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On one-parametric families of Bäcklund transformations

Joseph Krasil’shchik

Abstract. In the context of the cohomological deformation theory, in-
finitesimal description of one-parametric families of Bäcklund transfor-
mations is given. It is shown that any family of such a kind evolves in
the direction of a nonlocal symmetry shadow in the sense of [10]. In ad-
dition, a formal family naturally corresponding to a shadow is described.

Introduction

The role of Bäcklund transformations in constructing exact solutions of
nonlinear partial differential equations is well known, see [1] relevant refer-
ences therein, for example. A general scheme is illustrated by classical works
by Bäcklund and Bianchi. Namely, for the sine-Gordon equation

uxy = sinu (1)

Bäcklund constructed a system of differential relations B(u, v; λ) = 0 de-
pending on a real parameter λ ∈ R and satisfying the following property: if
u = u(x, y) is a solution of (1), then v is a solution of the same equation
and vice versa. Using this result, Bianchi showed that if a known solu-
tion u0 is given and solutions u1, u2 satisfy the relations B(u0, ui; λi) = 0,
i = 1, 2, then there exists a solution u12 which satisfies B(u1, u12; λ2) = 0,
B(u2, u12; λ1) = 0 and is expressed in terms of u0, u1, u2 in terms of rela-
tively simple equalities. This is the so-called Bianchi permutability theorem,
or nonlinear superposition principle. This scheme was successfully applied
to many other “integrable” equations.

Quite naturally, a general problem arises: given an arbitrary PDE E , when
are we able to implement a similar construction? This question is closely
related to another problem of a great importance in the theory of integrable
systems, the problem of insertion of a nontrivial “spectral parameter” to
the initial equation. In this paper, we mainly deal with the first problem
referring the reader to the yet unpublished work by M. Marvan [11], where
the second problem is analyzed.

Our approach to solution lies in the framework of the geometrical the-
ory of nonlinear PDE, and the first section of the paper contains a brief
introduction to this theory, including its nonlocal aspects (the theory of
coverings), see [7, 9, 10]. The second section deals with cohomological in-
variants of nonlinear PDE naturally associated to the equation structure.
Our main concern here is the relation between this cohomology theory and
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deformations of the structure [4, 5, 8]. In the third section, we give a ge-
ometrical definition of Bäcklund transformations and using cohomological
techniques prove the main result of the paper describing infinitesimal part
of one-parameter families of Bäcklund transformations. Finally, the last
section contains discussion of the results obtained as well as some problems
related to the topic of the paper.

1. Equations and coverings

Let us recall basic facts from the geometry of nonlinear PDE, [7, 9].
Consider a smooth manifold M , dimM = n, and a locally trivial smooth

vector bundle π : E → M . Denote by πk : Jk(π)→ M , k = 0, 1, . . . ,∞, the
corresponding bundles of jets. A differential equation of order k, k < ∞,
in the bundle π is a smooth submanifold E ⊂ Jk(π). To any equation E
there corresponds a series of its prolongations Es ⊂ Jk+s(π) and the infinite
prolongation E∞ ⊂ J∞(π). We consider below formally integrable equations,
which means that all Es are smooth manifolds and the natural projection
πE = π∞|E∞ : E∞ → M is a smooth bundle. For any s > 0 there also exist
natural bundles

E∞ πE,s−−→ Es πE,s,s−1−−−−−→ Es−1 πE,s−1−−−−→M (2)

whose composition equals πE .
The space J∞(π) is endowed with an integrable distribution1 denoted by

CD(π). Namely, any point θ ∈ J∞(π) is, by definition, represented in the
form [f ]∞x , x = π∞(θ) ∈ M , where f is a (local) section of π such that
the graph M∞f of its infinite jet passes through θ while [f ]∞x is the class of
(local) sections f ′ satisfying the condition

M∞f ′ is tangent to M∞f at θ with infinite order.

Then the tangent plane TθM∞f is independent of the choice of f and we set
CD(π)θ = TθM

∞
f . The distribution CD(π) is n-dimensional and is called

the Cartan distribution on J∞(π). Since, by construction, all planes of the
Cartan distribution are horizontal (with respect to π∞) and n-dimensional, a
connection C : D(M)→ D(π) is determined, where D(M) and D(π) denote
the modules of vector fields on M and J∞(π) respectively. This connection
is flat and is called the Cartan connection.

Remark 1. In fact, the bundle π∞ possesses a stronger structure than just a
flat connection. Namely, for any vector bundles ξ and η over M and a linear
differential operator ∆ acting from ξ to η, a linear differential operator C∆
acting from the pullback π∞(ξ) to π∞(η) is defined in a natural way. The
correspondence ∆ 7→ C∆ is linear, preserves composition, and the Cartan
connection is its particular case.

