CONTENTS OF THE COURSE

GEOMETRY OF DIFFERENTIAL EQUATIONS

SECOND DIFFIETY SCHOOL,
Forino, February - March 1999

Joseph Krasil'shchik

1. JET BUNDLES

1.1. Vector bundles and sections. Smooth manifolds. Smooth locally trivial vector bundles. Sections. The $C^{\infty}(M)$-module structure in $\Gamma(\pi)$.
1.2. Jets. The jet $[f]_{x}^{k}$ of a local section f at a point $x \in M$. The space $J_{x}^{k}(\pi)$. Smooth structure in $\bigcup_{x \in M} J_{x}^{k}(\pi)$. Manifolds $J^{k}(\pi)$ and bundles $\pi_{k}: J^{k}(\pi) \rightarrow M$. The jet modules $\mathcal{J}^{k}(\pi)=\Gamma\left(\pi_{k}\right)$. Canonical coordinates u_{σ}^{j} in $J^{k}(\pi)$ associated to a local trivialization in π. Dimension of $J^{k}(\pi)$. The bundles $\pi_{k, l}: J^{k}(\pi) \rightarrow J^{l}(\pi), k \geq l$. Graphs of jets. R-planes. Presentation of points of $J^{k}(\pi)$ as pairs $\left(\theta_{k-1}, L_{\theta_{k}}\right)$, where $\theta_{k-1} \in J^{k-1}(\pi)$ and $L_{\theta_{k}} \subset T_{\theta_{k-1}} J^{k-1}(\pi)$ is an R-plane.
1.3. Nonlinear differential operators. Presentation of scalar operators as functions on $J^{k}(\pi)$. Pull-backs $\pi_{k}^{*}(\xi)$ and nonlinear operators $\Delta: \Gamma(\pi) \rightarrow \Gamma(\xi)$ as sections of the bundles $\pi_{k}^{*}(\xi)$. Presentation of operators as morphisms $J^{k}(\pi) \rightarrow J^{0}(\xi)$. The universal operator $j_{k}: \Gamma(\pi) \rightarrow \Gamma\left(\pi_{k}\right)$. Prolongations of nonlinear operators and their correspondence to morphisms $J^{k+l}(\pi) \rightarrow J^{l}(\xi)$. Composition of nonlinear operators.
1.4. Nonlinear equations. Differential equations as submanifolds in $\mathcal{E} \subset J^{k}(\pi)$. Description of equations by nonlinear operators. The first prolongation $\mathcal{E}^{1} \subset J^{k+1}(\pi)$. Three definitions of the l-the prolongation, there equivalence. Solutions.

2. Geometry of the Cartan distribution in $J^{k}(\pi)$

2.1. The Cartan distribution. The Cartan plane \mathcal{C}_{θ}^{k} as the span of the set of R-planes at the point $\theta \in J^{k}(\pi)$. The distribution $\mathcal{C}^{k}: \theta \mapsto$
\mathcal{C}_{θ}^{k}. Description of \mathcal{C}_{θ}^{k} in the form $\left(\pi_{k, k-1}\right)_{*}^{-1}\left(L_{\theta_{k}}\right)$. Local description of \mathcal{C}^{k} by the Cartan forms $\omega_{\sigma}^{j}=d u_{\sigma}^{j}-\sum_{i} u_{\sigma+1_{i}}^{j} d x_{i}$. A local basis in \mathcal{C}^{k}.
2.2. Maximal integral manifolds of the distribution \mathcal{C}^{k}. Involutive subspaces of the Cartan distribution. The theorem on maximal integral manifolds. The type of a maximal integral manifold. Computation of dimensions for maximal integral manifolds. Integral manifolds of maximal dimension in inexceptional cases.
2.3. The Lie-Bäcklund theorem. Lie transformations as diffeomorphisms of $J^{k}(\pi)$ preserving the Cartan distribution. Lifting of Lie transformations from $J^{k}(\pi)$ to $J^{k+1}(\pi)$. The case $\operatorname{dim} \pi>1$: correspondence between Lie transformations and diffeomorphisms of $J^{0}(\pi)$. The case $\operatorname{dim} \pi=1$: the contact structure in $J^{1}(\pi)$, correspondence between Lie transformations and contact transformations of $J^{1}(\pi)$ (inexceptional case $\operatorname{dim} M \neq 1$ and exceptional case $\operatorname{dim} M=1$). Local formulas for liftings of Lie transformations.
2.4. Infinitesimal theory. Lie fields. Local lifting formulas. Global nature of lifting for Lie fields. Infinitesimal analog for the Lie-Bäcklund theorem.

One-dimensional bundles. Generating functions of Lie fields. Correspondence between functions on $J^{1}(\pi)$ and Lie fields for trivial onedimensional bundles. The jacobi bracket on $C^{\infty}\left(J^{1}(\pi)\right)$. Local coordinate formulas for Lie fields and Jacobi brackets in terms of generating functions.

Bundles of higher dimensions. The element $\rho_{k}(\pi) \in \mathcal{J}^{k}\left(\pi_{k}^{*}(\pi)\right)$, its definition and properties. The Spencer complexes $\cdots \rightarrow \mathcal{J}^{k}(\xi) \otimes$ $\Lambda^{l}(N) \xrightarrow{S_{k}^{l}} \mathcal{J}^{k-1}(\xi) \otimes \Lambda^{l+1}(N) \rightarrow \cdots$ for a vector bundle $\xi: P \rightarrow N$, their exactness. The element $U_{k}(\pi)=S_{k}^{0}\left(\rho_{k}(\pi)\right) \in \mathcal{J}^{k-1}\left(\pi_{k}^{*}(\pi)\right) \otimes$ $\Lambda^{1}\left(J^{k}(\pi)\right)$, its properties. Generating sections $f \in \Gamma\left(\pi_{k}^{*}(\pi)\right)$ as the result of construction of Lie fields with $U_{1}(\pi)$. Jacobi brackets for generating sections. Local coordinates.

3. Classical symmetry theory for differential equations

3.1. Classical symmetries. Finite and infinitesimal symmetries, definitions. "Physical meaning" of generating functions. Determining equations for coordinate computations. An example: symmetries of the Burgers equation $u_{t}=u u_{x}+u_{x x}$.
3.2. Exterior and interior symmetries. The restriction $\mathcal{C}(\mathcal{E})$ of the Cartan distribution to \mathcal{E}. Exterior $\operatorname{Lie}(\mathcal{E})$ and interior $\operatorname{Lie}_{\text {int }}(\mathcal{E})$ symmetries of an equation $\mathcal{E} \subset J^{k}(\pi)$. The homomorphism $r: \operatorname{Lie}(\mathcal{E}) \rightarrow$ $\operatorname{Lie}_{\text {int }}(\mathcal{E})$. Counterexamples.

4. Perspectives

Algebraic model. The basic constructions. Cohomological invariants.

