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Abstract. A general geometric method for studying mechanical
systems whose phase space may undergo an abrupt reduction is
proposed. This method is based on a variant of the Transition
Principle, proposed for the first time in [3] for elastic collisions.

1. Introduction

Mechanical phenomena involving discontinuities of motion, such as
impacts or refractions, are traditionally considered to fall outside the
realm of analytical mechanics, or at least to be a very marginal part
of it. In fact, usually, most of the modern books on classical me-
chanics do not contain even a minimal reference to this subject. The
usual approach to such problems consists in making some reasonable
assumptions on the physical nature of impulsive forces and deducing
from them the ”conservation laws” necessary to calculate the veloc-
ity jumps after the impact. In this kind of approach the symplectic
structure of the phase space is not taken into consideration, and con-
sequently the powerful techniques of Hamiltonian formalism cannot be
applied. Furthermore, such an approach works only when a sufficient
number of conservation laws for the considered system is known, which
is not always the case.
A completely different method not presenting such drawbacks, based
on the so-called Transition Principle, was proposed for the first time in
[3]. This is a prescription on the behaviour of dynamical systems when
a drastic change in one or more of the basic ingredients composing the
Hamiltonian formalism occurs. For instance, it could be a discontinuity
of the Hamiltonian, a reduction of the phase or configuration space,
”switching on (off)” of some kind of constraints, etc. Things of this
kind occur in the mathematical description of such phenomena as:

1. Reflection and refraction processes for light rays and electromag-
netic waves at the separation surface between two different media

2. Collisions between rigid bodies
3. Explosions or disintegration processes

etc.

It is remarkable that the transition principle can be applied to such a
wide range of different physical situations. For instance, reflection and
refraction phenomena are described by means of Hamiltonian functions
which are discontinuous along a hypersurface Γ of the phase space. In
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this case (see [3], [6]) the transition principle prescribes how a moving
phase point reaching Γ can leave it. Thus, the degrees of freedom of
the system do not change after an impact with Γ.
A different situation occurs if one considers non elastic collisions when
the dimension of the phase space changes abruptly after the impact.
This happens, for instance, in totally inelastic collisions between rigid
bodies, or in the sudden connection between two vehicles (think of the
coupling of two spacecrafts). In this case the system is forced to move
along a submanifold of the original phase space.
The version of the transition principle, allowing one to describe the
latter situation is given below. It is worth stressing that, though the
principle needs slightly different formulations depending on the physical
context to which it is applied, its philosophy is quite simple and natural.
Namely, it states that whenever a Hamiltonian system reaches a critical
situation, it escapes from it by jumping along a suitable characteristic
leaf.

2. The Transition Principle for systems with reducing

phase space.

In order to make the geometrical ideas more transparent, we will start
by describing the transition principle at a general symplectic level.
Then, we will pass to the configuration level, i.e. to the case when
the considered symplectic manifold is the cotangent bundle of the con-
figuration space of a mechanical system. This is the most important
case for applications, and we will show how inelastic collisions can be
included in it.

2.1 Symplectic scheme. First, we need the following basic definition.
Let (Φ2n,Ω) be a symplectic manifold, and let Pm ⊂ Φ be an m-
dimensional submanifold in it, m ≤ 2n. Assume the restriction Ω|P of
the canonical 2-form on P to be of a constant rank 2k ≤ m. Then the
map

x �−→ Ker (Ω|P )
x
,(1)

with Ker (Ω|P )
x
= {ξ ∈ Tx (P )| Ωx (ξ, η) = 0, ∀η ∈ Tx (P )}, is an (m− 2k)-

dimensional integrable distribution on P . Hence, a foliation F of P
corresponds to (1). The leaves of F are called characteristics of P .

Definition. A symplectic reduction of P is any submanifold R ⊂ P
transversal to the characteristic foliation and intersecting all its leaves.

Note that Ω|R is non-degenerate, so that Φ̃ = (R, Ω|R) is a symplectic
manifold.
Remark. Note that the term ”symplectic reduction” in the sense of

the above definition has a slightly different meaning with respect to the
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commonly used one, which refers to the canonical symplectic structure
on the quotient manifold P/F (if the latter exists). Obviously, the two
meanings are locally equivalent. But a reduction in our sense may exist
even if P/F does not globally exist.

