by x1, x2, the function

K = K (x1, .., xn−2) =
λs2

µ2 − λν

describes the behavior of the Gauss curvature when passing from one Killing leave to
another.

It is worth to note that the Killing algebra G2 is a subalgebra of the algebra Kil (g0),
g0 being a bidimensional metric of constant curvature (for instance, g0 = g|S).

If g0 is positive (respectively, negative) definite and of positive (respectively, negative)
Gauss curvature, then Kil (g0) is isomorphic to so (3). But so (3) does not admit bidi-
mensional subalgebras at all. This explains why g|S cannot be a positively (respectively,
negative) curved metric in the case (1) ( respectively, (2)).

Similarly, if g0 is a positive or negative definite flat metric, then Kil (g0) admits
only Abelian bidimensional subalgebras. This explains why both positive and negative
definite flat metrics are absent in the above list for g|S.

In all other cases, the algebra Kil (g0) admits bidimensional non-Abelian subalgebras.
More exactly, if g0 is not flat, then Kil(g0) is isomorphic to so (2, 1). Let g be the

Killing form of so (2, 1). Then, the tangent planes to the isotropic cone of g exhaust the
bidimensional non-Abelian Lie subalgebras of so (2, 1). If g0 is flat and, thus, indefinite,
then any bidimensional subspace of the algebra Kil (g0) different from its commutator,
which is Abelian, is a non-Abelian subalgebra.

It is not difficult to describe the algebra Kil (g|S) in the semi-adapted coordinates
(x̃, ỹ). A direct computation shows that Kil (g0) has the following basis:

X̃ = ∂x̃, Ỹ = esx̃∂ỹ, Z̃ = e−sx̃
[
2
(
sλ̃ỹ − µ̃

)
∂x̃ +

(
s2λ̃ỹ2 − 2sµ̃ỹ + ν̃

)
∂ỹ
]
,

[
X̃, Ỹ

]
= sỸ ,

[
X̃, Z̃

]
= −sZ̃,

[
Ỹ , Z̃

]
= 2sλ̃X̃,

In the case λ = 0, the metric g|S is flat indefinite and it is convenient to identify
(S, g|S) with the standard plane (R2, dξ2 − dη2), R

2 = {(ξ, η)}. To do that it is necessary
to choose a bidimensional non-commutative subalgebra in Kil(dξ2 − dη2) (they are
all equivalent). For instance, by choosing Y0 = ∂ξ + ∂η, X0 = −η∂ξ − ξ∂η , we have
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[X0, Y0] = Y0 , X0, Y0 ∈ Kil(dξ2 − dη2) and, for s �= 0, one can identify the quadruple
(S, 2 (dx̃dỹ − ỹdx̃2) , X|S , Y |S) with (R2, dξ2 − dη2, X0, Y0 ).

The simply connected Lie group G corresponding to G is isomorphic to the group of
affine transformations of R. Then, both S and R

2 are diffeomorphic to G as homogeneous
G−spaces and the above identification of them is an equivalence of G−spaces.

The Killing form of G determines naturally a symmetric covariant tensor field on the

G−space G which is identified with dx̃2 on S and with
(
dξ−dη
ξ−η

)2

on R
2. We will continue

to call it Killing form. Thus, in the above identification the metric g|S for λ = 0 and
s = 0 corresponds to

µ̃
(
dξ2 − dη2

)
+ ν̃

(
dξ − dη

ξ − η

)2

.(12)

This representation of the metric g|S will be used to describe global solutions of the
Einstein equations in section 5.

4. The Ricci tensor field

In the following we will consider 4-dimensional manifolds and will use the following
convention for the indices: Greek letters take values from 1 to 4; the first Latin letters
take values from 3 to 4, while i, j from 1 to 2.

Let g be a G2-integrable 4-metric. The results of the previous sections allow to choose
a non-holonomic adapted basis Θ such that the matrixMΘ (g) associated to g is of the
form

MΘ (g) =

(
F 0
0 H

)
(13)

where F and H are 2 × 2 matrices whose elements depend only on x1 and x2. We will
distinguish two cases according to whether F, i.e., the matrix associated to the metric
restricted to D⊥, has negative or positive determinant.

• detF < 0. In this case, owing to the bidimensionality of D⊥, and the independence
of F on x3 and x4, the coordinates x1 and x2, can be further specified to be
characteristic coordinates on any integral submanifold of D⊥, so that, without
changing the properties of MΘ (g) in (13), F takes the following form

F =

(
0 f
f 0

)
.

• detF > 0. Similarly, in this case, in some isothermal coordinates, the matrix F
gets the form

F =

(
f 0
0 f

)
Thus, we have:

Proposition 5. A 4-metric g, is G2-integrable iff there exists a non-holonomic adapted
basis Θ such that the matrix MΘ (g) of g takes one of the following block forms, according
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to whether detF < 0 or detF > 0 .

MΘ (g) =

 0 f
f 0

0

0 H

 , MΘ (g) =

 f 0
0 f

0

0 H


H =

(
ν −µ
−µ λ

)
λ, µ, ν being arbitrary functions of xi. In the corresponding adapted holonomic basis
C = {dxµ} we have

MC (g) =

 0 f
f 0

0

0 H

 , MC (g) =

 f 0
0 f

0

0 H


where

H =

(
s2λx2

4 − 2sµx4 + ν −sλx4 + µ
−sλx4 + µ λ

)
.

It is worth to observe that detH = detH = λν − µ2 is a functions of xi’s only.
In the following sections the explicit expressions of the components Rµν of the Ricci

tensor field in terms of the function f and of the elements hab of the matrix H in the
adapted non-holonomic basis of corollary 5 are found.

