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Abstract. Vacuum gravitational fields invariant for a bidimensional non Abelian Lie
algebra of Killing fields, are explicitly described. They are parameterized either by
solutions of a transcendental equation (the tortoise equation) or by solutions of a linear
second order differential equation on the plane. Gravitational fields determined via the
tortoise equation, are invariant for a 3-dimensional Lie algebra of Killing fields with
bidimensional leaves. Global gravitational fields out of local ones are also constructed.

PACS numbers: 04.20.-q, 04.20.Gz, 04.20.Jb

In the last years a great deal of attention has been devoted to the detection of grav-
itational waves. However, all the experimental devices, interferometers or resonant
antennas, are constructed coherently with results obtained from the non covariant lin-
earized Einstein field equations, in close analogy with that is normally done in Maxwell
theory of electromagnetic fields.

Starting from the seventy’s, however, new powerful mathematical methods have been
invented to deal with nonlinear evolution equations and their exact solutions. One of
this methods, namely a suitable generalization of the Inverse Scattering Transform,
allowed to solve reduced vacuum Einstein field equations and to obtain solitary waves
solutions [3] (see [14] and references therein).

This paper is the first in a series devoted to the study of gravitational fields g admit-
ting a Lie algebra G of Killing fields. The case of a non Abelian bidimensional Killing
Lie algebra has been only partially studied. Here, this case will be completely analyzed
within the following general problem which, as we will see, emerges naturally.

I. the distribution D, generated by the vector fields of G, is bidimensional.
II. the distribution D⊥ orthogonal to D, is integrable and transversal to D.
According to whether dimG is 2 or 3, two qualitatively different cases occur.
A bidimensional G, is either Abelian (A2) or non-Abelian (G2). A metric g satisfying

I and II, with G = A2 or G2, will be called G -integrable .
The study of A2-integrable Einstein metrics goes back to Einstein and Rosen [5],

Rosen [11], Kompaneyets [8], Geroch [6], Belinsky and Khalatnikov [2].
The greater rigidity of G2-integrable metrics, for which some partial results can be

found in [7, 1, 4], allows an exhaustive analysis. It will be shown that they are parame-
terized by solutions of a linear second order differential equation on the plane which, in
its turn, depends linearly on the choice of a j-harmonic function (see later). Thus, this
class of solutions has a bilinear structure and, as such, admits two superposition laws.

When dim G = 3, assumption II follows from I and the local structure of this class of
Einstein metrics can be explicitly described. Some well known exact solutions [10, 9],
e.g. Schwarzschild, belong to this class.
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Besides the new local G2-integrable solutions, a procedure to construct new global
solutions, suitable for all such G-integrable metrics, will be also described.

The following notation will be adopted
Metric: a non-degenerate symmetric (0, 2) tensor field,
Kil (g): the Lie algebra of all Killing fields of a metric g,
Killing algebra: a sub-algebra of Kil (g).
Semiadapted coordinates. Let g be a metric on the space-time M (a connected

smooth manifold) and G2 one of its Killing algebras whose generators X, Y satisfy

[X, Y ] = sY, s ∈ R(1)

The Frobenius distributionD generated by G2 is bidimensional and a chart (x1, x2, x3, x4)
exists such that

X =
∂

∂x3
, Y =

(
expsx3

) ∂

∂x4
.(2)

From now on such a chart will be called semiadapted (to the Killing fields).
Invariant metrics. It can be easily verified [13] that in a semiadapted chart g has the
form

g = gijdx
idxj + 2

(
li + smix

4
)
dxidx3 − 2midx

idx4 +(
s2λ
(
x4
)2 − 2sµx4 + ν

)
dx3dx3 +

2
(
µ− sλx4

)
dx3dx4 + λdx4dx4, i = 1, 2; j = 1, 2

with gij, mi, li, λ, µ, ν arbitrary functions of (x1, x2).
Killing leaves. Condition II allows to construct semi-adapted charts, with new

coordinates (x, y, x3, x4), such that the fields e1 = ∂
∂x

, e2 = ∂
∂y

, belong to D⊥. In such
a chart, called from now on adapted, the components li’s and mi’s vanish.

