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Classical and higher symmetries of control systems

V. N. CHETVERIKOV, A. N. KANATNIKOV, A. P. KRISHCHENKO

Abstract. We study classical and higher infinitesimal symmetries of control systems.
Defining equations for classical external symmetries are obtained in the general and
affine cases. For computing higher symmetries we suggest a simple procedure involving
algebraic operations and differentiation but not integration. Relations between clas-
sical symmetries and first integrals of control systems are established. An example is
considered to illustrate our methods.

1. Introduction

Consider a nonlinear control system

ẋ = f(t, x, u),(1)

where x = (x1, . . . , xn) ∈ R
n is the state, u = (u1, . . . , um) ∈ R

m is the control input,
f : E = R

1×R
n×R

m → R
n is a smooth (C∞) function, ẋ ≡ dx/dt. Let rank(∂f/∂u) =

m. Following (Aranda–Bricaire et al, 1995) and (Fliess et al, 1995) we regard system (1)
as an underdetermined system of ordinary differential equations. This viewpoint allows
to consider system (1) in the framework of geometrical theory of differential equations
(see Krasil’shchik et al, 1999).

In this framework, system (1) is naturally related to two manifolds (E and E∞ below)
with two distributions. The first manifold (E) is finite-dimensional, the second one (E∞)
is infinite-dimensional. Both distributions are called the Cartan ones. A map from one
of these manifolds to itself is called a symmetry of system (1) if the map preserves the
corresponding Cartan distribution. In the first case (E), a symmetry is called classical.
In the case E∞, it is called higher. Any classical symmetry generates a higher symmetry.
Any symmetry of system (1) takes each solution of (1) to a solution again.

An infinitesimal version of the above construction leads to the concepts of infinites-
imal classical and higher symmetries. If two control systems are static feedback equiv-
alent, then the Lie algebras of their classical infinitesimal symmetries are isomorphic.
Similarly, an equivalence by endogenous dynamic feedback generates an isomorphism
of the corresponding Lie algebras of higher infinitesimal symmetries.

This paper is devoted to methods for calculation of classical and higher infinitesimal
symmetries of control systems. To find classical infinitesimal symmetries, one needs to
solve some system of partial differential equations. We give this system in the general
(see Theorems 1 and 2) and affine (see Theorems 5 and 2) cases. Our method for
calculation of higher infinitesimal symmetries is based on the infinitesimal Brunovsky
form introduced in (Aranda–Bricaire et al, 1995). We assign a higher symmetry to an
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arbitrary collection of m functions and a classical symmetry of some system of ordinary
differential equations (see Theorem 7 for details).

The results exposed in this paper were applied by the authors to the decomposi-
tion problem for control systems (Kanatnikov et al, 1994) and the flatness problem
(Chetverikov, 2001).

The paper is organized as follows. Classical symmetries are studied in Sections 2—5.
The method for calculation of higher infinitesimal symmetries is presented in Sections
6—8. In Sections 2 and 6 we give the two geometric interpretations of control systems (E
and E∞ respectively). The conditions for classical infinitesimal symmetries are obtained
in Section 3 in the general case and in Section 5 in the affine case. A relationship between
classical symmetries and first integrals of control systems is discussed in Section 4. In
Section 7 a construction introduced in (Aranda–Bricaire et al, 1995) is generalized to the
nonautonomous case. This generalization is used in Section 8, where higher infinitesimal
symmetries of control systems are described. Finally, Section 9 contains an example of
calculation of classical and higher infinitesimal symmetries.