Recall that

Rµν = R β
µ νβ = e[ν (γ

β
β]µ) + γβ[ν ργ

ρ
β]µ − Cρνβγ

β
ρµ.

with the Christoffel symbols

γαµν =
1

2
gασ (−eσ (gµν) + eµ (gσν) + eν (gσµ))

− 1

2

(
Cανµ + gραgσµC

σ
νρ + gραgσνC

σ
µρ

)
.

It is easy too see that the γαµν ’s and Rµν ’s are first order polynomials in s and it is
convenient to single out their constant terms Γαµν and Sµν , respectively. More exactly,
one has:

γµ = Γµ + Λµ =
1

2
g−1Gµ + Λµ

where γµ,Γµ,Λµ,Gµ are matrices whose elements γαµν , Γ
α
µν ,Λ

α
µν, Gµαν , are defined by

Γαµν =
1

2
gασ (−eσ (gµν) + eµ (gσν) + eν (gσµ))

Λαµν = −1

2

(
Cανµ + gραgσµC

σ
νρ + gραgσνC

σ
µρ

)
(14)

Gµσν = −eσ (gµν) + eµ (gσν) + eν (gσν) .

Rµν = Sµν + Tµν
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where

Sµν = e[νΓ
β
β]µ + Γβ[ν ρΓ

ρ
β]µ

Tµν = e[νΛ
β
β]µ +

(
Γ[νΛβ]

)β
µ
+
(
Λ[νΓβ]

)β
µ
+
(
Λ[νΛβ]

)β
µ
− Cρνβγ

β
ρµ.

Now we pass to the calculation of the Ricci tensor.

4.1. The Ricci tensor in the case det F <0. Note that for s = 0 the adapted non-
holonomic basis becomes holonomic and coincides with the one used in [4]. This is why
the expressions for Sµν given below coincide with the expressions for the components of
the Ricci tensor found in [4]. Observe also that only the fields e1 and e2 give nontrivial
contributions to expressions (14) for the Γαµν ’s and all components Λαµν , except possibly
Λcba, vanish.

• Components Rij:
Let us note that

Tij = ΛββρΓ
ρ
ji − Cρjβγ

β
ρi = 0,

this is due to the fact that Cρjβ = 0, the components Λαµν with an index equal to 1
or 2 vanish and Γaij = 0. So,

Rij = Sij = e[j

(
Γββ]i

)
+ Γβ[j ρΓ

ρ
β]i.

The first term of this expression gives,

e[j

(
Γββ]i

)
= ∂j∂i (ln |f |)− δij∂

2
i (ln |f |) + ∂j∂i (lnα) ,

where α =
√

|detH| and the second term gives

Γβ[j ρΓ
ρ
β]i = tr (ΓjΓi)− (ΓβΓj)

β
i =

1

4
tr
[
H−1∂j (H)H−1∂i (H)

]
+

(∂if)
2

f2
δij + δij

(∂if)
2

f2
+

+ δij∂i (ln |f |) ∂i (lnα) .

Finally, one has

Rij = ∂j∂i (ln |f |)− δij∂
2
i (ln |f |) + ∂j∂i (lnα) +

1

4
tr
[
H−1∂j (H)H−1∂i (H)

]
− δij∂i (ln |f |) ∂i (lnα) .

• Components Rab = Sab + Tab:
For what concerns Sab, it is more convenient to use the following expression

Sab =
1√

|det g|
∂ρ

(√
|det g|Γρab

)
− ∂a∂b

(
ln
√

|det g|
)
− ΓβρaΓ

ρ
βb

taking into account that |det g| ≡ |detF| |detH| = f2α2 and α =
√

|detH|.
The result is

(Sab) =
1

2fα
H
[(
αH−1∂1 (H)

)
,2

+
(
αH−1∂2 (H)

)
,1

]
.
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For Tab one finds

Tab = e[b

(
Λββ]a

)
+
(
Γ[bΛβ]

)β
a
+
(
Λ[bΓβ]

)β
a
+
(
Λ[bΛβ]

)β
a
− Cρbβγ

β
ρa

= −Cρbβγ
β
ρa,

so that

(Tab) = s2h22

(
detH−1

)
H.

and

(Rab) =
1

2fα
H

[(
αH−1∂2 (H)

)
,1

+
(
αH−1∂1 (H)

)
,2

+
2s2

α
fh2212

]
,

where 12 stands for the unit (2× 2)- matrix.
• Components Rai:

In this case,

Sai = e[i

(
Γββ]a

)
+ Γβ[i ρΓ

ρ
β]a = 0,

Indeed, the first term vanishes since Γi’s are diagonal and Γa are anti-diagonal.
The second term also vanishes since the matrices ΓiΓj are diagonal while ΓiΓb or
ΓbΓi anti-diagonal. Thus,

Rai = Tai

and

Tai = ei
(
Λbba
)
+
(
Γ[iΛβ]

)β
a
+
(
Λ[iΓβ]

)β
a
+
(
Λ[bΛβ]

)β
a
− Cρiβγ

β
ρa

= (ΓiΛb)
b
a − (ΛbΓi)

b
a

or, equivalently,(
T3i

T4i

)
= s

(
(H−1∂i (H))

2
2 − (H−1∂i (H))

1
1

−2 (H−1∂i (H))
1
2

)
.

So, the final result is

(Ri3, Ri4) = s
((
H−1∂i (H)

)2
2
−
(
H−1∂i (H)

)1
1
, −2

(
H−1∂i (H)

)1
2

)
.