Both the Cartan distribution and the Cartan connection are restricted to
the spaces E∞ and bundles πE respectively. The corresponding objects are
denoted by CD(E) and C = CE : D(M)→ D(E), where D(E) is the module
of vector fields on E∞. The characteristic property of the Cartan distri-
bution CD(E) on E∞ is that its maximal integral manifolds are solutions

1Integrability in this context means that CD(π) satisfies the Frobenius condition:
[CD(π), CD(π)] ⊂ CD(π).
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of the equation E and vice versa. The connection form UE ∈ D(Λ1(E)) of
the connection CE is called the structural element of the equation E . Here
D(Λ1(E)) denotes the module of derivations C∞(E∞) → Λ1(E∞) with the
values in the module of one-forms on E∞.

Denote by DC(E) the module

DC(E) = {X ∈ D(E) | [X, CD(E)]⊂ CD(E) }.
Then DC(E) is a Lie algebra with respect to commutator of vector fields
and due to integrability of the Cartan distribution CD(E) is its ideal. The
quotient Lie algebra symE = DC(E)/CD(E) is called the algebra of (higher)
symmetries of the equation E . Denote by Dv(E) the module of πE -vertical
vector fields on E∞. Then in any coset X mod CD(E) ∈ sym E there exists
a unique vertical element and this element is called a (higher) symmetry of
E .

Remark 2. It may so happen that a coset X mod CD(E) contains a repre-
sentative X ′ which is projectible to a vector field X ′s on Es by πE ,s for some
s < ∞ (see (2)). Then it can be shown that X ′ is projectible to all Es
and (πE ,s,s−1)∗X ′s = X ′s−1. In this case, X ′ is called a classical (infinites-
imal) symmetry of E an possesses trajectories in E∞. The corresponding
diffeomorphisms preserve solutions of E and are called finite symmetries.

We now pass to a generalization of the above described geometrical theory,
the theory of coverings [10]. Let τ : W → E∞ be a smooth fiber bundle,
the manifold W being equipped with an integrable distribution CDτ(W ) =
CD(W ) ⊂ D(W ) of dimension n = dimM . Then τ is called a covering over
E (or over E∞), if for any point θ ∈ W one has τ∗(CD(W )θ) = CD(E)τ (θ).
Equivalently, a covering structure in the bundle τ is determined by a flat
connection Cτ : D(M)→ D(W ) satisfying τ∗ ◦Cτ = CE . Let Uτ ∈ D(Λ1(W ))
be the corresponding connection form. We call it the structural element of
the covering τ .

Example 1 (see [14]). Let E ⊂ Jk(π) be an equation. Consider the tangent
bundle TE∞ → E∞ and the subbundle πvE : T vπE → E∞, where T vπE consists
of πE-vertical vectors. Hence, the module of sections for πvE consists of πE-
vertical vector fields on E∞.

Then πvE carries a natural covering structure. Namely, for any vector field
X ∈ D(M) and a vertical vector field Y we set [Cτv(X), Y ] = [CE(X), Y ] UE ,
where UE is the structural element of the equation E . It is easily seen that the
connection Cτv is well defined in such a way and projects to the connection
CE .

Given two coverings τi : Wi → E∞, i = 1, 2, we say that a smooth mapping
F : W1 →W2 is a morphism of τ1 to τ2, if

(i) F is a morphism of fiber bundles,
(ii) F∗ takes the distribution CDτ1(W1) to CDτ2(W2) (equivalently, F∗ ◦
Cτ1 = Cτ2).

A morphism F is said to be an equivalence, if it is a diffeomorphism.
Similar to the case of infinitely prolonged equations, we can define the Lie

algebraDCτ (W ) such that CDτ(W ) is it its ideal and introduce the algebra of
nonlocal τ -symmetries as the quotient symτ E = DCτ (W )/CDτ(W ). Again,
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in any coset X mod CτD(W ) ∈ symτ E there exists a unique πE ◦ τ -vertical
representative and it is called a nonlocal τ -symmetry of the equation E .

Obviously, one can introduce the notion of a covering over covering, etc. In
particular, the subbundle πvE : T vπE → E∞ of πE ◦ τ -vertical vectors (cf. Ex-
ample 1) is a covering over E while the intermediate projection τv : T vτ →W
is a covering over W . Note also that the correspondence τ ⇒ τv determines
a covariant functor in the category of coverings.

We shall now reinterpret the concepts of a symmetry and nonlocal sym-
metry using the results of [14]. Namely, one has

Proposition 1. Let E be an equation and τ : W → E∞ be a covering over
it. Then:

1. There is a one-to-one correspondence between symmetries of E and
sections ϕ : E∞ → T vπE of the bundle πvE : T vπE → E∞ such that ϕ∗
takes the Cartan distribution on E∞ to that on T vπE .

2. There is a one-to-one correspondence between nonlocal τ -symmetries
of E and sections ψ of the bundle (πE ◦ τ)v : T v(πE ◦ τ)→W such that
ψ∗ takes the Cartan distribution on W to that on T vτ .