We will call Killing leaf an integral (bidimensional) submanifold of D and orthogonal
leaf an integral (bidimensional) submanifold of D⊥. Since D⊥ is transversal to D, the
restriction of g to any Killing leaf, S, is non-degenerate. Thus, (S, g|S) is a homogeneous
bidimensional Riemannian manifold. Then, the Gauss curvature K (S) of the Killing
leaves is constant (depending on the leave). In the chart (p = x3|S , q = x4|S) one has

g|S =
(
s2λ̃q2 − 2sµ̃q + ν̃

)
dp2 + 2

(
µ̃− sλ̃q

)
dpdq + λ̃dq2,

where λ̃, µ̃, ν̃, being the restrictions to S of λ, µ, ν, are constants, and

K (S) = λ̃s2
(
µ̃2 − λ̃ν̃

)−1

.

Einstein metrics when g(Y, Y ) 	= 0. In the considered class of metrics, vacuum
Einstein equations, Rµν = 0, can be completely solved [13]. If the Killing field Y is not
of light type, i.e. g(Y, Y ) 	= 0, then in the adapted coordinates (x, y, p, q) the general
solution is

g = f(dx2 ± dy2) + β2[(s2k2q2 − 2slq + m)dp2 + 2(l − skq)dpdq + kdq2](3)

where f = − 1
2s2k

�± β2, and β (x, y) is a solution of the tortoise equation

β + A ln |β −A| = u (x, y) ,



Gravitational fields with a non Abelian bidimensional Lie algebra of symmetries 3

the function u being a solution either of Laplace or d’ Alembert equation, �±u = 0,
�± = ∂2

xx ± ∂2
yy, such that (∂xu)

2 ± (∂yu)
2 	= 0. The constants k, l,m are constrained

by km− l2 = ±1, k 	= 0.
Canonical form of metrics when g(Y, Y ) 	= 0. The gauge freedom of the above solution,
allowed by the function u, can be locally eliminated by introducing the coordinates
(u, v, p, q), the function v(x, y) being conjugate to u(x, y), i.e. �±v = 0 and ux =
vy, uy = ∓vx. In these coordinates the metric g takes the form (local ”Birkhoff’s
theorem”)

g =
exp[u−β

A
]

2s2kβ
(du2 ± dv2) + β2[(s2k2q2 − 2slq + m)dp2 + 2(l − skq)dpdq + kdq2]

with β (u) a solution of β + A ln |β − A| = u.
Normal form of metrics when g(Y, Y ) 	= 0. In geographic coordinates (ϑ, ϕ) along Killing
leaves one has g|S = β2 [dϑ2 + F (ϑ) dϕ2], where F (ϑ) is equal either to sinh2 ϑ or
− cosh2 ϑ, depending on the signature of the metric. Thus, in the normal coordinates,
(r = 2s2kβ, τ = v, ϑ, ϕ), the metric takes the form

g = ε1

([
1 − A

r

]
dτ 2 ±

[
1− A

r

]−1

dr2

)
+ ε2r

2
[
dϑ2 + F (ϑ) dϕ2

]
(4)

where ε1 = ±1, ε2 = ±1 with a choice coherent with the required signature 2.
The geometric reason for this form is that, when g(Y, Y ) 	= 0, a third Killing field

exists which together with X and Y constitute a basis of so(2, 1). The larger symmetry
implies that the geodesic equations describe a non-commutatively integrable system [12],
and the corresponding geodesic flow projects on the geodesic flow of the metric restricted
to the Killing leaves. The above local form does not allow, however, to treat properly the
singularities appearing inevitably in global solutions. The metrics (3), although they all
are locally diffeomorphic to (4), play a relevant role in the construction of new global
solutions as described later.
Einstein metrics when g(Y, Y ) = 0. If the Killing field Y is of light type, then the

general solution of vacuum Einstein equations, in the adapted coordinates (x, y, p, q),
is given by

g = 2f(dx2 + dy2) + µ[(w (x, y)− 2sq)dp2 + 2dpdq],(5)

where µ = DΦ+B; D,B ∈ R, Φ is a non constant harmonic function, f = ± (∇Φ)2 /
√

|µ|
, and w (x, y) is a solution of

∆w + (∂x ln |µ|) ∂xw + (∂y ln |µ|) ∂yw = 0.