The above calculations are summarized in the following proposition

Proposition 6. Let g be a G2-integrable 4-metric. If detF < 0, then the components
of the Ricci tensor in a non-holonomic adapted basis are

(Rab) =
H

2fα

[(
αH−1∂1 (H)

)
,2

+
(
αH−1∂2 (h)

)
,1

+
2s2

α
fh2212

]
R12 = ∂1∂2 (ln |f | + lnα) +

1

4
tr
[
H−1∂1 (H)H−1∂2 (H)

]
Rii = −∂i (lnα) ∂i (ln |f |) + ∂2

i (lnα) +
1

4
tr
[
H−1∂i (H)H−1∂i (H)

]
(

Ri3
Ri4

)
= s

(
(H−1∂1 (H))

2
2 − (H−1∂1 (H))

1
1 −2 (H−1∂1 (H))

1
2

(H−1∂2 (H))
2
2 − (H−1∂2 (H))

1
1 −2 (H−1∂2 (H))

1
2

)
with α =

√
|detH| .
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Remark 1. Note that for s = 0 the above expressions for the components of the Ricci
tensor field coincide with the ones given in [4]. In particular, the components Rai vanish
identically.

4.2. The Ricci tensor field in the case F >0. We use again the adapted non-
holonomic basis Θ described in proposition 2, so that the matrix of g is

MΘ (g) =

 2f 0
0 2f

0

0 H

 =

(
F 0
0 H

)
.

In this case essentially the same computation as before gives the following result.

Proposition 7. Let g be a G∈-integrable 4-metric. If detF > 0, then the components
of the Ricci tensor in a non-holonomic adapted basis are

(Ria) = s

(
(H−1∂1 (H))

2
2 − (H−1∂1 (H))

1
1 −2 (H−1∂1 (H))

1
2

(H−1∂2 (H))
2
2 − (H−1∂2 (H))

1
1 −2 (H−1∂2 (H))

1
2

)
;

(Rab) =
H

2fα

[
1

2

[(
αH−1∂1 (H)

)
,1

+
(
αH−1∂2 (Hh)

)
,2

]
+

2s2

α
fh2212

]
;

R11 =
1

2

[
� (lnα ln |f |) +

1

2
tr
(
H−1∂1H

)2 − α,1
α

∂1 (ln |f |)
]
+

+
1

2

[α,2
α

∂2 (ln |f |) + ∂1

(α,1
α

)
− ∂2

(α,2
α

)]
;

R22 =
1

2

[
� (lnα ln |f |) +

1

2
tr
(
H−1∂2H

)2
+

α,1
α

∂1 (ln |f |)
]
+

− 1

2

[α,2
α

∂2 (ln |f |)− ∂1

(α,1
α

)
+ ∂2

(α,2
α

)]
;

R12 =
1

2

[
−α,1

α
∂2 (ln |f |)− α,2

α
∂1 (ln |f |) + 2∂1∂2 (lnα)

]
+

+
1

4
tr
[
H−1∂1 (H)H−1∂2 (H)

]
;

with

� =
∂2

∂x2
1

+
∂2

∂x2
2

.

Remark 2. Also in this case the components Rai vanish identically for s = 0.

5. Solutions of vacuum Einstein field equations

In this section we will limit ourselves to discuss only the general form of local solutions
of vacuum Einstein equations

Rµν = 0

for G2-integrable normal (see after) metrics.
Let us consider separately the cases characterized by detF < 0 and detF > 0 .
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5.1. Solutions of Einstein equations in the case det F <0. Note that, for s = 0
(Abelian case) the equations Rai = 0 become identities, while for s �= 0 they impose
the following strong conditions on the metric:{

(H−1∂i (H))
2
2 = (H−1∂i (H))

1
1

(H−1∂i (H))
1
2 = 0

.(15)

The two cases h22 �= 0 and h22 = 0 are qualitatively different and will be discussed
separately.

5.1.1. The case h22 �= 0. In this case equations (15) imply that (H−1∂i (H))
2
1 = 0 for

any symmetric (2 × 2)-matrix H. This means that H−1∂i (H) is a scalar matrix, i.e.,

∂1 (H) = ϕH, ∂2 (H) = ψH

for some functions ϕ = ϕ (xi), ψ = ψ (xi).
The compatibility condition ∂2 (ϕ) = ∂1 (ψ) for the above system, implies the exis-

tence (locally) of a function γ (xi) such that ϕ = ∂1 (γ), ψ = ∂2 (γ) . The function γ can
be chosen in such a way that H = eγM, M being a constant symmetric (2× 2)-matrix
such that detM = ±1. Thus,

α = eγ.

Then the equations Rab = 0 can be written as

α,12 +s2fm22 = 0,(16)

or

f = cα,12 ,

α,i≡ ∂i (α) , α,ij≡ ∂i∂j (α), and

c = − 1

s2m22
.

This brings Einstein equations to the form

H = eγM = αM(17)

f = cα,12(18)

∂i (ln |f |) = ∂i

(
ln

|α,i |√
α

)
(19)

∂1∂2 (ln |f |) = − 1

α
α,12 +

1

2α2
α,1 α,2 .(20)

For the two possible values of the index i Eq. (19) gives

f = H (x2) ∂1

(√
α
)

(21)

= K (x1) ∂2

(√
α
)

(22)

where H and K are arbitrary functions, or, equivalently,

H∂1α = K∂2α.(23)
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From Eq. (18) one gets

α,1 =
1

c
K
(√

α −A
)
, α,2 =

1

c
H
(√

α − A
)
,

where A is a constant, or, equivalently,

dα =
1

c

(√
α− A

)
(Kdx1 + Hdx2) .

By setting β2 = α the above equation integrates to the equality

β + A ln |β − A| = F (x1) + G (x2) ,

with F (x1) ≡ 1
2c

∫
Kdx1, G (x2) ≡ 1

2c

∫
Hdx2. The above equation will be called the

tortoise equation. Finally, the remaining Einstein equations show Eq. (20) to be an
identity.

By summing up we give the components of the metric in the basis C = {dz1, dz2, dx, dy}
with z1 = 1

2
(x1 + x2) , z2 = 1

2
(x1 − x2) , x = x3, y = x4, where the xµ’s are the adapted

coordinates mentioned in proposition 4.