Let us say that a mapping s : W → T vπE is a τ -shadow of a nonlocal
symmetry (cf. [10]), if πvE ◦ s = τ and s∗ preserves the Cartan distribution.

Proposition 2 (The shadow reconstruction theorem). For any covering τ : W →
E∞ and a τ -shadow s : W → T vπE there exists a covering τ ′ : W ′ →W and
a nonlocal τ ◦ τ ′-symmetry s′ : W ′ → T v(πE ◦ τ ◦ τ ′) such that the diagram

T vπE ←
(τ◦τ ′)∗

T v(πE ◦ τ ◦ τ ′)
I@@
@
s

M ←πE E∞
πvE ↓

← τ
W ← τ ′

W ′

(πE◦τ◦τ ′)v↓ s′
↑

(3)

is commutative. In other words, any shadow can be reconstructed up to a
nonlocal symmetry in some new covering.

Proof. Consider the following commutative digram:

T V πE ← T v(τ ◦ πE)← T V (τv ◦ τ ◦ πE)← · · ·
kQQQQQ

s
kQQQQQ

s∗
kQQQQQ

(s∗)∗

M ←
πE

E∞
πvE ↓

←
τ

W

(τ◦πE)v

↓
←

τv
T vτ

(τv◦τ◦πE)v↓
←

(τv)v
T vτv ← · · ·

and let us set τ0 = τ , τi+1 = τvi , W0 = W , Wi = T vτi, s0 = s, si+1 = (si)∗,
where s∗ = ds. Then the above diagram is infinitely continued to the letf,
while by setting τ̄i = τ1 ◦ · · · ◦ τi passing to the inverse limit, we obtain
Diagram 3 with τ ′ = τ̄∞, s′ = s∞, and W ′ = W∞.

2. C-complex and deformations

We now pass to describe a cohomological theory naturally related to cov-
ering structures and supplying their important invariants, cf. [5].

Let W be a smooth manifold and D(Λi(W )) denote the C∞(W )-module
of Λi(W )-valued derivations C∞(W )→ Λi(W ). For any element Ω ∈ Λi(W )
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one can define the inner product operation

iΩ : Λj(W )→ Λi+j−1(W ),

also denoted by Ω ρ, ρ ∈ Λ∗(W ), and the Lie derivative along Ω:

LΩ = [iΩ, d] : Λj(W )→ Λi+j(W ),

where [d, iΩ] denotes the graded commutator.
Then for any two elements Ω,Θ ∈ D(Λ∗(W )) we can introduce their

Frölicher–Nijenhuis bracket by setting

[[Ω,Θ]](f) = LΩ(Θ(f))− (−1)ijLΘ(Ω(f)),

where f ∈ C∞(W ) and i, j are degrees of Ω and Θ respectively2.

Remark 3. In the sequel, we shall also need the following facts.
1. In the case, when W is a finite-dimensional manifold, one has an

isomorphism D(Λ∗(W )) ' Λ∗(W ) ⊗ D(W ) and thus any derivation
Ω ∈ D(Λ∗(W )) is representable as a finite sum of elements of the form

Ω = ω ⊗X, (4)

where ω ∈ Λ∗(W ) and X ∈ D(W ). For an arbitrary W , an embedding
Λ∗(W )⊗D(W ) ⊂ D(Λ∗(W )) is defined by (ω ⊗X)f = X(f)ω.

2. For elements of the form (4), one has

(ω ⊗X) ρ = ω ∧ (X ρ),

Lω⊗Xρ = ω ∧ LXρ+ (−1)idω ∧ (X ρ)

and

[[ω ⊗X, θ⊗ Y ]] = ω ∧ θ⊗ [X, Y ] + ω ∧ Lx(θ)⊗ Y + (−1)idω ∧ (X θ) ⊗ Y
− (−1)ijθ ∧ LY (ω)⊗X − (−1)(i+1)jdθ ∧ (Y ω)⊗X,

where X, Y ∈ D(W ), ω ∈ Λi(W ), θ ∈ Λj(W ).
3. Note also that another two operations are defined on elements of the

module Ω ∈ D(Λ∗(W )): we can multiply elements of D(Λ∗(W )) by
forms ρ ∈ Λ∗(W ) and for Ω = ω ⊗ X one has ρ ∧ Ω = (ρ ∧ ω) ⊗ X .
In addition, we can insert elements of D(Λ∗(W )) into each other; in
representation (4) this operation is represented as

(ω ⊗X) (θ⊗ Y ) = ω ∧ (X θ)⊗ Y.
The basic properties of the above introduced operations are formulated

in

Proposition 3 (see [4]). Let Ω ∈ D(Λi(W )), Θ ∈ D(Λj(W )), ρ ∈ Λk(W ),
and η ∈ Λl(W ). Then:

(i) iΩ(ρ ∧ η) = iΩ(ρ) ∧ η + (−1)(i−1)kρ ∧ iΩ(η);
(ii) iΩ(ρ ∧Θ) = iΩ(ρ) ∧Θ + (−1)(i−1)kρ ∧ iΩ(Θ);

(iii) [iΩ, iΘ] = i[[Ω,Θ]]rn , where

[[Ω,Θ]]rn = iΩΘ− (−1)(i−1)(j−1)iΘΩ

is the Richardson–Nijenhuis bracket of Ω and Θ;

2We say that i is the degree of Ω, if Ω ∈ D(Λi(W )).
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(iv) LΩ(ρ ∧ η) = LΩ(ρ) ∧ η + (−1)ikω ∧ LΩ(η);
(v) Lρ∧Ω = ρ ∧ LΩ + (−1)i+kdω ∧ iΩ;

(vi) [LΩ, d] = 0;
(vii) [LΩ, LΘ] = L[[Ω,Θ]];

(viii) [[Ω,Θ]] + (−1)ij[[Θ,Ω]] = 0;
(ix) [[Ω, [[Θ,Ξ]]]] = [[[[Ω,Θ]],Ξ]] + (−1)ij[[Ω, [[Θ,Ξ]]]], where Ξ ∈ D(Λm(W ));
(x) [LΩ, iΘ] = i[[Ω,Θ]] − (−1)i(j+1)LΘ Ω;

(xi) Ξ [[Ω,Θ]] = [[Ξ Ω,Θ]] + (−1)i(m+1)[[Ω,Ξ Θ]] + (−1)i[[Ξ,Ω]] Θ
− (−1)(i+1)j[[Ξ,Θ]] Ω;

(xii) [[Ω, ρ∧Θ]] = (LΩρ) ∧Θ− (−1)(i+1)(j+k)dρ ∧ iΘΩ + (−1)ikρ ∧ [[Ω,Θ]].

In particular, from Proposition 3 (ix) it follows that for Ω ∈ D(Λ1(W ))
satisfying the integrability property

[[Ω,Ω]] = 0 (5)

the mapping

∂Ω = [[Ω, ·]] : D(Λi(W ))→ D(Λi+1(W ))

is a differential, i.e., ∂Ω ◦ ∂Ω = 0, and thus we obtain the complex

0→ D(W )→ · · · → D(Λi(W )) ∂Ω−→ D(Λi+1(W ))→ · · · (6)

Assume now that the manifold W is fibered by ξ : W →M and a connec-
tion ∇ is given in the bundle ξ. Then the following fact is valid:

Proposition 4 (cf. [3]).

[[U∇, U∇]] = 2R∇,

where U∇ is the connection form and R∇ is the curvature.

Consequently, if ∇ is a flat connection, i.e., R∇ = 0, then Ω = U∇ enjoys
the integrability property (5) and to any flat connection a complex of the
form (6) corresponds. In this case, we shall use the notation ∂Ω = ∂∇.

Now, we pass to the case of our main interest: let ξ be the composition
W

τ−→ E∞ πE−→ M , τ being a covering over E , and∇ be the Cartan connection
Cτ associated to the covering structure. We include in consideration the
case W = E∞, τ = id, and Cτ = CE . Let us restrict complex (6) to vertical
derivations, i.e., to derivations

Dv(Λi(W )) = {Ω ∈ D(Λi(W )) | Ω(f) = 0, ∀f ∈ C∞(M) }.
By construction, Uτ (or UE) lies in Dv(Λ1(W )) (resp., in Dv(Λ1(E))), while
from the definition of the Frölicher–Nijenhuis bracket it follows that the
differential in (6) preserves vertical derivations. The vertical part of (6) will
be denoted by

0→ Dv(W )→ · · · → Dv(Λi(W )) ∂τ−→ Dv(Λi+1(W ))→ · · · (7)

or

0→ Dv(E)→ · · · → Dv(Λi(E)) ∂E−→ Dv(Λi+1(E))→ · · · , (8)

when the equation is considered as is. The cohomology of (7) (resp., of (8))
is denoted by HC(E ; τ) (resp., by HC(E)) and is called the C-cohomology of
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the covering τ (resp., of the equation E). The following fundamental result
is valid:

Theorem 1 (cf. [5]). Let E ⊂ Jk(π) be a formally integrable equation and
τ : W → E∞ be a covering over E. Then:

1. The module H0
C(E ; τ) is isomorphic to the Lie algebra symτ E of non-

local τ -symmetries (resp., H0
C(E ; τ) is isomorphic to sym E).

2. The module H1
C(E ; τ) is identified with equivalence classes of nontrivial

infinitesimal deformations of the covering structure Uτ (resp., of the
equation structure UE).