The general symplectic scheme is now described as follows. Let Γ2n−1 ⊂
Φ be a hypersurface, and suppose that on it is given an m-dimensional
foliation F = {Pm

α }α∈A, with A being a (2n − 1−m)-dimensional pa-
rameter. We assume that the restriction Ωα of Ω to any leaf Pα has a
constant rank 2k and that k does not depend on α. Finally, suppose
that for any α ∈ A a symplectic reduction Rα ⊂ Pα is chosen in such
a way that Rα depends (locally) smoothly on α.

Remark. In the above scheme one can substitute Φ with a closed
regular domain W ⊂ Φ and Γ with ∂W .

Now, consider a Hamiltonian system on Φ, with the Hamiltonian H ∈
C∞ (Φ). Let XH ∈ D (Φ) be the corresponding Hamiltonian vector
field, i.e.

XH �Ω = −dH

Suppose that a trajectory of XH reaches Γ at a point x ∈ Pα and
that after this ”impact” the system is constrained to move along the
corresponding symplectic reduction Rα under the control of the Hamil-
tonian H = Hα = H|Rα

. The problem to be solved is: from which
point x∗ ∈ Rα does the reduced system begin its motion along Rα? In
other words, how can one determine the jump in the passage from the
original Hamiltonian system to the reduced one? The answer is given
by the transition principle.

Transition Principle. Suppose that a trajectory γ of XH , H ∈
C∞ (Φ), reaches the critical hypersurface Γ at a point x ∈ Pα, and let
βx be the characteristic leaf of Pα passing through x. Then γ can be
prolonged starting from any point x∗ ∈ Rα ∩ βx as a trajectory of the
reduced Hamiltonian system XH , with H = H|Rα

∈ C∞ (Rα).

In the scheme above there are three basic ”ingredients”, namely: the
critical hypersurface Γ, the foliation F and the corresponding family
{Pα} of symplectic reductions. Such data must be extracted from the
physical context to which the transition principle is applied. As we
now shall see, in the case of inelastic collisions the first two data emerge
naturally from the geometry of the configuration space.

2.2 Configuration scheme. Let Φ = T ∗ (M) with M being the
configuration space of a mechanical system, dimM = n. Then the
symplectic structure on Φ is given by Ω = dρ with ρ ∈ Λ1 (Φ) being
the Liouville form.
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Denote by π : T ∗ (M) → M the canonical projection. Given a sub-
manifold K ⊂ M , dimK = k < n, let

T ∗
K (M)

def
= π−1 (K) = ∪

q∈K
T ∗

q (M)

Denote by ΩK the restriction of Ω to T ∗
K (M). Then ΩK has constant

rank 2k and Kerx ΩK ⊂ Tx

(
T ∗

π(x) (M)
)

for any x ∈ T ∗
K (M). Namely,

it is easy to see that

Kerx ΩK = αx

(
AnnTπ(x) (K)

)
,

with AnnTπ(x) (K) =
{
φ ∈ T ∗

π(x) (M)
∣∣∣ φ

(
Tπ(x) (K)

)
= 0

}
being the

annihilator of Tπ(x) (K) and

αx : T ∗
π(x) (M) → Tx

(
T ∗

π(x) (M)
)
⊂ Tx (Φ)

being the natural identification of the vector space T ∗
π(x) (M) with

its tangent space at point x. Therefore, the characteristic leaves of
T ∗

K (M) are the affine subspaces of fibres T ∗
q (M) which are parallel to

AnnTq (K) , q ∈ K.
In terms of local coordinates the above situation is described as follows.
Let K be locally described by equations

fi (q) = 0, i = 1, ..., n− k ,(2)

where q = (q1, ..., qn) is a local chart on M and the functions fi ∈
C∞ (M) are supposed to be such that the differentials dqf1, ..., dqfn−k

are linearly independent at any point q ∈ K. These differentials span
AnnTq (K). So, denoting with (q, p) the natural coordinates on Φ =
T ∗ (M), the characteristic leaf passing through a point x ≡ (q, p) ∈
T ∗

K (M) is described by parametric equations

q = q(3)

p = p + JT λ,

with J = (∂f/∂q)q=q = ‖∂fi/∂qj‖q=q being the (n− k) × n Jacobian

matrix associated with equations (2) and λ = (λ1, ..., λn−k)
T ∈ Rn−k

being the column vector of affine parameters.