Proposition 8. Any G2-integrable 4-metric g satisfying the vacuum Einstein equations,
and such that detF < 0 and h22 �= 0, has in the adapted coordinate (z1, z2, x, y) the
following matrix form

MC (g) =


2f 0
0 −2f

0

0 β2

(
s2ky2 − 2sly + m −sky + l

−sky + l k

)


where

• k, l, m, are arbitrary constants such that km− l2 = ±1, k �= 0,
•

f = − 1

4s2k

(
∂2

∂z2
1

− ∂2

∂z2
2

)
β2,(24)

• β is a solution of the tortoise equation

β + A ln |β − A| = F (z1 + z2) + G (z1 − z2) ,(25)

A, F , G being an arbitrary constant and arbitrary functions respectively.

Remark 3. As it will be clarified in [12], the tortoise equation(25) leads to a deeper
understanding of the so called Regge-Wheeler tortoise coordinate, which, apart from
constant terms, is defined as its left hand side.

Remark 4. Concerning the signature of the metric and the character of the Killing
fields, we observe that: If detM = 1 (see Eq. (17)), thenH is either positive or negative
definite according to the sign of k and g (Y, Y ), g (X,X) have the same sign as k. The
signature of g is equal to ±2, so that these metrics are of interest for general relativity;
If detM = −1, then H is indefinite, g (Y, Y ) has again the same sign as k while the
sign of g (X,X) varies depending on the values of y. The signature of g in this case is
equal to 0.
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By using the results of section 3, we have:

Corollary 9. The metric g of the above proposition admits an additional Killing field

Z = e−sx
[
2 (sky − l) ∂x +

(
s2ky2 − 2sly + m

)
∂y
]
,

which generates together with X = ∂x and Y = esx∂y a 3-dimensional Lie algebra
isomorphic to so (2, 1) (assuming that s �= 0):

[X, Y ] = sY, [X,Z] = −sZ, [Y, Z] = 2skX

5.1.2. The case h22 = 0. Now, Eqs. (15) are identically satisfied, while the remaining
Einstein equations become(

αH−1∂1H
)
,2 +

(
αH−1∂2H

)
,1 = 0(26)

∂1∂2 (ln |f | + lnα) +
1

4
tr
[
H−1∂1 (H)H−1∂2 (H)

]
= 0(27)

−∂i ln |α| ∂i ln |f | + ∂2
i lnα +

1

4
tr
[
H−1∂i (H)H−1∂i (H)

]
= 0.(28)

In terms of the components µ and ν of H they reduce to

α,12 = 0(29a)

(αw,1),2 + (αw,2),1 = 0(29b)

∂1∂2 (ln |f |) =
α,2 α,1
2α2

(29c)

α,i ∂i (ln |f |) = α,ii−
α,2i
2α

,(29d)

with α =
√

|detH| = |µ| and w = ν
α
.

The general solution of Eq. (29a) is

α = F (x1) + G (x2) ,

F and G being arbitrary functions such that α is positive.
The general solution of Eq. (29c) is

f = ±α−1
2eP (x1)+Q(x2)

where P and Q are arbitrary functions.
Now equation (29d) takes the form

P ′ (x1)α,1 = α,11

Q′ (x2)α,2 = α,22

and are resolved as

F = C1

∫
ePdx1 + D1 G = C2

∫
eQdx2 + D2.
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Thus as the final result we see that the general solution of the differential system (29a),
(29c), (29d) is given by

α = C1

∫
ePdx1 + C2

∫
eQdx2 + C

f = ±α−1
2eP (x1)+Q(x2)

where C, C1, C2, are arbitrary constants such that α is positive.
Eq. (29b) is a linear second order partial differential equation and can be studied by

standard methods. We postpone this problem to a further publication.
As in proposition 8 we summarize the obtained results by giving the components of

g in the frame C = {dz1, dz2, dx, dy} where z1 = 1
2
(x1 + x2) , z2 = 1

2
(x1 − x2) , x = x3,

y = x4, and xµ’ s are the adapted coordinates introduced in proposition 4.

Proposition 10. Any G2-integrable 4-metric g satisfying the vacuum Einstein equa-
tions and such that detF < 0 and h22 = 0, has the following matrix form in the adapted
coordinates (z1, z2, x, y),

MC (g) =


2f 0
0 −2f

0

0 µ

(
−2sy + w 1

1 0

)


where

•
µ = C1F (z1 + z2) + C2G (z1 − z2) + C(30)

f = |µ|−
1
2 F ′G′(31)

F , G and C, C1, C2 being arbitrary functions and arbitrary constants respectively,
such that µ and f are everywhere nonvanishing;

• w is an arbitrary solution of the equation

µ

(
∂2

∂z2
1

− ∂2

∂z2
2

)
w +

∂µ

∂z1

∂w

∂z1
− ∂µ

∂z2

∂w

∂z2
= 0.

In this case, detH < 0 and the metric g has signature equal to 0. The Killing field
Y is isotropic, while the sign of g (X,X) varies as a function of y. The curvature K of
the Killing leaves vanishes.

Remark 5. In contrast with the case h22 �= 0 (see 5.1.1) an additional Killing field,
say Z, tangent to the Killing leaves and independent on X and Y exists only if w is a
constant, say w0. In such a case

Z = e−sx [−2∂x + (−2sy + w0) ∂y] ,

and generates together toX = ∂x and Y = esx∂y a 3-dimensional Lie algebra isomorphic
to Kil (dx2 − dy2):

[X, Y ] = sY, [X,Z] = −sZ, [Y, Z] = 0
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A canonical form for Eq. (29b) may be obtained by passing to coordinates

ξ = F (x1) , η = G (x2)

in which Eq. (29b) becomes

2 (ξ + η)
∂2w̃

∂ξ∂η
+

∂w̃

∂ξ
+

∂w̃

∂η
= 0,

with w̃ (ξ, η) ≡ w (F−1 (ξ) , G−1 (η)), or, alternatively,

∂2Z

∂ξ∂η
+

1

4 (ξ + η)2
Z = 0, Z =

√
ξ + ηw̃.