2. The first geometric interpretation

System (1) determines the trivial bundle π : E → R
1, π(t, x, u) = t. Consider the

1-jet space J1π of this bundle (see Krasil’shchik et al, 1999). Let (t, x, u, p, q) be local
coordinates on J1π with p = (p1, . . . , pn) corresponding to ẋ(t), q = (q1, . . . , qm) cor-
responding to u̇(t). System (1) can be written as p = f(t, x, u). Therefore it can be
interpreted as the submanifold

E =
{
(t, x, u, p, q) ∈ J1π| p − f(t, x, u) = 0

}
of codimension n in J1π. Each section (x(t), u(t)) of the bundle π has a prolongation
onto J1π as a curve lxu of the form t �→ (t, x(t), u(t), ẋ(t), u̇(t)). A section (x(t), u(t)) is
a solution of (1) if and only if lxu ⊂ E.

The Cartan distribution on J1π is determined by the 1-forms ωi = dxi − pidt, τj =
duj − qjdt, i = 1, 2, . . . , n, j = 1, 2, . . . , m. The curves lxu are integral curves of the Car-
tan distribution. Let π1 : J1π → R

1 be the natural projection, i. e., π1(t, x, u, p, q) = t.
It is known (see Krasil’shchik et al, 1999) that if a one–dimensional integral submanifold
of the Cartan distribution is locally maximal, then it locally coincides with a curve lxu

(except for singular points of the map π1 : lxu → R
1). These manifolds are called R-

manifolds. We shall call R-manifolds contained in E generalized solutions of system (1).
The restriction of the Cartan distribution on J1π to E is called the Cartan distribution
on E. Generalized solutions are locally maximal integral curves of this distribution.

A diffeomorphism from J1π to itself is called a Lie transformation if it preserves the
Cartan distribution. Lie transformations of J1π send any R-manifold to an R-manifold
again. If a Lie transformation translates the submanifold E into itself (and consequently
any generalized solution to a generalized solution again), then it is called a (classical
external) symmetry of (1). It can be proved (see Krasil’shchik et al, 1999) that in the
case n + m > 1 each Lie transformation is lifted from J0π = E.

One stated above is transferred on one–parameter groups of Lie transformations.
These groups are connected with their infinitesimal generators — vector fields named
Lie fields. In our case, when Lie transformations are lifted from the manifold E, Lie
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fields are also obtained as lifting of vector fields on E. Namely if a vector field X on E
has the form

X = ξ(t, x, u)
∂

∂t
+

n∑
i=1

ηi(t, x, u)
∂

∂xi

+
m∑

j=1

ϑj(t, x, u)
∂

∂uj

,(2)

then its lifting X(1) on J1π is the vector field

X(1) = X +

n∑
i=1

ζi(t, x, u, p, q)
∂

∂pi
+

m∑
j=1

εj(t, x, u, p, q)
∂

∂qj
,(3)

where ζ = (ζ1, . . . , ζn) and ε = (ε1, . . . , εm) are obtained by formulas

ζ = Dη − pDξ, ε = Dϑ − qDξ,(4)

with η = (η1, . . . , ηn), ϑ = (ϑ1, . . . , ϑm), and

D =
∂

∂t
+

n∑
i=1

pi
∂

∂xi
+

m∑
j=1

qj
∂

∂uj

being the total derivative with respect to t on J1π (see Krasil’shchik et al, 1999).
If Lie field (3) is tangent to the submanifold E, then Lie transformations of its one–

parameter group translates E into itself. In this case the vector field is called an (in-
finitesimal classical external) symmetry of system (1). The condition necessary and
sufficient to field (3) being tangent to E is the relation

X(1)(pi − fi)|E = 0, i = 1, 2, . . . , n,(5)

where (f1, . . . , fn) = f .

3. Defining equations for classical symmetries

Using (2)–(4) relation (5) in coordinate terms reduces to

ξ
∂f

∂t
+

∂f

∂x
η +

∂f

∂u
ϑ − ∂η

∂t
− ∂η

∂x
f − ∂η

∂u
q + f

(
∂ξ

∂t
+

∂ξ

∂x
f +

∂ξ

∂u
q

)
= 0,(6)

the latter being valid for all (t, x, u, q). System (6) is linear with respect to q and
therefore decomposes into two subsystems

ξ
∂f

∂t
+

∂f

∂x
η +

∂f

∂u
ϑ − ∂η

∂t
− ∂η

∂x
f + f

∂ξ

∂t
+ f

∂ξ

∂x
f = 0,(7)

∂η

∂u
− f

∂ξ

∂u
= 0.(8)

We shall call equations (7)–(8) the defining equations for classical infinitesimal sym-
metries of system (1).