Special solutions are w = µ̃, w = ln |µ| , where µ̃ is the harmonic function conjugate
to µ. When µ is not constant, in the coordinates ξ = µ + µ̃, η = µ − µ̃, the above
equation appears to be the Darboux equation

(ξ + η)
(
∂2

ξξ + ∂2
ηη

)
w + ∂ξw + ∂ηw = 0.

In this case the curvature of Killing leaves vanishes.
The new solutions (5) together with (3) exhaust all local Lorentzian Ricci-flat metrics

invariant for a G2 Lie algebra.
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Ricci-flat g with dimKil(g|S) = 3 & dimS = 2. In view of the construction
of global solutions, the previous results suggest to consider with the same approach
all metrics having 3-dimensional Killing algebras with bidimensional leaves. A Killing
algebra G of a metric g will be called normal if the restrictions of g to Killing leaves
S of G are non-degenerate. Obviously, a normal Killing algebra G is isomorphic to a
subalgebra of Kil (g|S). Thus, when dimG = 3 and the Killing leaves are bidimensional,
G = Kil (g|S). In this situation there are just five options for Kil (g|S) and therefore
for G :

so (2, 1) , Kil
(
dp2 − dq2

)
, so (3) , Kil

(
dp2 + dq2

)
, A3 .

The method used before allows to describe completely Einstein metrics admitting
one of these algebra.

The gravitational fields invariant for so(2, 1) and Kil(dp2 − dq2), which are the only
ones possessing non Abelian bidimensional subalgebras, can be found among solutions
(3) and (5).

The gravitational fields invariant for so(3) and corresponding to a positive choice of
the solution β(u) of the tortoise equation have the following local form:

g = �±β
2(dx2 ± dy2) + β2

[
dϑ2 + sin2 ϑdϕ2

]
.(6)

The choice of normal coordinates as in (4) and of minus sign gives the Schwarzschild
solution with a new insight to the physical meaning of the so called Regge-Wheeler
tortoise coordinate [16].

The gravitational fields g invariant for Kil(dp2 + dq2), have the local form

g = 2f
(
dx2 − dy2

)
+ α (x, y)

[
dr2 + r2dϕ2

]
,

α ≡ C1F (x + y) + C2G (x− y) + C, f ≡ F ′G′/
√

|α|,

F and G being arbitrary functions, C, C1, C2, arbitrary constants such that α and f
are nonvanishing.

The Lie algebra A3 belongs to the Abelian case of [3].
Global solutions. Any of previous metrics is fixed by a solution of the wave or

Laplace equation, and a choice

• of the constant A and one of the branches of a solution of the tortoise equation, if
g(X, Y ) 	= 0.

• of a solution of Darboux equation, if g(X, Y ) = 0.

The metric manifold (M, g) has a bundle structure whose fibers are the Killing leaves
and whose base W is a bidimensional manifold diffeomorphic to the orthogonal leaves.
The wave and Laplace equations mentioned above are defined on W. Thus, the problem
of the extension of our local solutions is reduced to that of the extension of W. Such an
extension carries a geometric structure, the j -complex structure, that gives an intrinsic
sense to the notion of the wave and Laplace equations and clarifies what variety of
different geometries is, in fact, obtained.
j-complex structures. In full parallel with ordinary complex numbers, j-complex num-
bers of the form z = x + jy, with j2 = −1, 0, 1, can be introduced. Thus, a j-complex
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analysis can be developed by defining j-holomorphic functions as R2
j -valued differen-

tiable functions of z = x + jy, where R2
j is the algebra of j-complex numbers. Just

as in the case of ordinary complex numbers, a function f (z) = u (x, y) + jv (x, y) is
j-holomorphic if and only if the j-Cauchy-Riemann conditions hold:

ux = vy, uy = j2vx(7)

The compatibility conditions of the above system require that both u and v satisfy the
j-Laplace equation, that is

−j2uxx + uyy = 0, −j2vxx + vyy = 0.(8)

Of course, the j-Laplace equation reduces for j2 = −1 to the ordinary Laplace equation,
while for j2 = 1 to the wave equation.

A bidimensional manifold W supplied with a j-complex structure is called a j-complex
curve. Obviously, for j2 = −1 a j-complex curve is just a 1-dimensional complex
manifold. The case j2 = 0 will not be considered.