Its geometrical interpretation is given in [12].

5.2. Solutions of Einstein equations in the case det F >0. As before, the equa-
tions Rai = 0 are satisfied trivially if s = 0 while for s �= 0 they coincide with (15):{

(H−1∂i (H))
2
2 = (H−1∂i (H))

1
1

(H−1∂i (H))
2
3 = 0

.(32)

Again it is convenient to treat separately the cases h22 �= 0 and h22 = 0.

5.2.1. The case h22 �= 0. As in sec. 5.1.1, equations Ria = 0 are solved as

H = eγM .

M being a constant symmetric (2× 2)-matrix such that detM = ±1 and α = eγ.
Because of the non-degeneracy of g the first derivatives of α are non-vanishing, so that
Einstein equations can be brought to the following form

H = αM ,(33) (
� (α)

4f
+ s2m22

)
M = 0,(34)

� (lnα |f |)− 1

αf
(α,1 f,1 −α,2 f,2 ) +

(α,2 )2

α2
+

α,11 −α,22

α
= 0,(35)

� (lnα |f |) +
1

αf
(α,1 f,1 −α,2 f,2 ) +

(α,1 )2

α2
− α,11 −α,22

α
= 0,(36)

1

2αf
(α,1 f,2 +α,2 f,1 ) +

α,2 α,1
2α2

− α,12

α
= 0.(37)

In its turn the last system is equivalent to

H = αM

f =
c

4
�α

∂1

[
ln |f | − 1

2

(
lnα+ ln

|∇ (α)|2

α2

)]
= −ϑ2

∂2

[
ln |f | − 1

2

(
lnα+ ln

|∇ (α)|2

α2

)]
= ϑ1
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where c = − 1
s2m22

and ϑ1 and ϑ2 are the partial derivatives of

ϑ = arctan
α,2
α,1

.

These equations show that ϑ and ln
√
α|f |

|∇(α)| are conjugated harmonic functions so that

the above system can be brought to the form:

� (ϑ) = 0
α,2
α,1

= tanϑ(38)

ln

√
α |� (α)|
|∇ (α)| = Φ(39)

f =
c

4
� (α)(40)

H = αM

where Φ is a harmonic function conjugated to ϑ, that is a primitive of the exact differ-
ential 1-form ω = ϑ1dx2 − ϑ2dx1. Now one can easily check that the above system is
reduced to the tortoise equation (see sec. 5.1.1)

β + A ln |β − A| = Ψ

where β2 = α, Ψ is an arbitrary harmonic function and A is an arbitrary constant. The
functions ϑ and Φ are given, respectively, by

ϑ = arctan
Ψ,2
Ψ,1

Φ = ln |∇ (Ψ)| .
By summing up we give the components of the metric in terms of the adapted holo-
nomic frame C = {dx1, dx2, dx, dy} with x = x3, y = x4, the xµ’s being the adapted
coordinates introduced in proposition 4.

Proposition 11. Any G2-integrable 4-metric g satisfying the vacuum Einstein equa-
tions, and such that detF > 0 and h22 �= 0, has the following matrix form in the
adapted coordinates (xµ)

MC (g) =


2f 0
0 2f

0

0 β2

(
s2ky2 − 2sly + m −sky + l

−sky + l k

)


where

• k, l, m, are arbitrary constants such that km− l2 = ±1, k �= 0,
•

f = − 1

4s2k
�
(
β2
)
,(41)

• β is a solution of the tortoise equation

β + A ln |β − A| = Ψ,(42)
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such that �β2 ≡
(
∂2

∂x21
+ ∂2

∂x22

)
β2 is everywhere nonvanishing, A and Ψ being an

arbitrary constant and an arbitrary harmonic function.

Remark 6. Concerning the signature of g and the character of the Killing fields, we
remark that: If detM = 1 (see Eq. (33)), then H is either positive or negative definite
according to the sign of k as well as g (Y, Y ), and g (X,X). Since the sign of the constant
c is opposite to the one of k, the signature of g is always equal to 0. If detM = −1,
then H is indefinite, g (Y, Y ) has the same sign as k while the sign of g (X,X) varies
with as a function of y. The signature of g is equal to ±2, so that these metrics are of
interest for General Relativity.

Moreover, as in sec. 5.1.1 we have:

Corollary 12. The metric of the above proposition admits a third Killing field

Z = αe−sx2
[
(m− sky) ∂x +

(
s2ky2 − 2smy + l

)
∂y
]
,

which together with X and Y generate a 3-dimensional Lie algebra isomorphic to
so (2, 1)

[X, Y ] = sZ, [X,Z] = −sZ, [Y, Z] = −2skX.

5.2.2. The case h22 = 0. In this case the equations Ria = 0 are satisfied automatically
while the matrix H has the form

H =

(
ν µ
µ 0

)
,

and α = |µ|. The remaining Einstein equations reduce now to

� (α) = 0(43)

(α∂1w),1 + (α∂2w),2 = 0(44)

� (ln |f |) =
1

2

[(α,1
α

)2

+
(α,2

α

)2
]

(45)

α,1 ∂1 (ln |f |)− α,2 ∂2 (ln |f |) = α,11 −α,22 −
α,21 −α,22

2α
(46)

α,2 ∂1 (ln |f |) + α,1 ∂2 (ln |f |) = 2α,12 −
α,2 α,1

α
.(47)

where � = ∂2

∂x21
+ ∂2

∂x22
and w = ν

α
. If α is a solution of Eq. (43), i.e., a harmonic function,

then the general solution of Eq. (45) is

f = ±α−1
2 eψ

ψ being a harmonic function. Substituting this expression in Eqs. (46), (47) one gets

α,1 ψ,1 −α,2 ψ,2 = 2α,11

α,2 ψ,1 +α,1 ψ,2 = 2α,12

the last relations are locally equivalent to

|∇ (α)|2 = ceψ
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c being a constant. Therefore,

f = ± |∇ (φ)|2√
|Dφ + B|

(48)

where α = |µ| = |Dφ + B|, A and B are constants and φ a harmonic function such
that α is nonvanishing. The equation (44) is a linear second order partial differential
equation and can be analyzed with standard methods.