Any symmetry (2)–(3) of a control system is uniquely determined by its components
ξ, η1, . . . , ηn (see (4) and (10)). Let

H = ξ
∂

∂t
+

n∑
i=1

ηi
∂

∂xi
, F =

∂

∂t
+

n∑
i=1

fi
∂

∂xi
.
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Denote by Fu the distribution generated by fields Fj = [∂/∂uj, F ], j = 1, . . . , m. Note
that dimFu = rank(∂f/∂u) = m.

Theorem 1. (Kanatnikov et al, 1994) System (1) possesses a symmetry X of the form

X = H +
m∑

j=1

ϑj(t, x, u)
∂

∂uj
(9)

if and only if the vector field [F, H] − F (ξ)F lies in the distribution Fu and system (8)
holds. In this case, the components ϑ1, . . . , ϑm of X are uniquely determined by the
condition

[F, H] − F (ξ)F =

m∑
j=1

ϑjFj.(10)

Theorem 2. (Kanatnikov et al, 1994) If a vector field X (2) is a symmetry of sys-
tem (1) and rank(∂f/∂u) ≥ 2 everywhere on E, then the components ξ, η1, . . . , ηn of X
are independent of u and system (8) is trivial.

4. First integrals of control systems and symmetries

A first integral of system (1) is a function α(t, x, u) which is constant along any
solution (x(t), u(t)) of the system. In other words, a first integral is a function α with
its time–derivative α̇(t, x, u)|(1) according to system (1) being equal to 0. Hence

∂α

∂uj
= 0, j = 1, . . . , m,

and

F (α) =
∂α

∂t
+

n∑
i=1

fi
∂α

∂xi
= 0.

First integrals of system (1) form a ring under the standard addition and multiplication.

Theorem 3. (Kanatnikov et al, 1994) If a vector field X is a symmetry of system (1)
then for each first integral α the field αX is also a symmetry of system (1). The set of
all symmetries of system (1) is a module over the ring of first integrals.

Theorem 4. (Kanatnikov et al, 1994) The family of all symmetries X of system (1)
of the form (2) with ξ being a first integral, is involutive.

5. Affine systems

Affine control system

ẋ = a(t, x) +
m∑

j=1

bj(t, x)uj,(11)

where a, b1, . . . , bm : R
1×R

n → R
n are smooth functions, corresponds uniquely to vec-

tor fields

A =
∂

∂t
+

n∑
i=1

ai
∂

∂xi
, Bj =

n∑
i=1

bij
∂

∂xi
, j = 1, . . . , m,
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with (a1, . . . , an) = a(t, x), (b1j, . . . , bnj) = bj(t, x). The field F has the form

F = A +
m∑

j=1

ujBj .

Denote by B the distribution generated by fields B1, . . . , Bm.

Theorem 5. (Kanatnikov et al, 1994) Let the components ξ, η1, . . . , ηn of a vector field
H be independent of u. A vector field X of the form (9) is a symmetry of system (11)
if and only if the vector fields

[A, H] − A(ξ)A, [Bk, H] − Bk(ξ)A(12)

for k = 1, . . . , m lie in the distribution B. The components ϑ1, . . . , ϑm of X are uniquely
determined by the conditions

ϑj = ϑ(0)
j (t, x) +

m∑
k=1

ϑ(1)
jk (t, x)uk − F (ξ)uj, j = 1, . . . , m,

[A, H] − A(ξ)A =
m∑

j=1

ϑ(0)
j Bj,(13)

[Bk, H] − Bk(ξ)A =

m∑
j=1

ϑ
(1)
jk Bj, k = 1, . . . , m.