Now, let N ⊂ M be a hypersurface (also, one can assume, as in the
general symplectic case, that M has a boundary and take N = ∂M).
Then Γ = T ∗

N (M) is a hypersurface of Φ. Suppose that on N is given

a regular k-dimensional foliation F̃ = {Sα}α∈A. Then the family F =
{Pα}α∈A, with Pα = T ∗

Sα
(M), is a regular foliation of Γ of dimension

m = n + k.
Suppose that at an instant t the dynamical system reaches N at a point
q ∈ Sα and that afterwards the configuration space abruptly reduces
to Sα. Then, at the same instant the phase space reduces to T ∗ (Sα)
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and, as before, the problem is to find the phase p∗ of the system ”im-
mediately after” the impact with N . The transition principle answers
this question, provided a family {Rα} of symplectic reductions for the
leaves of F is specified such that any Rα is naturally identified with the
reduced phase space T ∗ (Sα). Below it will be shown how such a nat-
ural reduction is associated with Hamiltonian systems of mechanical
type. But, before, we explain in what sense inelastic collisions, as well
as many other impulsive phenomena involving an abrupt reduction of
the degrees of freedom, are included in our geometrical scheme.

Main example (totally inelastic collisions). To fix the ideas, let
us consider the case of two rigid bodies C1, C2. Suppose that at a
certain instant they collide in a totally inelastic way, i.e. that after
the collision they bind together so as to form a unique rigid body
C = C1 ∪ C2. Denote by M the n-dimensional, n = 12, configura-
tion space of the system before the collision: it is an open domain of
(R3 × SO (3)) × (R3 × SO (3)). Let N = ∂M be the boundary of M .
Its points correspond to the states of the system in which the two bodies
touch each other. Obvioususly, N is invariant under the natural effec-
tive action R of the group of proper isometries of the Euclidean space

on M . Thus, the orbits of R in N form a regular foliation F̃ = {Sα}
of N , whose leaves are diffeomorphic to R3 × SO (3). So, in this case
k = 6.
Now, suppose F̃ to be reducible. Then, the quotient manifold N/F̃
may be described in the following way. Consider the manifold Ã of
glueings of ∂C1 and ∂C2. By a glueing we mean a triple (P1, P2, φ)
with Pi ∈ ∂Ci and φ : TP1 (∂C1) → TP2 (∂C2) being an orientation-

preserving isometry. There is a natural fibration µ : Ã → ∂C1 × ∂C2,
(P1, P2, φ) �→ (P1, P2), whose standard fibre is S1. It is easy to see that
the manifold of all rigid bodies that may be formed by glueing together
C1 and C2 is a closed domain A in Ã whose boundary generally has
some singularities. Obviously, A coincides with N/F̃ and may be taken
as the parameter space for the foliation:

F̃ = {Sα}α∈A

In terms of local coordinates, A is described as follows. Let (x1,x2) and
(y1, y2) be local coordinates on ∂C1 and ∂C2, respectively. Denote by
gi be the natural Riemannian metric on ∂Ci. Then a local chart on A
is given by (x, y, B) with B being the 2 × 2 matrix which describes φ
with respect to the bases (∂/∂x1, ∂/∂x2), (∂/∂y1, ∂/∂y2). So, B must
satisfy the condition

BtG2 (y)B = G1 (x) ,

with Bt being the transposed matrix of B and G1 (x) , G2 (y) being the
matrices of g1, g2, respectively.
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Clearly, the above discussion can be repeated word by word for other,
more general kinds of ”collisions”. Let us consider the following two
examples
Example 1. Suppose that C1 and C2 collide at an instant t, and
let α ≡ (P1, P2, φ) be the corresponding glueing. Suppose that ”im-
mediately after” t the system is subjected to the following holonomic
constraints: i) P1 (t) ≡ P2 (t), ii) TP1(t) (∂C1) ≡ TP2(t) (∂C2) ∀t > t.
In other words, after the impact the two bodies are compelled to re-
main in contact and rotate independently from each other around the
axis perpendicular to the common tangent plane. In this case the
foliation on N is F̂ =

{
Σ(P1,P2) × (R3 × SO (3))

}
(P1,P2)∈∂C1×∂C2

with

Σ(P1,P2) = {(P1, P2, φ) ∈ A}. In this case the foliation is of dimension
k = 7.
Example 2. Suppose that after the impact C1 and C2 are constrained
to slide over each other without friction. This situation corresponds to
the ”trivial foliation” {N} of N .
In both these cases the only difference with the main example is the
choice of the foliation on N . So, our general symplectic scheme includes
practically all the cases when some holonomic constraints cause an
abrupt reduction of the configuration space of the system.