Thus, as the final result we have:

Proposition 13. Any G2-integrable 4-metric g satisfying the vacuum Einstein equa-
tions, and such that detF > 0 and h22 = 0, has the following matrix form in the
adapted coordinates (x1, x2, x.y)

MC (g) =

 ε |∇(φ)|2√
|Dφ+B|

12 0

0 (Dφ + B)

(
−2sy + w 1

1 0

)
 .

where ε = ±1, φ is a harmonic function, D and B are constants such that µ = Dφ+B
is everywhere nonvanishing and w is a solution of the equation

(µw,1 ),1 + (µw,2 ),2 = 0.

In the considered case detH is negative and the signature of g is equal to ±2. The
Killing vector field Y is isotropic while the sign of g (X,X) varies as a function of y.
The Gauss curvature K of the Killing leaves vanishes.

Remark 7. According to section 3, an additional Killing field, say Z, tangent to the
Killing leaves and independent of X and Y , exists iff w is a constant, say w0. In such
a case it is given by

Z = e−sx [−2∂x + (−2sy + w0) ∂y] ,

which generates together with X = ∂x and Y = esx∂y a 3-dimensional Lie algebra
isomorphic to Kil (dx2 − dy2):

[X, Y ] = sY, [X,Z] = −sZ, [Y, Z] = 0.

A canonical form for the equation (44) can be found by introducing new coordinates,
namely ξ and η, by

ξ = α + α̃, η = α − α̃.

in which Eq. (44) becomes

(ξ + η)

(
∂2

∂ξ2
+

∂2

∂η2

)
(w̃) +

∂w̃

∂ξ
+

∂w̃

∂η
= 0,

with w̃ (ξ, η) ≡ w (x1 (ξ, η) , x2 (ξ, η)), or, alternatively,(
∂2

∂ξ2
+

∂2

∂η2

)
(Z) +

1

2 (ξ + η)2
Z = 0.

with
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Z =
√

ξ + ηw̃.

For its geometrical meaning see [12].

6. The Abelian limit (s = 0)

The solutions of the Einstein equations found in the previous section allow one to
get exact solutions of the Belinsky-Zahkarov case just by passing to the ”Abelian limit”
s = 0. Since the Abelian case was extensively studied (see, for instance, [3, 7, 4]) we
shall limit ourself here simply to describe these solutions. In what follows we use the
adapted coordinates to which the propositions refer and consider separately the cases
h22 �= 0 and h22 = 0.
The case h22 �= 0. With this assumption Eqs. (15) and, which is the same (32) play

the role of an ”ansatz” when passing to the Abelian limit: So, in that case as in sec.
5.1.1 and sec. 5.1.2 one sees that H = αM , M being a constant unimodular matrix.

• If detF < 0 then Eq. (16) becomes

α,12 = 0

and the remaining Einstein equations coincide with equations (29c) and (29d) as
they appeared when analyzing the non-abelian situation assuming that h22 = 0
and detF < 0 (see sec. 5.1.2). Thus, the same procedure leads us to the following
result:

MC (g) =

 2f 0
0 −2f

0

0 αM

 ,(49)

where α and f are given by

α = C1F (z1 + z2) + C2G (z1 − z2) + C(50)

f =
F ′G′√
|α|

(51)

F and G being arbitrary functions, C, C1, C2, arbitrary constants such that α and
f are everywhere nonvanishing;

• If detF > 0, then by referring to Eqs. (43)-(47) one finds that

MC (g) =

(
ε |∇(φ)|2√

|Dφ+B|
12 0

0 (Dφ + B)M

)
.

where ε = ±1, φ is a harmonic function, and D and B are constants such that
Dφ + B is everywhere nonvanishing and M is as above.

The case h22 = 0. With this assumption the Abelian limit is, obviously, obtained
from the corresponding non-Abelian result (propositions 10 and 13) just by putting
s = 0. Namely:
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• If detF < 0, then (proposition 10)

MC (g) =


−2f 0
0 2f

0

0 µ

(
w 1
1 0

)
 ,(52)

where

µ = C1F (z1 + z2) + C2G (z1 − z2) + C(53)

f = |µ|−
1
2 F ′G′,(54)

F , G and C, C1, C2, being arbitrary functions and constants, respectively, such
that µ and f be everywhere nonvanishing while w is an arbitrary solution of the
equation

(µw,1 ),2 + (µw,2 ),1 = 0.

• If detF > 0, then (proposition 13)

MC (g) =

 ε |∇(φ)|2√
|Dφ+B|

12 0

0 (Dφ + B)

(
w 1
1 0

)
 .(55)

where ε = ±1, φ is a harmonic function, D and B are arbitrary constants such
that µ = Dφ+B is everywhere nonvanishing and w is an arbitrary solution of the
equation

(µw,1 ),1 + (µw,2 ),2 = 0.

Remark 8. It is worth to note that in the Abelian case the Gauss curvature of the
Killing leaves is equal to zero.

7. Ricci-flat metrics admitting a 3-dimensional Killing algebra with

bidimensional leaves

Let g be a metric and G be one of its Killing algebras. In what follows, the Killing
algebra G will be called normal if the restrictions of g to its Killing leaves are non-
degenerate.