6. The second geometric interpretation

For system (1), the diffiety (or infinitely prolonged system) is an infinite-dimensional
manifold E∞ with coordinates

(t, x, u(0), u(1), . . . , u(l), . . . ),(14)

where u(l) denotes the vector variable corresponding to the lth order derivative of u
with respect to t. The Cartan distribution on E∞ is one-dimensional and is determined
by the vector field

D =
∂

∂t
+ f(t, x, u(0))

∂

∂x
+ u(1) ∂

∂u(0)
+ · · · + u(s+1) ∂

∂u(s)
+ . . . ,(15)

which is called the total derivative with respect to t on E∞. The Lie derivative along
D is simply the time–derivative according to system (1). We denote by Dω the Lie
derivative of the form ω along D.

A smooth function on E∞ is a function smoothly depending on a finite (but arbitrary)
number of coordinates (14). By F(E) denote the R–algebra of smooth functions on E∞.
Differential forms on E∞ are finite sums, whereas vector fields may be given by infinite
sums with coefficients in F(E) (see, for example, (15)).

A vector field of the form hD, h ∈ F(E), is called horizontal. A vector field on E∞

without the term ∂/∂t is called vertical. A vertical field X on E∞ is called a higher
(infinitesimal) symmetry of system (1) if [X, D] = 0.

A motivation of the last definition is the following. A vector field on E∞ is called
integrable if it possess a one–parameter group of diffeomorphisms (a flow). Since E∞ is
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an infinite-dimensional manifold, vector fields on E∞ are not usually integrable. Never-
theless let us first consider an integrable field Y . Suppose all diffeomorphisms of its flow
take each solution of (1) to a solution again. Since solutions of (1) are integral curves
of the field D, we have

[Y, D] = aD(16)

for some function a on E∞. Consider now an arbitrary (may be nonintegrable) vector
field Y on E∞ satisfying (16). It is uniquely represented as the sum of a vertical field X
and a horizontal field hD for some function h on E∞, i. e., Y = X +hD. Condition (16)
means that [X, D] = 0 and h is an arbitrary function on E∞. Thus the set of all fields
satisfying (16) is split in equivalence classes and each class contains a higher symmetry.

7. Infinitesimal Brunovský form for nonautonomous systems

Here we remind some concepts from (Aranda–Bricaire et al, 1995) and simultaneously
generalize them to the nonautonomous case.

Let C1Λ(E) be the F(E)–module of differential 1–forms on E∞ belonging to the codis-
tribution corresponding to the Cartan distribution, i. e.,

ω ∈ C1Λ(E) ⇔ ω(D) = 0.

Define the operator dC : F(E) −→ C1Λ(E) by the rule f �→ df − D(f)dt. The operator
dC possesses many properties of the differential d. In particular,

dCf(t, x, u, . . . ) =
∑

i

∂f

∂xi
dCxi +

∑
j

∂f

∂uj
dCuj + . . . .

However dCf = 0 iff f is a function of t.
Obviously, in coordinate system (14) the module C1Λ(E) is generated by forms

dCx1, . . . , dCxn, dCu
(0)
1 , . . . , dCu

(0)
m , . . . , dCu

(l)
1 , . . . , dCu

(l)
m , . . . .

Denote by H0 the F(E)–submodule of C1Λ(E) generated by forms dCx1, . . . , dCxn. By
definition, put

Hk+1 = {ω ∈ Hk|Dω ∈ Hk}, k ≥ 0.

The dimension of some submodule H ⊂ C1Λ(E) at a point θ ∈ E∞ is the dimension
of the space of covectors {ωθ|ω ∈ H}. A point θ ∈ E∞ is called Brunovský–regular (or
shortly B–regular) if in a neighborhood of θ one has rank(∂f/∂u) = m and for any
k > 0 the dimensions of Hk and Hk + D(Hk) are constant.