3. The module H2
C(E ; τ) consists of obstructions to prolongation of infin-

itesimal deformations up to formal ones.

Let us now consider the mapping LUτ : Λi(W )→ Λi+1(W ) and denote it
by dv. Since the element Uτ is integrable, one has the identity dv ◦ dv = 0.
We call dv the vertical, or Cartan differential associated to the covering
structure. Due to Proposition 3 (vi), [d, dv] = 0 and consequently the map-
ping dh = d− dv is also a differential and [dh, dv] = 0. The differential dh is
called the horizontal differential, while the pair (dh, dv) forms a bicomplex
with the total differential d. The corresponding spectral sequence coincides
with the Vinogradov C-spectral sequence for the covering τ , [15].

Denote by Λ1
h(W ) the submodule in Λ1(W ) spanned by imdh and by

C1Λ(W ) the submodule generated by im dv. Then the direct sum decompo-
sition Λ1(W ) = Λ1

h(W )⊕ CΛ1(W ) takes place and generates the decompo-
sition

Λi(W ) =
⊕
p+q=i

CpΛ(W )⊗ Λqh(W ) =
⊕
p+q=i

Λp,q(W ),

where

CpΛ(W ) = C1Λ(W ) ∧ . . .∧ C1Λ(W )︸ ︷︷ ︸
p times

, Λqh(W ) = Λ1
h(W ) ∧ . . .∧ Λ1

h(W )︸ ︷︷ ︸
q times

.

Then dv : Λp,q(W )→ Λp+1,q(W ), dh : Λp,q(W )→ Λp,q+1(W ) and, moreover,
as it follows from Proposition 3 (xi), ∂τ : Dv(Λp,q(W ))→ Dv(Λp,q+1(W )).

Remark 4. The complex (Λqh(W ), dh) is called the horizontal complex of the
covering τ , while its cohomology is the horizontal cohomology of τ . It is
worth to note that dh in this case is obtained from the de Rham differential
on the manifold M by applying the operation C = Cτ (see Remark 1). From
Proposition 3 (xii) it follows that the C-cohomology of τ is a graded module
over the graded algebra of horizontal cohomology.

3. Bäcklund transformations and the main result

Following [10], let us give a geometric definition of Bäcklund transfor-
mations. Let Ei ⊂ Jki(πi), i = 1, 2, be two differential equations and
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τi : W → E∞i be coverings with the same total space W . Then the dia-
gram

W

	�
�
�τ1 @

@
@
τ2

R
E∞1 E∞2

is called a Bäcklund transformation between the equations E∞1 and E∞2 . We
say that it is a Bäcklund autotransformation, if E∞1 = E∞2 = E∞. Below we
confine ourselves with autotransformations only.

Let B = (W, τ1, τ2, E) be a Bäcklund autotransformation. A point w ∈W
is called τ1-generic, if the plane of the distribution Cτ1D(W ) passing through
w has a trivial intersection with the tangent plane at w to the fiber of τ2

passing through the same point. Now, if s ⊂ E∞ is a solution of E and
τ−1

1 (s) contains a τ1-generic point, then there exists a neighborhood U of this
point such that τ2(U ∩ τ−1

1 (s)) is fibered by solutions of E . Thus, Bäcklund
transformations really determine a correspondence between solutions.

The property of a Bäcklund transformation to be generic is naturally
reformulated in global terms of structural elements. Let Ui = Uτi be the
structural element of the covering τi. Then Ui may be understood as a linear
mapping Ui : D(W ) → D(W ), X 7→ X Ui. Moreover, Ui is a projector,
i.e., Ui ◦ Ui = id, and thus gives the splitting

D(W ) = kerUi ⊕ imUi = CτiD(W )⊕Dv,i(W ),

where Dv,i(W ) is the module of τi-vertical vector fields on W . Let us denote
by

U2,1 = U2|Dv,1(W ) : Dv,1(W )→ Dv,2(W )

the restriction of U2 to Dv,1(W ). Then B is globally τ1-generic, if U2,1 is a
monomorphism. It is generic in a strong sense, if U2,1 is an isomorphism.

The following construction is equivalent to the definition of Bäcklund
transformations. Let τi : Wi → E∞, i = 1, 2, be two coverings and F : W1 →
W2 be a diffeomorphism taking the distribution Cτ1D(W ) to Cτ2D(W ). Then
B = (W, τ1, τ2◦F, E) is a Bäcklund transformations and any Bäcklund trans-
formations is formally obtained in such a way.

Remark 5. It is important to stress here that if F is an isomorphism of
coverings, then the Bäcklund transformation obtained in such a way is trivial
in the sense of its action on solutions. Thus, we are interested in mappings
F such that they are isomorphisms of manifolds with distributions, but not
morphisms of coverings.