Obviously, a normal Killing algebra G is isomorphic to a subalgebra of Kil(g|S) where
S is a generic Killing leaf of G. Thus, when dimG = 3 and the Killing leaves are
bidimensional, G = Kil (g|S). As it is easy to see, in this situation there are exactly five
options for Kil(g|S) and, therefore, for G. Namely, they are:

so (2, 1) , Kil
(
dx2 − dy2

)
, so (3) , Kil

(
dx2 + dy2

)
, A3,(56)

where A3 is a 3-dimensional Abelian Lie algebra. Since the Lie algebra A3 belongs to
the case treated in [4] it will not be considered in the following.

Only two of these algebras, namely so (2, 1) and Kil(dx2 − dy2), possess a non-
commutative bidimensional subalgebra. Thus, one may expect that the corresponding
Ricci flat 4-metrics are among the solutions described in section 5. It will be shown
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below that this is in fact true and that they belong to one of the cases h22 �= 0, or
h22 = 0 with w fixed to be constant (see section 5).

As for the algebra Kil(dx2 + dy2), it has only a bidimensional commutative subalge-
bra and we shall see that the corresponding Ricci-flat 4-metrics are among the solutions
described in the previous section 6 (the Abelian limit with h22 �= 0).

The following assertion generalizes lemma 1 (section 2).

Lemma 14. Let X1, X2 and f1X1 + f2X2, f1, f2 ∈ C∞ (M) be Killing fields of a
metric (M, g). Then, supposing that X1 and X2 are independent, either f1 and f2 are
functionally independent, or f1 and f2 are constant.

Proof. It results from relation (1) taking into account LX1 (g) = LX2 (g) = 0 that

0 = Lf1X1+f2X2 (g) = iX1 (g) df1 + iX2 (g) df2.(57)

Assuming, say, that f2 = ϕ (f1) we see that

0 = Lf1X1+f2X2 (g) = (iX1 (g) + ϕ′iX2 (g)) df1 = iX1+ϕ′X2 (g) df1,

If df1 �= 0, then the last equality implies, obviously, iX1+ϕ′X2 (g) = 0. In that case,
X1 + ϕ′X2 = 0 due to the non-degeneracy of g in contradiction with the assumed
independence of X1 and X2. If on the contrary df1 = 0, then df2 = 0 and the second
alternative takes place.

Note that it cannot happen that on a connected manifoldM the first alternative takes
place in U1 ⊂ M and the second one in U2 ⊂ M if

⋂
iUi �= ∅. It results from the fact

that if a Killing field vanishes on an open subset of M , then it vanishes everywhere.

Corollary 15. If G is a 3-dimensional Killing algebra having bidimensional Killing
leaves and the fields X1, X2 , X3 generate it as a linear space, then almost everywhere
X3 = f1X1 + f2X2 and f1 and f2 are functionally independent.

Proof. The fields X1 and X2 are independent according to lemma 1. So they generate
almost everywhere, say in U , the tangent spaces to the Killing leaves. Thus, X3 =
f1X1 + f2X2, fi ∈ C∞ (U). The possibility that f1 and f2 are constant offered by
lemma 1 cannot occur in this context since X1, X2 and X3 are supposed to be linearly
independent.

Proposition 16. Any Killing algebra from the list (56) having bidimensional Killing
leaves is normal. Moreover, the distribution D⊥ orthogonal to its Killing leaves is inte-
grable.

Proof. Below the notation of corollary 15 is used. Since df1and df2 are almost everywhere
point-wise independent and one can deduce easily from (57) that

iX1 (g) = λdf2, iX2 (g) = −λdf1,(58)

being g nondegenerate, λ is almost everywhere non-vanishing.
Let now Y be an almost everywhere different from zero vector field. Then the equality

iY (iX1 (g) df1 + iX2 (g) df2) = 0,

which is an obvious consequence of (57), is equivalent to

g (X1, Y ) df1 + g (X2, Y ) df2 = −Y (f1) iX1 (g)− Y (f2) iX2 (g) .
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In view of (58) it gives

g (X1, Y ) df1 + g (X2, Y ) df2 = −λY (f1) df2 + λY (f2) df1,

so that

g (X1, Y ) = λY (f2) , g (X2, Y ) = −λY (f1) .

Hence Y (f1) = Y (f2) = 0 iff g (X1, Y ) = g (X2, Y ) = 0, i.e., such fields Y are or-
thogonal to the Killing leaves and vice versa. If Y is tangent to the Killing leaves,
then

Y (f1) = Y (f2) = 0 ⇐⇒ Y = 0,

since by the above corollary applied to the case M = S, dfi|S is nondegenerate for a
generic Killing leaf S. This proves that the fields Y such that Y (f1) = Y (f2) = 0 are
transversal to the Killing leaves and that g|S is non-degenerate for a generic Killing leaf
S. Thus G is normal.

Finally note that the distribution D̃ spanned by the vector fields Y such that Y (f1) =
Y (f2) = 0 is of co-dimension 2 since df1 and df2 are independent almost everywhere.

Being both transversal and orthogonal to the Killing leaves, D̃ coincides with D⊥ by a
dimension argument.

Corollary 17. The solutions found in section 5 exhaust all local Ricci-flat 4 -metrics
admitting a Killing algebra isomorphic to so (2, 1) or to Kil (dx2 − dy2).

Proof. As we already noticed, the first two algebras possess non-Abelian bidimensional
subalgebras and according to the previous proposition the distribution D⊥ orthogonal
to Killing leaves is transversal to them and integrable.

7.1. Kil(dx2 + dy2)-invariant Ricci-flat metrics. As it has been already noticed,
the algebra Kil(dx2 + dy2) has a bidimensional commutative subalgebra. We shall see
that the corresponding Ricci-flat 4 -metrics are among the solutions of previous section
6 (the Abelian limit with h22 �= 0).

First, let G be a Killing algebra isomorphic to Kil(dx2 + dy2) and let Xi, i = 1, 2, 3,
be its standard basis, i.e.,

[X1, X2] = 0, [X1, X3] = X2, [X2, X3] = −X1.