Note that the dimension of Hk at any point is finite and Hk+1 ⊂ Hk. It follows that in
a neighborhood of a B–regular point there exists an integer k∗ such that Hk+1 = Hk =
Hk∗ for k ≥ k∗. By ρ denote the dimension of Hk∗ in a neighborhood of a B–regular
point under consideration.

Remark 1. In the autonomous case we can consider only functions, differential forms,
and vector fields that are independent of t. In this case, dCf = df , E∞ is a manifold
with coordinates (x, u(0), . . . , u(l), . . . ) (without t), C1Λ(E) is identified with Λ1(E∞).
Also, all concepts and facts from this section are transformed to concepts and facts
from (Aranda–Bricaire et al, 1995).
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Theorem 6. In a neighborhood of a B–regular point for system (1) there exist ρ func-
tions χ1, . . . , χρ of t, x1, . . . , xn and m forms ω1, . . . , ωm ∈ H0 such that
(1) {dCχ1, . . . , dCχρ} is a basis of the module Hk∗;
(2) the functions χ1, . . . , χρ and their total derivatives with respect to t satisfy a system
of the form

{χ̇i = γi(t, χ1, . . . , χρ), i = 1, . . . , ρ;(17)

(3) {dCχ1, . . . , dCχρ} ∪ {Dj(ωk)|k = 1, . . . , m, j ≥ 0} is a basis of the module C1Λ(E).

The proof is similar to that of the corresponding theorem from (Aranda–Bricaire et
al, 1995). Moreover, the infinitesimal Brunovský form given in the same work for the
autonomous case can be generalized to the nonautonomous case.

8. Higher symmetries of control systems

By Theorem 6, it follows that in a neighborhood of a B–regular point there exist
functions {gl,i, hl,k,j} on E∞ such that

dCxl =

ρ∑
i=1

gl,idCχi +
m∑

k=1

rk∑
j=0

hl,k,jD
jωk(18)

for any l = 1, . . . , n + m and some r1, . . . , rm, where xl = ul−n for l = n + 1, . . . , n + m.

Theorem 7. (Chetverikov, 1999) In a neighborhood of a B–regular point any higher
symmetry of system (1) has the form

�ϕ =
n∑

i=1

ϕi
∂

∂xi
+

m∑
i=1

∞∑
j=0

Djϕi+n
∂

∂u
(j)
i

,(19)

where

ϕl =

ρ∑
i=1

gl,iai +
m∑

k=1

rk∑
j=0

hl,k,jD
jψk,(20)

for l = 1, . . . , n + m, ψ1, . . . , ψm are arbitrary functions on E∞, a1, . . . , aρ are arbitrary
functions of t, χ1, . . . , χρ such that

∂ai

∂t
+

ρ∑
α=1

γα
∂ai

∂χα
=

ρ∑
α=1

aα
∂γi

∂χα
,(21)

for i = 1, . . . , ρ.

The vector function ϕ = (ϕ1, . . . , ϕn+m) is called the generating function of symme-
try (19).

Remark 2. The vector field
ρ∑

α=1

aα
∂

∂χα
(22)
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is a symmetry of the system of ordinary differential equations (17). Condition (21)
means that the commutator of the fields (22) and

∂

∂t
+

ρ∑
α=1

γα
∂

∂χα

vanishes.

9. Example

Find classical and higher symmetries of the control system


ẋ1 = tx2
1

ẋ2 = x4u1

ẋ3 = u1

ẋ4 = u2.

(23)

In the case of classical symmetries, we use results of Section 5. We have n = 4, m = 2,
and

A =
∂

∂t
+ tx2

1

∂

∂x1
.

The distribution B is generated by fields

B1 = x4
∂

∂x2

+
∂

∂x3

, B2 =
∂

∂x4

.

The corresponding codistribution is generated by forms

α1 = dt, α2 = dx1, α3 = dx2 − x4dx3.