Thus, any global metric is associated with a pair consisting of a j -complex curve W
and a j -harmonic function u on it.
Model solutions. The pairs (W, u) and (W ′, u′), corresponding to two equivalent solu-
tions, are related by an invertible j-holomorphic map Φ : (W, u) → (W ′, u′) such that
Φ∗ (u′) = u.

Particularly important are then the model solutions, namely those solution for which
(W, u) =

(
R2

j , x
)
. The pair

(
R2

j., x
)
is universal in the sense that any solution charac-

terized by a given pair (W, u) is the pull-back of a model solution by a j-holomorphic
map Φ : W −→ R2

j defined uniquely by the relations Φ∗ (x) = u and Φ∗ (y) = v, where
v is conjugated with u.

It will be now described in detail how to construct global solutions in the case
dimKil (gΣ) = 3. The remaining cases can be found in [13].

Let us first consider so (3) and so (2, 1). Denote by (Σ, gΣ) a homogeneous bidimen-
sional Riemannian manifold, whose Gauss curvature K (gΣ), if different from zero, is
normalized to ±1. Let (W, u) be a pair consisting of a j-complex curve W and a j-
harmonic function u on W. The bundle structure π1 : M → W canonically splits in
the product W ×Σ. Denote by π2 : M → Σ the also natural projection of M = W ×Σ
on Σ. Then, the above data determine the following Ricci-flat manifold (M, g) with

g = π∗
1

(
g[u]

)
+ π∗

1

(
β2
)
π∗

2 (gΣ)(9)

where β (u) is implicitly determined by the tortoise equation, and

g[u] = ±(β − A)

β

(
du2 − j2dv2

)
.(10)

In the case of normal Killing algebras isomorphic to Kil (dx2 ± dy2) it is sufficient to
consider Ricci-flat manifolds M of the form

M = W × Σ, g = π∗
1

(
g[u]

)
+ π∗

1 (u)π∗
2 (gΣ)(11)

where (Σ, gΣ) is a flat bidimensional manifold and

g[u] = ± 1√
u

(
du2 − j2dv2

)
.(12)
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Examples
Algebraic solutions. Let W be an algebraic curve over C, understood as a j-complex
curve with j2 = −1. With a given meromorphic function Φ on W a pair (WΦ, u)
is associated, where WΦ is W deprived of the poles of Φ and u the real part of Φ. A
solution (metric) constructed over such a pair will be called algebraic. Algebraic metrics
are generally singular [15], e.g. they are degenerate along the fiber π−1 (a) if at a ∈ W
dau = 0.
A star ”outside” the universe. The Schwarzschild solution describes a star generating a
space around itself. It is an so (3)-invariant solution of the vacuum Einstein equations.
Its so (2, 1) analogue shows a star generating the space only on ”one side of itself”. More
exactly, the fact that the space in the Schwarzschild universe is formed by a 1-parameter
family of concentric spheres allows one to give a sense to the adverb around. In the
so (2, 1) case the space is formed by a 1-parameter family of concentric hyperboloids.
The adjective concentric means that the curves orthogonal to hyperboloids are geodesics
and metrically converge to a singular point. This explains in what sense this singular
point generates the space only on ”one side of itself”.

The next example shows how the introduction of j-complex structures allows to ma-
nipulate already known Einstein metrics to get new ones also with singularities.
The ”square root” of the Schwarzschild universe. It is an Einstein metric induced by
the j-quadratic map: z −→ j

2
z2, with j2 = 1, from a model of the Schwarzschild type.

The pair (W, u) is now
(
R2

j., xy
)
and the local expression of the metric is

g =
e

β+xy
A

2β

(
x2 − y2

) (
dy2 − dx2

)
+ β2

[
dϑ2 + F (ϑ) dϕ2

]
,

where F , depending on the Gauss curvature K of the Killing leaves, is one of the
functions sin2 ϑ, sinh2 ϑ, − cosh2 ϑ. The metric is degenerate along the lines x = ±y.
The Einstein manifolds so obtained consist of four regions soldered along the degeneracy
lines and could be interpreted [13] as ”parallel” universes generated by ”parallel” stars.
By repeating this procedure one discover foam-like universes.

A detailed discussion of these and other new solutions will appear in a forthcoming
paper.

G.S. and G.V. wish to thank G. Bimonte, B. Dubrovin, and G. Marmo for their
interest and remarks.
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