Assume now that a smooth family Fλ : W1 →W2 is given, Then it gener-
ates the corresponding family Bλ of Bäcklund transformations. Our aim is
to describe such families in sufficiently efficient terms. One way to construct
these objects is given by the following

Example 2 (see [10]). Consider an equation E , a covering τ : W → E∞ over
it, and a finite symmetry A : E∞ → E∞. Let Ā : W →W be a diffeomorphic
lifting of A to W such that

τ ◦ Ā = A ◦ τ. (9)
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Denote by Ā∗CτD(W ) the image of the distribution CτD(W ) under Ā. Then,
by obvious reasons, Ā∗CτD(W ) determines a covering structure U Āτ in W

and if Ã is another lifting of A, then the structures U Āτ and U Ãτ are equiva-
lent. Thus, BA = (W, τ, A◦ τ, E) is a Bäcklund transformation for E .

LetX be a classical infinitesimal symmetry of E andAλ = exp(λX) : E∞ →
E∞ the corresponding one-parameter group of transformations lifted to
E∞. Then, using the above construction, we obtain λ-parameter family
of Bäcklund transformations Bλ = BAλ .

Remark 6. Note that since the symmetry X generating the family Bλ above
cannot be lifted as a symmetry of W (i.e., as a nonlocal τ -symmetry), it is
a shadow in the covering τ , as well as in all coverings τλ = Aλ ◦ τ .

In fact, the families of Bäcklund transformations obtained in the previ-
ous example are in a sense “counterfeit”, since, due to (9), their action on
solutions reduces to the action of symmetries Aλ. To get a “real” Bäcklund
transformation, one needs to add into considerations an additional mapping
F : W → W preserving the Cartan distribution on W but violating (9).
Nevertheless, as it will be shown below, the construction of Example 2 is of
almost general nature. Toward this end, let us do the following.

Let us denote by

Dg(Λi(W )) = {Ω ∈ Dv(Λi(W )) | Ω(f) = 0∀f ∈ C∞(E∞) }

the module of τ -vertical derivations.

Lemma 1. The modules Dg(Λi(W )) are invariant with respect to the dif-
ferential ∂τ :

∂τ
(
Dg(Λi(W ))

)
⊂ Dg(Λi+1(W )).

Proof. Let Ω ∈ Dg(Λi(W )) and f ∈ C∞(E∞). Then due to the definition of
the Frölicher–Nijenhuis bracket one has

(∂τ (Ω))(f) = [[Uτ ,Ω]](f) = LUτ (Ω(f))− (−1)ΩLΩ(Uτ(f)).

The first summand vanishes, since Ω ∈ Dg(Λi(W )). On the other hand,
Uτ (f) = UE(f) and consequently is a one-form on E∞. Hence, the second
summand vanishes as well.

Denote by ∂g : Dg(Λi(W ))→ Dg(Λi+1(W )) the restriction of ∂τ toDg(Λi(W ))
and by

∂s : Ds(Λi(W ))→ Ds(Λi+1(W ))

the corresponding quotient complex, where, by definition,

Ds(Λi(W )) = Dv(Λi(W ))/Dg(Λi(W )).
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Then the short exact sequence of complexes
0 0 0 0

0 → Dg(W )
↓

∂g→ Dg(Λ1(W ))
↓

→ . . . → Dg(Λi(W ))
↓

∂g→ Dg(Λi+1(W ))
↓

→ · · ·

0 → Dv(W )
↓

∂τ→ Dv(Λ1(W ))
↓

→ . . . → Dv(Λi(W ))
↓

∂τ→ Dv(Λi+1(W ))
↓

→ · · ·

0 → Ds(W )
↓

∂s→ Ds(Λ1(W ))
↓

→ . . . → Ds(Λi(W ))
↓

∂s→ Ds(Λi+1(W ))
↓

→ · · ·

0
↓

0
↓

0
↓

0
↓

is defined.
Denote by H i

g(E ; τ) and H i
s(E ; τ) the cohomology of the top and bottom

lines respectively. Then one has the long exact cohomology sequence

0→ H0
g (E ; τ)→ H0

C(E ; τ)→ H0
s (E ; τ)

φ−→ H1
g (E ; τ)→ H1

C(E ; τ)→ H1
s (E ; τ)→

· · · → H i
g(E ; τ)→ H i

C(E ; τ)→ H i
s(E ; τ)→ · · · , (10)

where φ is the connecting homomorphism.
Similar to Theorem 1, we have the following result:

Proposition 5. In the situation above one has :
1. The module H0

g (E ; τ) consists of “gauge” symmetries in the covering
τ , i.e., of nonlocal τ -symmetries vertical with respect to the projection
τ .

2. The module H0
s (E ; τ) coincides with the set of τ -shadows in the covering

τ .
3. The module H1

g (E ; τ) consists of equivalence classes of deformations of
the covering structure Uτ acting trivially on the equation structure UE .