With the notation of corollary 15, let X3 = f1X1 + f2X2. Then

X2 = [X1, X3]

= [X1, f1X1 + f2X2]

= X1 (f1)X1 + X1 (f2)X2

and

X1 = [X3, X2]

= [f1X1 + f2X2, X2]

= −X2 (f1)X1 −X2 (f2)X2,
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so that, for the independence (section 2, lemma 1) of X1 and X2, implies that we have

X1 (f1) = 0, X1 (f2) = 1

X2 (f1) = −1, X2 (f2) = 0.

Joining to f1, f2 a couple of independent functions z1, z2 such that Xi (zj) = 0, ∀i, j,
one gets a local chart on M . Taking into account the above relations and passing to the
standard coordinate notation x = f1, y = f2, we see that in the chart (x, y, z1, z2)

X1 = ∂y, X2 = −∂x, X3 = x∂y − y∂x.

Introducing on S polar coordinates (r, ϕ), i.e., x = r cosϕ, y = r sinϕ, the above
fields read as

X1 = sinϕ∂r +
cosϕ

r
∂ϕ, X2 = cosϕ∂r +

sinϕ

r
∂ϕ, X3 = ∂ϕ.

Then, in view of proposition 16, a direct computation similar to the one of section 2
shows that any G-invariant metric has in the adapted local chart (z1, z2, r, ϕ) the form

g = 2f
(
dz2

1 + εdz2
2

)
+ µ (z1, z2)

[
dr2 + r2dϕ2

]
,

and, therefore, belongs to the class of metrics considered in section 6 with definite H
and h22 �= 0.

Thus, we have:

Corollary 18. The solutions found in section 6exhaust all local Ricci-flat 4-metrics
admitting a Killing algebra isomorphic to Kil (dx2 + dy2).

7.2. so (3)-invariant Ricci-flat metrics. The above results lead to expect that Ricci-
flat 4-metrics admitting a Killing algebra isomorphic to so (3) with 2-dimensional leaves
can be described essentially in the same way as it was done in section 5 with respect to
those admitting a Killing algebra isomorphic to so (2, 1). The details are as follows

First, let G be a Killing algebra isomorphic to so (3) and let Xi, i = 1, 2, 3, be its
standard basis, i.e.

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.

In the notation of corollary 15 let X3 = f1X1 + f2X2. Then

X1 = [X2, X3] = [X2, f1X1 + f2X2]

= X2 (f1)X1 + f1 [X2, X1] + X2 (f2)X2

=
(
X2 (f1)− f2

1

)
X1 + (X2 (f2)− f1f2)X2.

Since X1 and X2 are independent (lemma 1)

X2 (f1)− f2
1 = 1, X2 (f2)− f1f2 = 0.(59)

Similarly, from the relation [X3, X1] = X2 one finds

X1 (f1) + f1f2 = 0, X1 (f2) + f2
2 = −1.(60)

Joining to f1, f2 a couple of independent functions z1, z2 such that Xi (zj) = 0, ∀i, j,
one gets a local chart on M . Taking into account relations (59) and (60) and passing to
the standard coordinate notation x = f1, y = f2, we see that in the chart (x, y, z1, z2)

X1 = −xy∂x−
(
1 + y2

)
∂y, X2 =

(
x2 + 1

)
∂x + xy∂y, X3 = y∂x − x∂y.
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In the geographic coordinates (r, ϕ) , i.e., x = tan ϑ cosϕ, y = tan ϑ sinϕ, the above
fields read as

X1 = −cosϕ

tanϑ
∂ϕ − sinϕ∂ϑ, X2 = − sinϕ

tan ϑ
∂ϕ + cosϕ∂ϑ, X3 = −∂ϕ.

Then, in view of proposition 16, a direct computation similar to the one of section 2
shows that any G-invariant metric has in the adapted local chart (z1, z2, ϑ, ϕ) the form

g = f
(
dz2

1 + εdz2
2

)
+ α (z1, z2)

[
dϑ2 + sin2 ϑdϕ2

]
(61)

The Ricci tensor of the above metric can be easily computed as in section 4 and
the corresponding Einstein equations lead to the same equations for f and α ≡ r2 as
already found in section 5 in the case h22 �= 0. Namely,

f = −1

2

(
∂2

∂z2
1

+ ε
∂2

∂z2
2

)(
r2
)
,(62)

r + A ln |r − A| = u,(63)

with ε = ±1, A being an arbitrary constant and u being an arbitrary function satisfying
the equation (

∂2

∂z2
1

+ ε
∂2

∂z2
2

)
(u) = 0.

Additionally, f is required to be nonvanishing.

Remark 9. In the case ε = −1,these solutions are locally diffeomorphic to the Schwarzschild
solution. This will be discussed in [12].

Below, the graph of the left hand side of the equation (63) is reported for the values
A = 2 and A = −2.

u = r + 2 ln |r − 2| u = r − 2 ln |r + 2|
One can see that for A �= 0 there exactly three possibilities for r = r (u) that

correspond to the intervals of monotonicity of u (r). For instance, for A > 0 these
are ]−∞, 0[, ]0, A[, and ]A,∞[. In these regions the corresponding metric (61) is regular
and has some singularities along the curves r = 0 and r − A = 0.

Some geometrical peculiarities of the obtained local solutions show how to match
them together in order to get global nonextendible Einstein metrics. To this purpose, in
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[12] a formalism is developed which allows to construct, starting from known solutions,
”new” global ones and to describe their singularities as well. For instance, by extract-
ing the square root of the Schwarzschild solution, one easily finds an Einstein metric
which describes parallel universes. Other examples which illustrate some aspects of our
approach can be found in [12]. We stress that it generalizes naturally to some other
situations as, for instance, cosmological Einstein metrics satisfying assumptions I and
II (work in progress).
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