By Theorem 2, it follows that the components ξ, η1, . . . , η4 of a desired symmetry X are
independent of u1 and u2. By Theorem 5, the defining equations for symmetries can be
expressed as

αi(Y ) = 0(24)

for any field Y of the form (12) and i = 1, 2, 3. Since equalities (24) are trivial in the
case i = 1, we obtain 6 differential equations for the components ξ, ηi. Introducing the
functions

z = η1 − tx2
1ξ, v = η2 − x4η3,(25)

these equations can be written as

A(z) = 2tx1z, B1(z) = 0, B2(z) = 0,(26)

A(v) = 0, B1(v) = η4, B2(v) = η3.(27)

Solving the system of equations (26), we get

z = a
(
t2 +

2

x1

)
x2

1,

where a is an arbitrary smooth function of one variable. From the first equation in (27)
it follows that

v = b
(
t2 +

2

x1
, x2, x3, x4

)
,
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where b is an arbitrary function of four variable. Using the second and the third equa-
tions in (27), we get expressions for η3 and η4. Finally, using (25), we find η1 and η2.

Thus any infinitesimal classical symmetry of system (23) has the form

X = ξ
∂

∂t
+

4∑
i=1

ηi(t, x, u)
∂

∂xi
+

2∑
j=1

ϑj(t, x, u)
∂

∂uj

and is uniquely determined by functions a, b, and ξ. The component ξ is an arbitrary
function of t, x1, . . . , x4. Besides,

η1 = tx2
1ξ + a

(
t2 +

2

x1

)
x2

1, η2 = v + x4
∂v

∂x4
, η3 =

∂v

∂x4
, η4 = x4

∂v

∂x2
+

∂v

∂x3
.

From (10) it follows that

ϑ1 = F (η3) − F (ξ)u1, ϑ2 = F (η4) − F (ξ)u2,

where F = A + u1B1 + u2B2.
To obtain higher symmetries of system (23), we use results of Section 7 and 8. In our

case, any element of H0 has the form

ω =
4∑

i=1

fidCxi, fi ∈ F(E).

We get

Dω =
4∑

i=1

DfidCxi + f12tx1dCx1 + f2(x4dCu1 + u1dCx4) + f3dCu1 + f4dCu2.(28)

If Dω ∈ H0, then the coefficients of dCu1 and dCu2 in (28) vanish. Whence

f2x4 + f3 = 0, f4 = 0.

Therefore the module H1 is generated by dCx1 and dCx2 − x4dCx3.
In the same way, the condition

D
(
f1dCx1 + f2 (dCx2 − x4dCx3)

)
∈ H1,

means that f2 = 0 and dCx1 ∈ H2. We see that k∗ = 2 and dCx1 ∈ Hk∗ . Thus ρ = 1, χ1 =
x1, system (17) consists of the first equation of system (23), and ω1 = dCx2 − x4dCx3 ∈
H1. The 1–form ω2 should be chosen such that

{dCχ1, ω1, Dω1, ω2}
is a basis of the module H0. We put ω2 = dCx3. In this case, the set of B–regular points
is {u1 	= 0} and we obtain

dCx1 = dCχ1, dCx2 = ω1 + x4ω2, dCx3 = ω2,

dCx4 =
1

u1
Dω1 +

u2

u1
ω2, dCu1 = Dω2, dCu2 = D (dCx4) .

Condition (21) has the form

∂a

∂t
+ tx2

1

∂a

∂x1
= 2tx1a.
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Solving the last equation and using Theorem 7, we get generating functions of all higher
symmetries:

ϕ1 = x2
1a

(
t2 +

2

x1

)
, ϕ2 = ψ1 + x4ψ2, ϕ3 = ψ2,

ϕ4 =
1

u1
Dψ1 +

u2

u1
ψ2, ϕ5 = Dψ2, ϕ6 = Dϕ4,

where a is an arbitrary function of one variable, ψ1, ψ2 are arbitrary functions on E∞.
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