Now, combining the last result with exact sequence (10), we obtain the
following fundamental theorem:

Theorem 2. Let B = (W, τ, τλ, E) be a smooth family3 of Bäcklund trans-
formations such that τ0 = τ . Then Uτλ is of the form

Uτλ = Uτ + λ[[Uτ , X ]] +O(λ2), (11)

where X is a τ -shadow, i.e., all smooth families corresponding to the cover-
ing τ are identified with im∂s.

Proof. In fact, let Bλ be a family under considerations. Then τλ is a de-
formation of τ . Since we work with deformations which leave the equation
structure unchanged, then, by Proposition 5, their infinitesimal parts are
elements of H1

g (E ; τ). Let Ω be such an element.

3We say that a family is smooth, if the family Uτλ is smooth in Dv(Λ1(W )).
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Now, by Remark 5, the deformation we are dealing with is to be trivial as a
deformation of W endowed with the structure Uτ . On the infinitesimal level,
this mean that the image of Ω in H1(E ; τ) should vanish. But by exactness
of (10) we see that Ω = φ(X) for some X ∈ H0

s (E ; τ). It now suffices to note
that by construction of the connecting homomorphism, φ(X) = [[Uτ , X ]].

Denote by B(τ) the “manifold” of all Bäcklund transformations obtained
from the covering τ by the above described way. Then from exactness of
(10) it follows that the tangent plane to B(τ) at τ is identified with the space
shadτE/symτE , where shadτE = H0

s (E ; τ) is the space of all τ -shadows. Fi-
nally, the space symτE = symτ E/ symg

τ E is the quotient of all τ -symmetries
over gauge ones. In particular, if a covering τ is such that any τ -shadow can
be reconstructed up to a nonlocal τ -symmetry, then τ cannot be included
in a nontrivial family of Bäcklund transformations.

Example 3 (Universal Abelian covering). An example of a covering of the
above mentioned type is given by the following construction. It is known
[2, 10] that to any horizontal 1-cocycle there corresponds a one-dimensional
covering and cohomologous cocycles determine equivalent coverings.

Let E be an equation and [ω1], . . . , [ωr], . . . be a basis in H1
h(E) consider

the Whitney product of coverings corresponding to all classes [ωi] and denote
it by a1 : A1 → E∞. For thus obtained object, let us repeat the construction
and consider the covering a2 : A2 → A1, etc. Thus we obtain the infinite
sequence

· · · → Am
am−−→ Am−1 → · · · → A2

a2−→ A1
a1−→ E∞,

and the inverse limit a : A → E∞ which is called the universal Abelian cov-
ering of E .

Theorem 3 ([2]). Any a-shadow can be reconstructed up to a nonlocal a-
symmetry.

4. Concluding remarks

We conclude the above discussion with a number of remarks of various
nature.

4.1. Bäcklund transformations and recursion operators. As it was
shown in [14], a recursion operator for symmetries of an equation E may be
understood as a Bäcklund transformation of the formR = (WR, ρ1, ρ2, T

vπE),
where πvE : T vπE → E∞ is the covering from Example 1. Let now B =
(W, τ1, τ2, E) be an arbitrary Bäcklund transformation of equation E . Then,
using the fact that T v is a functor (see Section 1), we obtain the commutative
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diagram

W̃

	�
�
�(τv1 )∗(τv2 ) @

@
@
(τv2 )∗(τv1 )

R
T vτ1 T vτ2

@
@
@
τv1
R 	�

�
�τv2

T vπE

τ1,∗↓
W

τ̃

↓
T vπE

τ2,∗↓

	�
�
�
τ1

@
@
@τ2 R

E∞
πvE ↓

E∞
πvE↓

where τ̃ = τv1 ⊕ τv2 is the Whitney product. Thus,

T vB =
(
W̃ , τ1,∗ ◦ (τv1 )∗(τv2 ), τ2,∗ ◦ (τv2 )∗(τv1 ), T vπE

)
is a recursion operator and we obtain

Proposition 6. Any Bäcklund autotransformation of an equation E gener-
ates a recursion operator for symmetries of this equation.

4.2. Bäcklund transformations and symmetries. The following con-
struction belongs to M. Marvan [13]. Let B = (W, τ, µ, E) be a Bäcklund
transformation. Then one may construct the following commutative dia-
gram

. . .
τi+3→Wi+2

τi+2→Wi+1
τi+1→ . . .

τ2→W1
τ1→W0

. . .
τi+2→Wi+1

µi+2↓
τi+1→Wi

µi+1↓
τi→ . . .

τ1→W0

µ1↓
τ0→ E∞

µ0↓

where τ0 = τ , µ0 = µ, τi+1 = µ∗i (τi), µi+1 = τ∗i (µi), and Wi+1 is the total
space of the Whitney product of τi and µi. Passing to the inverse limit, we
obtain the mapping µ∞ : W∞ →W∞, which is a finite symmetry of W∞.