2.3 Choice of the reduction. It remains to fix in any leaf Pα of
F a symplectic reduction Rα. As we observed above, since such a
reduction must be the phase space of the system after the impact,
the only reasonable choice is Rα = T ∗ (Sα). First of all, note that
for a given submanifold W ⊂ M there exists no natural immersion
T ∗ (W ) ⊂ T ∗ (M). On the other hand, such an embedding is associated
naturally with a (pseudo-)Riemannian metrics G on M . Namely, we
define

iG : T ∗ (W ) → T ∗ (M)

by putting

iG|T ∗
q (W ) = σ∗

q : T ∗
q (W ) → T ∗

q (M) ⊂ T ∗ (M) ,

with σ∗
q being the dual to the orthogonal (with respect to Gq) projection

σq : Tq (M) → Tq (W ). Now, a Hamiltonian function H of a mechanical
type is of the form

H (q, p) = T̂ (q, p) + V (q) ,(4)

where T̂ ∈ C∞ (T ∗ (M)) is the kinetic energy of the system expressed
in terms of momenta, while V ∈ C∞ (M) is the potential energy. It is
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easy to see that, if

T (q, v) =

n∑
i,j=1

gij (q) vivj = vtGv,(5)

with G (q) = Gq = ‖gij (q)‖ Riemannian metric on M , is the usual
expression of the kinetic energy in terms of velocities, then

T̂ (q, p) =
1

4
ptG−1

q p

So, in the case of a Hamiltonian of mechanical type, it is natural to
use the corresponding ”kinetic” tensor T to embed T ∗ (W ) in T ∗ (M).
It is worth noticing that the image of T ∗ (W ) in such an embedding
coincides with L (T (W )), where

L : T (M) → T ∗ (M)

is the Legendre map associated with the Lagrangian function

L (q, v) = T (q, v)− V (q)

describing the system in the tangent bundle. In terms of local coordi-
nates L is expressed by formulae

q = q(6)

p = 2Gv

For any submanifold W ⊂ M , put T̃ ∗ (W ) = iG (T ∗ (W )). Denote
by q ∈ Sα ⊂ N an impact configuration of the system. Let p be
the impulse ”immediately before” the collision. In general, the point
x ≡ (q, p) ∈ Pα = T ∗

Sα
(M) does not belong to Rα = T̃ ∗ (Sα), whereas

the impulse x∗ ≡ (q, p∗) ”immediately after” the impact must belong
to it. So, the problem is to calculate p∗ as a function of q and p.
The solution of this problem is given by the transition principle, which
is specialized in the case of totally inelastic collisions as follows.

The transition principle for totally inelastic collisions. Let
the system of the two bodies C1, C2 be described by the Hamiltonian
function (4). Suppose C1 and C2 collide. Let q ∈ Sα ⊂ N be the cor-
responding impact configuration, and let p be the impulse immediately
before the impact. Then, after the impact the configuration space re-
duces to Sα and the system is described by the reduced Hamiltonian H

= H|T̃ ∗(Sα) = T̂
∣∣∣
T̃ ∗(Sα)

+π∗ (
V |Sα

)
. Further, the initial impulse for the

reduced system is p∗ = T̃ ∗
q (Sα) ∩ β, with β ⊂ T ∗

q (M) being the affine
subspace passing through x = (q, p) and parallel to Ker (ΩK)x.

In terms of local coordinates the expression of p∗ is the following. Let
Sα be described by equations (2). Denote, as before, with G = ‖gij (q)‖
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the Riemannian metric on M associated with the kinetic energy via
formula (5). Then, Rα = T̃ ∗ (Sα) is described by the linear equations

Jq G
−1
q p = 0,(7)

with J = ∂f/∂q being the matrix ‖∂fi/∂qj‖. Therefore, from (7), (3)
it follows that

p∗ = (1−D) p,

with 1 being the identity matrix, D = J tB−1JG−1, B = JG−1J t, each
matrix being evaluated at q = q. In terms of velocities, keeping in
mind (6), the above formula becomes

v∗ = G−1 (1−D) Gv

3. A comparison with the classical approach

In this final section we will show that the results obtained by ap-
plying the transition principle agree with those obtained by traditional
methods (see, for example, [2], [7] for elementary and classical results,
and [1] for more recent and sophisticated models). However, we would
like to srtress that our scheme, which relies only on naturality of the
geometrical background of the problem, has, in comparison with the
traditional approach, the following two advantages:

1. It does not require any additional, more or less ad hoc, assump-
tions on the nature of impulsive forces;

2. No symmetry arguments are needed (see below)

It is clear from the above discussion that the phase jump described by
way of the transition principle does not depend on the potential energy
but only on the kinetic energy of the system. This means that, during
the collision process, internal and external conservative forces acting on
the system do not play any role. What really matters is the geometry
and the distribution of mass in the colliding bodies.
This perfectly agrees with the classical theory of impact, according to
which the collision is schematized as an instantaneous process. More
exactly, denote by t0 the instant at which the two bodies C1, C2 touch
each other, and let τ be the time interval during which the impact takes
place. Denote by Pi ∈ ∂Ci, i = 1, 2, the contact points. Let Fij (t),
t ∈ [t0, t0 + τ ] be the impulsive force exerted by Ci on Cj at the point
Pj during the impact. Obviously, F12 (t) = −F21 (t), for any t. Apart
from this, the law of force t �→ Fij (t) is uknown, and one only assumes
that

Iij = lim
τ→0

∫ t0+τ

t0

Fij (t) dt �= 0

This practically means that the Fij ’s magnitudes diverge as τ tends to
zero (formally, they could be modelled as two delta functions centered
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at t0). On the other hand, forces deriving from a potential function,
having finite magnitudes, generate infinitesimal impulses during the
impact, and hence produce irrelevant effects.
Thus, summing up:

Let a mechanical system be described by the Hamiltonian (4), and sup-
pose that at an instant t0 it is subjected to an impulsive process. Then
the jump of velocity due to the impact is the same as if the motion was
free, i.e. if the system was subjected only to constraint reactions.

But, in the latter case, the total linear and angular momenta, Q and
K, of the system would be constant vectors, and their projections along
coordinate axes would be 6 independent first integrals of the system.
Therefore, from the above reasoning it follows that such scalar quanti-
ties are always preserved after the impact. Thus, one has 6 independent
equations, allowing to determine the phase of the system immediatly
after the impact.
Let us note that, in the case of free motion, the above first integrals
are associated via Noether’s theorem to infinitesimal symmetries of the
system, which are 1-parameter subgroups of the group of rigid motions
of the ambient Euclidean space. The corresponding vector fields on M
are tangent to N . Therefore, in order to show that our results agree
with the classical ones, it is sufficient to prove the theorem below.
Given a vector field X on M , denote by X̂ ∈ D (T ∗ (M)) its lifting

to the phase space. Recall (see [4]) that X̂ is a Hamiltonian vector

field, and that the corresponding Hamiltonian function is ρ
(
X̂

)
, with

ρ =
∑n

i=1 pidqi being the Liouville 1-form on T ∗ (M). In other words

X̂ �Ω = −d
(
ρ
(
X̂

))

Theorem. Let X ∈ D (M) be an infinitesimal non-hidden symmetry

of the Hamiltonian system (4), i.e. X̂ (H) = 0. Suppose that X is

tangent to N . Then the corresponding first integral h = ρ
(
X̂

)
is

constant along the leaves of the distribution D.
Proof. Let Z ∈ D (T ∗

N (M)) be tangent to the characteristic distri-
bution D. This is equivalent to

Z �ΩN = 0

Denote by σ : T ∗
N (M) → T ∗ (M) the inclusion map. Let h̃ = σ∗ (h) be

the restriction of h to T ∗
N (M). We have to prove that

Z
(
h̃
)

= 0 ,
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First, note that X̂ is tangent to T ∗
N (M). This immediately follows

from the relation

X̂ ◦ π∗ = π∗ ◦X

and the fact that X is tangent to N . Denote by X̃ the restriction of
X to T ∗

N (M), then

X̃ ◦ σ∗ = σ∗ ◦ X̂

Hence

Z
(
h̃
)

= Z �σ∗ (dh) = −Z �σ∗
(
X̂ �Ω

)
= −Z �

(
X̃ �ΩN

)
= X̃ � (Z �ΩN ) = 0
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