Let now Bλ = (W, τ, τλ, E) be a smooth family of Bäcklund transfor-
mations. Then, by the above construction, we obtain a smooth family of
finite symmetries τλ,∞ : W∞ → W∞. Let us set X∞ = dτλ,∞/dλ|λ=0. Then
X∞ ∈ symτ∞W∞.

Conjecture. The shadow X determining the infinitesimal deformation cor-
responding to the family Bλ is the shadow of X∞, i.e., X∞|W = X .

4.3. Formal deformations. Let X be a τ -shadow and Uτ + λ[[Uτ , X ]] be
the corresponding infinitesimal deformation of the covering structure. In
general, a possibility to continue this deformation up to a formal one is
related to triviality of the group H2

g (E ; τ), cf. Theorem 1. Nevertheless, in
the particular case under consideration there always exists such a formal
continuation.

Let U ∈ D(Λ1(W )) and X ∈ D(W ). Consider the formal series

eλXU = U + λ adX U + · · ·+ λi

i!
adiX U + · · · , (12)

where adX = [[ · , X ]].
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Lemma 2. One has
di

dλi
[[eλXU, eλXU ]] = adiX [[eλXU, eλXU ]]

for any U and X of the above form.

Proof. Let us first note that by definition, d(eλXU)/dλ = adX eλXU . Then,
using Proposition 3 (ix), one gets

di

dλi
[[eλXU, eλXU ]] =

i∑
j=0

(
i

j

)
[[
dj

dλj
eλXU,

di−j

dλi−j
eλXU ]]

=
i∑

j=0

(
i

j

)
[[adjX e

λXU, adi−jX eλXU ]] = adiX [[eλXU, eλXU ]]

Corollary 1. If in (12) U = Uτ is the structural element of a covering τ ,
then [[eλXUτ , eλXUτ ]] = 0, i.e., eλXUτ is a formal deformation of Uτ .

Proof. In fact, to prove the result it suffices to show that

di

dλi
[[eλXUτ , eλXUτ ]]

∣∣∣∣
λ=0

= 0

for all i ≥ 0. But by Lemma 2 one has

di

dλi
[[eλXUτ , eλXUτ ]]

∣∣∣∣
λ=0

=
(

adiX [[eλXUτ , eλXUτ ]]
)∣∣∣
λ=0

= adiX
(

[[eλXUτ , eλXUτ ]]
∣∣∣
λ=0

)
= adiX [[Uτ , Uτ ]] = 0,

since the element Uτ is integrable.

4.4. Some problems. To conclude, I would like to state some problems
related to the text above.

Problem 1. Having a rather explicit description for smooth families of
Bäcklund transformations, it seems realistic now to prove the permutability
theorem in general case.

Problem 2. Of course, formal deformations of the form (12) do not exhaust
all possible deformations of the initial structure. Does there exist an efficient
description for other formal deformations?

Problem 3. What are the conditions for convergency of (12)?

Problem 4. Probably, a realistic way to solve Problems 2 and 3 lies in
constructing a geometrical theory of differential equations with a parameter.
In fact, a formal deformation is nothing else but an infinite jet of some
quantity with respect to a parameter. Thus, such a theory allows one to
put the theory of deformation in a well-posed framework of geometrical and
algebraic theory of PDE and apply all tools of the latter.
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Problem 5. Finally, recall the following construction. Let τλ : Wλ → E∞
be a smooth family of coverings with unremovable parameter λ [11]. Then
coordinates wr along the fibers of τλ (nonlocal variables), due to the covering
structure, satisfy a first-order system of differential equations

∂w
∂xi

= Fi(x,u,w; λ), (13)

where w = (w1, w2, . . .), x = (x1, . . . , xn) are local coordinates in M (inde-
pendent variables), and u are internal coordinates in E∞ (unknown functions
and their partial derivatives). Assuming dependency of w on λ and expand-
ing both sides of (13) in formal series in λ, we obtain an infinite system
of equations on coefficients of this expansion. This system determines an
infinite-dimensional covering over E . In some cases, an infinite system of el-
ements in H1

h is associated to this covering (in the case n = 2 these elements
are identified with — generally speaking, nonlocal — conservation laws of
E .

At least, two questions arise:
1. How to implement a purely geometric version of this construction? It

is reasonable to hope that the answer lies in solving Problem 4.
2. As it follows from the above said, the construction does not need a

smooth family of covering, but a formal family only. Consequently, one
can apply the construction to the canonical expansion (12) associated
to a shadow X . Thus, to any covering τ and a τ -shadow X we can
put into correspondence, in a natural way, a new infinite-dimensional
covering. What is an explicit description of the latter?

Conjecture. This covering coincides with the one constructed in Propo-
sition 2.

Another question: if a series of conservation laws corresponds to this
covering, how to describe this series in terms of the initial covering τ
and the shadow X?
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